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Abstract: Planting maize (Zea mays L.) reasonably densely and adding amounts of appropriate
nitrogen fertilizer are essential measures to improve the efficiency of maize yield and nitrogen use. In
this study, two planting densities of 7.5× 104 plants ha−1 and 12.0× 104 plants ha−1 were established
with the maize varieties DengHai 618 (DH618) and XianYu 335 (XY335). Simultaneously, 18 levels of
nitrogen application were established, including a lack of nitrogen (N0) and increments of 45 kg ha−1

nitrogen up to 765 (N765) kg ha−1. The variables studied included the effects of the rate of nitrogen
application on the characteristics of dry matter accumulation and the yield under drip irrigation, and
they were integrated into water–fertilizer integration. The results indicated that the yield, harvest
index, and dry matter accumulation of maize displayed a trend of increasing and then tending to
be flat as the amount of nitrogen applied increased. The use of linear plus platform equation fitting
indicated that the change in yield with nitrogen administered had the lowest turning point at N = 279
and N = 319, respectively. The next parameter that was measured was the harvest index. When highly
dense maize was grown before silking, the rate of nitrogen applied was more obviously impacted
by the accumulation of dry matter. The harvest index contributed 22.9–27.2% of the yield, and the
total dry matter accumulation before and after silking contributed more than 70% of the production.
Increasing the amount of nitrogen fertilizer is beneficial to prolonging the dry matter accumulation
time and increasing the dry matter accumulation rate. The accumulation amount of dry matter was
positively correlated with accumulation time and rate, and the correlation between dry matter and
accumulation rate was greater. In conclusion, applying the right amount of nitrogen can dramatically
increase the harvest index, accumulation of materials, and yield, with dry matter accumulation
having the greatest influence on yield. The creation of dry matter is influenced by the time and rate
of its accumulation, with its rate serving as the primary controlling factor.

Keywords: maize; dense planting; drip irrigation; water–fertilizer integration; material accumulation;
harvest index

1. Introduction

Global food demand will continue to increase owing to population growth, and there
may even be severe food shortages [1,2]. To meet the strict demand for grain caused by
population growth, the output of grain may need to increase by 70% by 2050 [3,4]. The
area of farmland is shrinking as urbanization dramatically increases, while the standard
of living is also increasing. We can only meet the increasing demand for food by steadily
increasing the amount of grain produced per unit area of currently used agricultural land.
With 9% of the world’s arable land, China has achieved a global milestone by feeding 22%
of the world’s population. The use of chemical fertilizer increases agricultural output and
significantly contributes to global and Chinese food security [5,6]. However, the rapid
expansion of the usage of chemical fertilizers poses environmental threats that impede the
sustainable development of agriculture. A pressing concern in agricultural productivity is
how to appropriately use nitrogen fertilizer to reduce nitrogen pollution.
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Increasing density is an effective way to improve the grain yield of maize (Zea mays L.), and
dense planting facilitates the accumulation of dry matter and the increase in maize yield [7].
The application of a reasonable amount of nitrogen and the timing of its application
can increase dry matter accumulation after silking, meet the demand for high yield, and
improve the efficiency of utilizing nitrogen fertilizer [8,9]. Biomass is not only the product of
leaf sources, but also an essential source of yield formation. Higher dry matter accumulation
is the basis of yield formation. Within a specific range, dry matter accumulation is directly
proportional to the yield of maize grain [10–15]. Approximately 50–60% of the cumulative
biomass of maize can be allocated to the grains [16,17]. Most of this biomass originates
from the dry matter accumulation after flowering [8,18]. Therefore, increasing the dry
matter after flowering is very important to increase grain yield.

The grain yield of crops is determined by the characteristics of dry matter accumula-
tion, distribution, and transfer during the growth period, and there is a significant positive
correlation between dry matter accumulation and yield [19]. Under the conditions of
high-yield maize cultivation, many studies have been performed on material accumulation
and nutrient absorption and utilization. It is clear that the accumulation and transportation
of dry matter and nutrients in maize are primarily affected by different varieties of maize
and cultivation measures. For example, for different maize varieties, Qi et al. [20] and
Peng et al. [21] found that high-yielding or super-high-yielding maize varieties had higher
rates of nutrient absorption and dry matter accumulation during their entire growth period.
In particular, the ratio of nutrient absorption and distribution to grains after maize flower-
ing was significantly higher than that of the low-yielding maize varieties. The increase in
maize planting density can effectively improve the plant canopy structure, light interception
capacity per unit area, and the dry matter production capacity of the population [10,22–24].
However, higher planting densities produce better results. Cao et al. [25] showed that a
higher planting density results in a more efficient ability to transport nitrogen and reduces
the imbalance of carbon and nitrogen metabolism in the plant and premature aging. The
harvest index usually decreases with the increase in density [26,27]. The amount of dry
matter accumulation after anthesis is crucial for obtaining a higher harvest index [28].

