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Abstract: Reverse logistics is attracting attention due to the increasing concerns over environmental
issues and the important economic impacts. The design of a reverse logistics network is a major
strategic problem in the field of reverse logistics. As cost pressures in product returns continue to
mount, a growing number of manufacturers have begun to outsource reverse logistics operations
to third-party logistics (3PL) providers. On the other hand, considering disruption risks caused by
natural or man-made factors in the reverse logistics network design is inevitable. This paper studies
third-party reverse logistics network designs under uncertain disruptions. The problem is formulated
as a risk-averse two-stage stochastic programming model with a mean risk objective. Two types of
risk measures, value at risk (VaR) and conditional value at risk (CVaR), were examined, respectively.
Finally, the sensitivity analysis of the model was carried out. The validity of the mean risk criteria
is proved by comparison with risk-neutral approach. Moreover, the performance of the proposed
model was examined by stochastic measures.

Keywords: third-party logistics; reverse logistics network design; disruption; risk management;
conditional value at risk; value at risk

1. Introduction

In recent decades, the development of humanity has led to unfavorable climate changes
and natural disasters [1]. More attention has been placed on sustainability development
to prompt socioeconomic development in line with ecological constraints [2]. In recent
two decades, due to increasing environmental concerns and economic benefits, many
companies have focused on reverse logistics [3]. Reverse logistics can be described as the
process of collecting returned products from the customers to the manufacturers to capture
appropriate disposal activities [4]. However, reverse logistics operations are extremely
complicated and are out of companies’ technological scopes. Due to the uncertainties
surrounding the quantity and time of product returns, reverse logistics usually require
specialized infrastructure and high handling costs and time [5]. Currently, many companies
have inefficient processes for returned products. In addition, the implementations of
return operations require high investments in equipment, recovery processes, information
systems, etc., which are not core capacities of manufacturers [6]. In contrast, 3PL can
save a substantial amount of costs associated with product returns through their complete
RL networks, advanced equipment, substantial operational experiences, and required
information systems [7]. Therefore, more companies have begun to outsource their reverse
logistics to 3PL providers. Reverse logistics network design, as one of the most important
strategic decision problems, plays a key role in the effective operation of reverse logistics.
Consequently, it is significant for 3PL providers to design an efficient reverse logistics
network for their clients.

Disruption risk has become a hot topic in the field of supply chain network design [8,9].
Most studies on reverse logistics network designs assume that facilities are always available.
However, sometimes facilities may be unavailable due to the disruptions caused by natural
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or man-made disasters, such as hurricanes, earthquakes, and terrorist attacks, which might
pose destructive impacts on the reverse logistics network. Therefore, it is important to
consider disruption risk when designing a reverse logistics network. Moreover, most of the
existing works on the supply chain network design with disruptions utilize risk-neutral
approaches to address the uncertainty of disruptions [10]. Nevertheless, for non-repeatable
decision-making problems, the risk management method can more effectively control the
uncertainty in the optimization problem. The literature studies on reverse logistics network