In 2020, the Crop Cultivation and Physiology Innovation team of the Chinese Academy
of Agricultural Sciences created a record harvest of 24,948.75 kg ha−1 in Qitai, Xinjiang [29].
The amount of nitrogen applied under different densities was optimized. The planting
density was 7.5 × 104 plants ha−1, and the recommended amount of nitrogen to apply was
340 kg ha−1. When the planting density was 12.0 × 104 plants ha−1, the recommended
amount of nitrogen to apply is 380 kg ha−1 [30]. Planting maize (Zea mays L.) reasonably
densely and adding amounts of appropriate nitrogen fertilizer are essential measures to
improve the efficiency of the maize yield and nitrogen use. The variables studied included
the effects of the rate of nitrogen application on the characteristics of dry matter accumu-
lation and the yield under drip irrigation, and they were integrated into water–fertilizer
integration. However, it is not clear how the density and rate of nitrogen application affect
dry matter accumulation and the yield of super-high-yield maize. Under the conditions of
drip irrigation, water–fertilizer integration, and fractional fertilization, this study clarified
the following: (1) how planting density and the rate of nitrogen application affect the dry
matter accumulation characteristics of super-high-yield maize; and (2) how planting den-
sity and nitrogen application amount affect the yield of maize grain by affecting dry matter
accumulation. The results will provide a theoretical basis for the scientific fertilization of
super-high-yield maize.

2. Materials and Methods
2.1. Test Overview

The positioning was conducted from 2019 to 2021 at the Qitai Farm, Xinjiang (43◦50′ N,
89◦46′ E). The rainfall was 124–192.7 mm during the maize-growing season from April to Octo-
ber; the daily average temperature was 18.4 ◦C; the solar radiation was 3207.9–3577.8 MJ m−2;
the annual accumulated temperature that was ≥10 ◦C was 3160 to 3499.5 ◦C; and the
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frost-free period was 156–181 days, respectively. The solar radiation, average temperature,
and rainfall during the growing period are shown in Figure 1. The soil texture of the
experimental field was sandy loam. The soil nutrient status before sowing was organic
matter: 13.3 g kg−1, N: 82.9 mg kg−1, P: 53.8 mg kg−1, K: 105.6 mg kg−1, and a pH of 7.9.
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2019 to 2021.

2.2. Test Design

In this experiment, two maize varieties that were tolerant to high densities were
selected, including DengHai 618 (DH618) and XianYu 335 (XY335). Two planting den-
sities were established, namely, 7.5 × 104 plants ha−1 (farmer planting density) and
12.0 × 104 plants ha−1 (high-yield planting density). A total of 18 levels of nitrogen were
applied, including no nitrogen (N0), pure nitrogen 45 (N45), 90 (N90), 135 (N135), 180
(N180), 225 (N225), 270 (N270), 315 (N315), 360 (N360), 405 (N405), 450 (N450), 495 (N495),
540 (N540), 585 (N585), 630 (N630), 675 (N675), 720 (N720), and 765 (N765) kg ha−1. The
area of plot was 66 m2 with three repetitions. Wide and narrow rows were used for planting,
and the row spacing was 70 cm + 40 cm. The mode of irrigation and fertilization was an
integrated drip irrigation system under film, water, and fertilizer. To accurately control the
amount of fertilizer and water applied in each treatment, each community installed a set of
50 L differential pressure fertilizer tanks and fertilizer valves for fertilization.

2.3. Field Management

The planting date with a local temperature above 10 ◦C for 7 consecutive days was
selected. The sowing date in 2019 was April 20, and the sowing date for both 2020
and 2021 was April 17. The harvest dates from 2019 to 2021 are October 4, October 2
and September 30, respectively. A total of 36 kg ha−1 N, 108 kg ha−1 P2O5, and 37.5 kg
ha−1 K2O were applied as seed fertilizer before sowing, and N was not used during
the entire growth period of N0. According to previous studies, under the condition of
12.0 × 104 plants ha−1 density, the optimal irrigation amount is 5400 m3, which can fully
meet the water demand of maize during the whole growth period [31]. The other nitrogen
application treatments were applied with water in equal proportions at the 9-leaf stage,
12-leaf stage, silking stage, 10 days after silking, and 20 days after silking. The seeds were
watered on the first day after sowing to ensure uniform and rapid germination. To prevent
late lodging and the hardening of seedlings, no irrigation was applied from sowing to
60 days after sowing. Chemical control (DA-6 Ethephon; China Agrotech, Shanxi, China)
was applied at 600 mL ha−1 during the V8–V10 period of maize growth. The pests, diseases,
and weeds were well controlled.

2.4. Measurement Items and Methods
2.4.1. Grain Yield

At physiological maturity, 20 ears were collected from the middle two rows in each
plot, and the number of kernels on each ear was counted. After removing the border plots,
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the final harvest was in a plot area of 10 m2 with three replicates. The ear number, grain
moisture content, and grain yield were also determined for each plot. The grain yield and
kernel weight were expressed at a 14% moisture content.

2.4.2. Dry Matter Determination

At the 6-leaf stage (V6), 9-leaf stage (V9), 12-leaf stage (V12), silk stage (R1), milk
ripening stage (R3), wax ripening stage (R5), and mature stage (R6) of the maize, three
representative maize plants with consistent growth were randomly selected from each plot.
The aboveground part of the plant was sampled from the base of the maize plant near the
ground surface, and the stems, leaves, sheaths, male ears, female ears, bracts, and other
organs were packed in sampling paper bags, marked for processing, and placed in an oven.
The samples were incubated at 105 ◦C for 30 min to inactivate the enzymes and were then
heated to a constant weight at 65 ◦C. The dry samples were weighed and recorded using a
balance that was accurate to 0.01 g.

Dry matter accumulation amount after flowering = dry matter accumulation amount at the mature stage
− dry matter accumulation amount at flowering stage

(1)

Harvest index = grain yield/aboveground dry matter (2)

2.4.3. Maximum Rate of Accumulation and Amount of Dry Matter

Logistic curve fitting is one of the most commonly used models for dry matter in
maize growth, with high accuracy. The dry matter accumulation at the different growth
stages of the maize was fitted using the logistic curve [32]:

Y = Wmax/(1 + ae−bt) (3)

where Y is the dry matter accumulation (t ha−1); Wmax is the maximum accumulation
(t ha−1), and t is the growth days (d). Parameters a and b are related to environmental
conditions. The starting period (t1), the ending period (t2), the number of days between
rapid accumulation (T), and the maximum accumulation rate (Vmax) of the corresponding
growth curve were obtained using the following equations:

t1 = −1
b

ln
2 +
√

3
a

; t2 = −1
b

ln
2−
√

3
a

(4)

Vmax = (Wmax × b)/4; T = t2 − t1 (5)

2.4.4. Calculation of the Rate of Contribution

The rate of contribution of the dry matter accumulation and harvest index to the yield
were calculated using a correlation analysis [16]. The specific methods of calculation are
shown as follows:

a1 = β1Sx1/Sy; b1= β2Sx2/Sy; c1= β3Sx3/Sy (6)

Cpre (%) = [a1/(a1 + b1 + c1)] ×100%; (7)

Cpost (%) = [b1/(a1 + b1 + c1)] ×100%; (8)

CHI (%) = [c1/(a1 + b1 + c1)] ×100% (9)

In the formula, a1, b1, and c1 are the standardized coefficients of pre-silking material
accumulation, post-silking material accumulation, and harvest index, respectively. β1,
β2, and β3 are the coefficients of pre-silking material accumulation, post-silking material
accumulation, and harvest index in a partial regression equation, respectively. Sx1, Sx2,
Sx3, and Sy are the standard deviations of the pre-silking material accumulation, post-
silking material accumulation, harvest index, and yield, respectively. Cpre, Cpost, and CHI
are the rates of contribution of the pre-silking material accumulation, post-silking material
accumulation, and harvest index to grain yield, respectively.
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2.5. Statistical Analysis

Microsoft Excel 2019 (Redmond, WA, USA) and SPSS 20.0 (IBM, Inc., Armonk, NY, USA)
were used for the data analysis. A Pearson correlation analysis was used to analyze the
correlation between dry matter, rate of dry matter accumulation, and accumulation time.
Origin 2022 (OriginLab, Northampton, MA, USA) was used to complete all of the drawings.

3. Results
3.1. Effect of the Rate of Nitrogen Application on Maize Yield

With the increase of nitrogen application, the maize yield increased rapidly at the
beginning, and the difference was not obvious when it reached a certain amount of nitrogen
(Table 1). The results showed that when the rate of nitrogen application to the maize
variety DH618 was 270–315 kg ha−1 and 360 kg ha−1 in 2019–2020, respectively, under a
density of 7.5 × 104 plants ha−1 and 12.0 × 104 plants ha−1, the rate of nitrogen applied
continued to increase. The yield did not increase, and the corresponding yields were
17.84–19.42 t ha−1 and 18.53–20.5 t ha−1, respectively. From 2019 to 2021, when the rate
of nitrogen applied to the maize variety XY335 was 270–360 kg ha−1 and 270–405 kg ha−1

under a density of 7.5 × 104 plants ha−1 and 12.0 × 104 plants ha−1, respectively, the rate
of nitrogen continued to increase, and the yield did not increase. The corresponding yields
were 18.88–20.26 t ha−1 and 19.32–21.68 t ha−1, respectively. These results show that a
higher yield can be obtained by increasing the planting density, but the demand for nitrogen
fertilizer also increases. When the amount of nitrogen applied meets the growth demand
of the maize, the yield will not be further improved if the amount of nitrogen applied
is increased. At the same time, under the condition of sufficient water and fertilizer, the
growth of maize was not inhibited.

Table 1. Effect of different nitrogen application rates on maize yield.

Year 2019 2020 2021

Density (×104 Plants ha−1) 7.5 12.0 7.5 12.0 7.5 12.0

Varieties DH618 XY335 DH618 XY335 DH618 XY335 DH618 XY335 XY335 XY335

Nitrogen Application
(kg ha−1) t ha−1

0 13.02 g 12.23 g 12.12 h 12.70 g 9.97 f 11.33 f 8.76 h 9.56 g 8.42 j 8.7 h
45 13.28 g 12.69 g 12.66 h 12.99 g 10.10 f 12.12 f 9.23 h 11.65 f 9.58 i 9.56 h
90 13.81 f 14.00 f 13.55 g 13.99 f 12.84 e 14.63 e 10.99 g 14.34 e 11.08 h 11.51 g
135 14.81 e 15.77 e 14.33 f 14.84 e 14.91 d 17.34 d 13.03 f 17.28 d 12.62 g 13.92 f
180 15.49 d 16.47 d 14.88 e 15.11 e 16.72 c 18.24 c 14.91 e 18.92 c 14.58 f 15.71 e
225 16.87 c 17.28 c 15.85 d 16.26 d 18.16 b 19.38 b 16.42 d 20.49 b 16.05 e 16.74 de
270 17.26 bc 18.13 b 17.15 c 16.86 c 19.42 a 20.26 ab 17.76 c 21.68 a 16.85 de 17.25 cd
315 17.84 a 18.88 a 18.15 b 18.40 b 19.40 a 20.70 a 18.85 b 22.25 a 17.83 cd 18.00 c
360 17.62 ab 18.69 ab 18.53 ab 19.32 a 19.36 a 20.49 a 20.50 a 22.65 a 19.65 a 19.24 b
405 17.46 ab 18.69 ab 18.89 a 19.10 a 19.10 a 20.68 a 20.37 a 21.85 a 19.37 ab 20.91 a
450 17.42 ab 18.42 ab 18.75 ab 19.17 a 19.41 a 20.14 ab 20.48 a 22.02 a 19.34 ab 20.53 a
495 17.41 ab 18.52 ab 18.63 ab 19.17 a 19.11 a 20.31 a 20.19 a 21.92 a 18.96 abc 20.27 ab
540 17.61 ab 18.64 ab 18.83 a 19.07 a 18.89 ab 20.25 ab 20.48 a 22.04 a 18.97 abc 20.86 a
585 17.61 ab 18.48 ab 18.69 ab 19.11 a 18.96 a 20.31 a 20.22 a 21.83 a 18.54 abc 20.78 a
630 17.71 ab 18.56 ab 18.75 ab 19.23 a 18.87 ab 19.85 ab 20.42 a 21.81 a 19.43 ab 20.56 a
675 17.68 ab 18.59 ab 18.73 ab 19.12 a 18.88 ab 20.13 ab 20.19 a 21.79 a 19.17 ab 20.41 ab
720 17.80 ab 18.39 ab 18.67 ab 19.11 a 18.98 a 19.85 ab 20.22 a 21.72 a 18.66 abc 20.35 ab
765 17.56 ab 18.58 ab 18.68 ab 19.11 a 19.09 a 19.98 ab 20.31 a 21.69 a 18.25 bc 19.99 ab

Note: Values followed by different letters are significant at p < 0.05.

3.2. Effect of Nitrogen Application Rate on Maize Yield, Dry Matter Accumulation, and
Harvest Index

The increase in nitrogen application, yield, harvest index, and dry matter accumulation
before and after anthesis when the maize was grown at densities of 7.5 × 104 plants ha−1

and 12.0 × 104 plants ha−1, and the dry matter when the maize had matured, showed a
trend of first increasing and then tending to be flat (Figure 2). A linear + platform was used
to fit the rate of nitrogen application and yield, harvest index, and material accumulation
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(Table 2). The results showed that under the two density conditions, the turning point
of the change in yield with the rate of nitrogen applied was the lowest at N = 279 and
N = 319, respectively. The second case in which the yield changed was the harvest index at
N = 300 and N = 390, respectively. At a planting density of 7.5 × 104 plants ha−1, there was
a small difference in the accumulation of pre-silking and post-silking material in response
to the application of N with values that ranged from N = 350 to N = 363, respectively. At
a planting density of 12.0 × 104 plants ha−1, there was a large difference in the response
to N between pre-silking and post-silking material accumulation, and it ranged from
N = 423 to N = 507, respectively. This showed that the maximum amount of dry matter was
accumulated before silking. Compared with 7.5 × 104 plants ha−1, the inflection points of
N application for yield, harvest index, pre-flowering material accumulation, post-silking
material accumulation, and dry matter accumulation at maturity increased by 14.3%, 30%,
44.9%, 16.5%, and 11.7%, respectively, at a density of 12.0 × 104 plants ha−1. This indicates
that the variation of population in the accumulation of dry matter in response to the
application of N was more pronounced, particularly in pre-silking dry matter accumulation
under high-density conditions, which implies that increasing the planting density requires
more N fertilizer before conclusions can be drawn.
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Figure 2. Effect of the nitrogen application rate on the yield, material accumulation, and harvest
index of maize. The data are the average value of two varieties in three years under the same density
and nitrogen application rate.

Table 2. Fitting equation between the nitrogen application rate and yield, material accumulation, and
harvest index of maize.

Plant Density
(×104 plants ha−1) Indicators Fitting Equation R2

7.5 Yield Y = 10.82 + 0.03 × N, N < 279; Y = 18.86, N ≥ 279 0.994 **
HI Y = 0.44 + 0.0002 × N, N < 300; Y = 0.51, N ≥ 300 0.854 **

Pre-R1 DM Y = 8.98 + 0.007 × N, N < 350; Y = 11.32, N ≥ 350 0.969 **
Post-R1 DM Y = 11.8 + 0.02 × N, N < 363; Y = 19.61, N ≥ 363 0.997 **

DM at R6 Y = 20.58 + 0.03 × N, N < 362; Y = 31.09, N ≥ 362 0.997 **
12.0 Yield Y = 10.26 + 0.03 × N, N < 319; Y = 20.14, N ≥ 319 0.994 **

HI Y = 0.45 + 0.0002 × N, N < 390; Y = 0.53, N ≥ 390 0.973 **
Pre-R1 DM Y = 11.62 + 0.01 × N, N < 507; Y = 14.85, N ≥ 507 0.993 **
Post-R1 DM Y = 12.46 + 0.02 × N, N < 423; Y = 21.85, N ≥ 423 0.984 **

DM at R6 Y = 23.8 + 0.03 × N, N < 402; Y = 35.97, N ≥ 402 0.977 **

Note: The data are the average value of two varieties in three years under the same density and rate of nitrogen
applied. HI, harvest index; Pre-R1 DM, dry matter before silking; Post-R1 DM, dry matter after silking; DM at R6,
dry matter at maturity. ** indicates a significant correlation at p = 0.01.



Sustainability 2022, 14, 14940 7 of 14

3.3. Rate of Contribution of Dry Matter and Harvest Index to Yield before and after Anthesis

The rate of contribution of the material accumulation and harvest index to yield was
calculated before and after silking (Figure 3). The results showed that the dry matter
accumulation after silking had the largest contribution to yield under both densities, and
the rate of contribution of the harvest index to yield was 22.9~27.2%. The contribution of
dry matter that accumulated before silking under low-density planting was higher than
that under high-density planting. The dry matter accumulation before and after silking
contributed more than 70% to the yield.
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3.4. Effect of Nitrogen Application Rate on the Characteristics of Dry Matter Accumulation by Maize

Additional analysis showed that the dry matter accumulation of maize showed a
trend of increasing with the number of days after sowing under different nitrogen appli-
cation rates (Figure 4). With the progress in growth, the difference in dry matter accu-
mulation between the different nitrogen rates gradually increased. Under the density of
7.5 × 104 plants ha−1, the dry matter accumulation of the treatment with the highest yield
increased by 38.5%, 13.6%, 34.1%, 18.5%, 23.8%, 31.5%, and 33.3% at the 6-leaf stage, 9-leaf
stage, 12-leaf stage, silking stage, milk stage, wax stage, and mature stage, respectively,
compared with the treatment without nitrogen application (N0). Under the density of
12.0 × 104 plants ha−1, the dry matter accumulation of the treatment with the highest yield
was 19.8%, 16.7%, 34.5%, 28.0%, 35.0%, 41.7%, and 42.2% higher than that of the treatment
without nitrogen (N0) at the different growth stages, respectively.

The dry matter accumulation and days after emergence under the densities of
7.5 × 104 plants ha−1 (Table 3) and 12.0 × 104 plants ha−1 (Table 4) were fitted by a logistic
equation. The fitting results, start time, end time, interval days, maximum accumulation
rate, and maximum accumulation amount of dry matter can be calculated. The results
showed that with the increase in the nitrogen application rate, the start and end times of
the rapid accumulation of dry matter in the maize were delayed, and the end time of the
rapid accumulation was delayed to a greater extent, which resulted in a longer duration
of the rapid accumulation of dry matter. Simultaneously, with the increase in nitrogen
accumulation, the rapid rate of accumulation of the dry matter increased. This shows
that the nitrogen application rate can prolong the time of accumulation by delaying the
termination period of rapid dry matter accumulation and also improve the rate of rapid
dry matter accumulation, thus increasing the total dry matter accumulation.
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Figure 4. Effect of different nitrogen application rates on dry matter accumulation during the entire
growth period of maize. The data are the average value of two varieties in three years under the
same density and nitrogen application rate.

Table 3. Logistic fitting equation of density for 7.5 × 104 plants ha−1.

Nitrogen
Application

Amount
(kg ha−1)

Model R2

Calculated Values

t1
(d)

t2
(d)

T
(d)

Vmax
(t ha−1 d−1)

Wmax
(t ha−1)

0 Y = 20.52/(1 + 296.75e−0.06t) 0.998 ** 69.3 111.0 41.7 0.32 20.52
45 Y = 22.78/(1 + 254.88e−0.06t) 0.998 ** 69.9 113.5 43.6 0.34 22.78
90 Y = 24.39/(1 + 239.23e−0.06t) 0.998 ** 70.5 115.1 44.6 0.36 24.38
135 Y = 24.93/(1 + 238.15e−0.06t) 0.999 ** 70.4 115.1 44.6 0.37 24.93
180 Y = 25.72/(1 + 264.49e−0.06t) 0.999 ** 70.9 114.7 43.8 0.39 25.72
225 Y = 27.45/(1 + 237.47e−0.06t) 0.998 ** 71.6 117.0 45.4 0.40 27.45
270 Y = 28.54/(1 + 237.23e−0.06t) 0.998 ** 71.4 116.7 45.3 0.41 28.54
315 Y = 29.87/(1 + 222.30e−0.06t) 0.998 ** 71.1 116.9 45.8 0.43 29.87
360 Y = 29.94/(1 + 247.50e−0.06t) 0.998 ** 71.5 116.4 44.9 0.44 29.94
405 Y = 30.62/(1 + 229.53e−0.06t) 0.999 ** 71.6 117.4 45.8 0.44 30.62
450 Y = 30.95/(1 + 228.73e−0.06t) 0.998 ** 71.9 118.0 46.0 0.44 30.95
495 Y = 30.56/(1 + 255.84e−0.06t) 0.999 ** 71.1 115.4 44.3 0.45 30.56
540 Y = 30.72/(1 + 222.01e−0.06t) 0.998 ** 71.4 117.5 46.1 0.44 30.72
585 Y = 31.01/(1 + 264.38e−0.06t) 0.999 ** 71.7 116.0 44.3 0.46 31.01
630 Y = 30.54/(1 + 230.71e−0.06t) 0.999 ** 71.4 116.9 45.6 0.44 30.54
675 Y = 30.82/(1 + 227.23e−0.06t) 0.999 ** 71.5 117.4 45.9 0.44 30.82
720 Y = 30.89/(1 + 238.43e−0.06t) 0.999 ** 71.6 117.0 45.4 0.45 30.89
765 Y = 31.09/(1 + 229.13e−0.06t) 0.999 ** 71.8 117.7 45.9 0.45 31.09

Note: The data are the average value of two varieties in three years under the same density and nitrogen
application rate. t1, starting date of the rapid accumulation period; t2, termination date of the rapid accumulation
period; T, duration of rapid accumulation; Vmax, maximal speed of accumulation; Wmax, maximal accumulation.
** indicates a significant correlation between the p = 0.01 levels.

In different nitrogen application treatments, the time of dry matter accumulation and
the maximum rate of accumulation increased first and then tended to be stable with the
increase in amount of nitrogen (Figure 5). The dry matter accumulation time and the
maximum rate of accumulation under the density of 12.0 × 104 plants ha−1 increased
to different extents by 4.43% and 11.74%, respectively, compared with the density of
7.5 × 104 plants ha−1. The increase in dense planting and nitrogen application facilitates
extension of the time of dry matter accumulation and an increase in the rate of dry matter
accumulation.
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Table 4. Logistic fitting equation of density for 12.0 × 104 plants ha−1.

Nitrogen
Application

Amount
(kg ha—1)

Model R2

Calculated Values

t1
(d)

t2
(d)

T
(d)

Vmax
(t ha−1 d−1)

Wmax
(t ha−1)

0 Y = 23.50/(1 + 228.70e−0.06t) 0.997 ** 65.8 107.9 42.1 0.37 23.50
45 Y = 25.30/(1 + 184.9e−0.06t) 0.996 ** 65.8 110.2 44.4 0.38 25.30
90 Y = 27.53/(1 + 152.02e−0.06t) 0.995 ** 66.9 114.4 47.5 0.38 27.53

135 Y = 28.22/(1 + 161.55e−0.06t) 0.996 ** 66.8 113.4 46.7 0.40 28.22
180 Y = 30.40/(1 + 141.93e−0.05t) 0.996 ** 67.8 116.8 49.0 0.41 30.40
225 Y = 31.58/(1 + 141.90e−0.05t) 0.996 ** 68.0 117.2 49.2 0.42 31.58
270 Y = 33.04/(1 + 150.13e−0.05t) 0.996 ** 68.4 117.2 48.7 0.45 33.04
315 Y = 33.11/(1 + 185.85e−0.06t) 0.997 ** 68.1 113.9 45.9 0.48 33.11
360 Y = 34.17/(1 + 208.97e−0.06t) 0.997 ** 68.3 113.0 44.7 0.50 34.17
405 Y = 35.80/(1 + 199.88e−0.06t) 0.997 ** 69.0 114.6 45.6 0.52 35.80
450 Y = 35.91/(1 + 198.72e−0.06t) 0.998 ** 69.2 115.0 45.8 0.52 35.91
495 Y = 36.82/(1 + 169.88e−0.05t) 0.997 ** 69.4 117.3 47.9 0.51 36.82
540 Y = 37.22/(1 + 158.728e−0.05t) 0.997 ** 69.9 118.9 49.1 0.50 37.22
585 Y = 36.73/(1 + 186.37e−0.06t) 0.998 ** 69.2 115.8 46.6 0.52 36.73
630 Y = 36.82/(1 + 184.78e−0.06t) 0.998 ** 69.7 116.7 47.0 0.52 36.82
675 Y = 37.50/(1 + 162.24e−0.05t) 0.997 ** 70.3 119.3 49.1 0.50 37.50
720 Y = 36.83/(1 + 179.79e−0.06t) 0.997 ** 70.0 117.5 47.6 0.51 36.83
765 Y = 36.97/(1 + 173.73e−0.06t) 0.997 ** 69.7 117.6 47.8 0.51 36.97

Note: The data are the average value of two varieties in three years under the same density and rate of nitrogen
application. t1, starting date of the rapid accumulation period; t2, termination date of the rapid accumulation
period; T, duration of rapid accumulation; Vmax, maximal speed of accumulation; Wmax, maximal accumulation.
** indicates a significant correlation between p = 0.01 levels.
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In different nitrogen application treatments, the time of dry matter accumulation and 
the maximum rate of accumulation increased first and then tended to be stable with the 
increase in amount of nitrogen (Figure 5). The dry matter accumulation time and the max-
imum rate of accumulation under the density of 12.0 × 104 plants ha−1 increased to different 
extents by 4.43% and 11.74%, respectively, compared with the density of 7.5 × 104 plants 
ha−1. The increase in dense planting and nitrogen application facilitates extension of the 
time of dry matter accumulation and an increase in the rate of dry matter accumulation. 

 

Figure 5. Effect of different nitrogen application rates on the duration and maximum accumulation
rate of dry matter in maize. The data are the average value of two varieties in three years under the
same density and nitrogen application rate.

3.5. Relationship between the Amount and Time of Dry Matter Accumulation and the Maximum
Rate of Accumulation

As the yield gradually increased with the increase in nitrogen application, the dry
matter at the mature stage was fitted with the time and rate of rapid accumulation of
dry matter, respectively (Figure 6). The results showed that under the condition of
7.5 × 104 plants ha−1, the duration and maximum rate of rapid dry matter accumulation
significantly positively correlated with the dry matter accumulation, and there was a higher
correlation between the dry matter accumulation and maximum rate of accumulation. Un-
der the condition of 12.0 × 104 plants ha−1, the maximum rate of dry matter accumulation
significantly positively correlated with the amount of dry matter accumulated, while the
correlation coefficient between the duration of rapid accumulation and the amount of dry
matter accumulation did not reach a significant level. This shows that the rapid rate of
accumulation of dry matter is the primary factor that affects the accumulation of dry matter.
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3.6. Path Analysis

A path analysis was conducted on the harvest index, rate of dry matter accumulation,
accumulation time, and yield under different rates of nitrogen applications (Figure 7). The
results showed that under the condition of 7.5× 104 plants ha−1, the amount of nitrogen ap-
plied primarily affected the yield by affecting the harvest index, duration of rapid dry matter
accumulation, and the maximum rate. Under the condition of 12.0 × 104 plants ha−1, the
amount of nitrogen applied primarily affected the yield by affecting the harvest index and
the maximum rate of dry matter accumulation.
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4. Discussion

Dense planting and reasonable nitrogen application are the primary cultivation mea-
sures to increase maize yield. Increasing the planting density can increase the yield, but
increasing the planting density also requires increasing the amount of nitrogen fertilizer
to achieve a high yield [30,33]. Jin et al. [34] showed that when fertilizer was applied
at different times for summer maize, the planting density of 7.5 × 104 plants ha−1 was
184.5 kg ha−1, and the yield reached its highest at 10.91 t ha−1. The yield did not continue



Sustainability 2022, 14, 14940 11 of 14

to increase with the continued application of nitrogen fertilizer, but decreased owing to
the influence of canopy light transmittance and the net photosynthetic rate. This study
showed that with the increase in the nitrogen application rate, the maize yield showed a
linear + platform trend. The highest yield of 19.42 t ha−1 and 22.65 t ha−1 was obtained
under the density of 7.5 × 104 plants ha−1 and 12.0 × 104 plants ha−1 under 270 kg ha−1

and 360 kg ha−1 of applied nitrogen, respectively. When more nitrogen was applied, the
yield did not increase, but there was no downward trend. This is because the research
area is rich in light resources, which enables a higher planting density to obtain a high
yield [35]. In addition, the super-high-yield level of 22.8 t ha−1 maize was obtained under
the density of 13.5× 104 plants ha−1 in this area [29]. Therefore, to obtain a higher yield and
resource utilization efficiency, the planting density and amount of nitrogen applied should
be reasonably allocated based on the local light radiation conditions in the high-yield maize
cultivation system.

The amount of fertilizer can change the amounts of nutrients absorbed by crops at this
stage, but it has little impact on the dynamic trend of dry matter and nutrient accumulation
of the crops. Its growth shows an “S” curve change [36,37]. In this study, under the
conditions of water and fertilizer integration and fractional fertilization, the change in dry
matter in maize generally presents an “S” curve of a slow increase in the early stage, rapid
accumulation in the middle stage, and slow growth in the late stage. The dry matter reaches
its maximum before harvest, which is similar to the results of previous studies. However,
some researchers have concluded that the application of nitrogen fertilizer can increase the
dry matter accumulation of maize, but when the optimal nitrogen application amount is
exceeded, there is a trend of decreasing the dry matter, which will result in a reduction in
the crop yield [38–42]. The possible reason is that the increase in the amount of nitrogen
applied can improve the leaf area index and dry matter of maize, but the photosynthetic
effective radiation cannot be increased. This results in an inability of the lower leaves to
conduct effective photosynthesis. In contrast, this study concluded that with the increase
in nitrogen application, the dry matter increases first and then tends to stabilize, which will
not cause a downward trend of dry matter. The primary reason is that the integrated water
and fertilizer and fractional fertilization technology used in this experiment can effectively
promote the absorption of nutrients in each growth stage of maize, maintain the green
retention of leaves, delay leaf senescence, and prolong the photosynthetic time of leaves.

Some studies have shown that maize needs to absorb more nitrogen fertilizer after
silking to meet the absorption needs of plants in the late growth stage [43,44]. Yang et al. [45]
demonstrated that the excessive transportation of nutrients after the flowering of crops
will affect the production of the photosynthetic products of the leaves in the later stage
of crops, leading to accelerated leaf senescence, decreased grain filling rate, and limiting
the increase in yield. However, nutrient transport that is too low does not facilitate grain
filling, and it is difficult for maize to achieve high yields. Therefore, it is important to
adjust the nutrient accumulation before and after the flowering of maize, maintain the
coordination of source and sink, and increase the nutrient transfer amount and nutrient
accumulation after flowering through appropriate fertilizer operation methods, which will
play an important role in improving crop yields. The results showed that the suitable
amount of nitrogen fertilizer facilitated the increase in matter accumulation before and
after the anthesis of high-yield maize. Liu et al. [16] concluded that the increase in maize
grain yield at a higher level of yield primarily depends on the increase in dry matter. This
conclusion is similar to the results of this study. The amount of nitrogen primarily affects
dry matter accumulation to improve yield. In the high-yield dense planting of maize, it is
necessary to further improve the transport of dry matter to obtain a high yield.

The fundamental way to obtain a high yield is to improve the ability of plants to
produce dry matter after flowering and the ability of dry matter to transport nutrients to
the grains [12,46–49]. Ma et al. [40] showed that the rate of dry matter accumulation was the
highest, and the yield was the highest when the nitrogen application rate was 306.5 kg ha−1.
Hou et al. [50] used the logistic model to simulate the dry matter accumulation of maize
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under high-yield and ultra-high-yield cultivation modes and concluded that the maximum
and average rates of dry matter increased significantly with the increase in the amount
of nitrogen applied. This study showed that with the increase in the nitrogen application
rate, the rate of dry matter accumulation showed a linear addition to the plateau. The
primary reason could be that the nitrogen application rate extends the accumulation time
by delaying the end period of rapid dry matter accumulation and increasing the rate of
rapid dry matter accumulation, thereby increasing the dry matter accumulation.

5. Conclusions

With the increase in the nitrogen application rate, the maize yield, harvest index, and
dry matter accumulation showed a linear + platform trend. Under the 7.5× 104 plants ha−1

density, the inflection point of the nitrogen application rate is 279 kg ha−1, and the yield
can reach 18.86 t ha−1. Under the 12.0 × 104 plants ha−1 density, the inflection point of the
nitrogen application rate is 319 kg ha−1, and the yield can reach 20.14 t ha−1. The rate of
contribution of the harvest index to yield was 22.9~27.2%, and the total rate of contribution
of the dry matter accumulation to yield before and after silking was higher than 70%.
Increasing the nitrogen application rate helps to prolong the dry matter accumulation time
and increase the maximum rate of dry matter accumulation. The maximum rate of dry
matter accumulation has a greater influence on the dry matter accumulation.
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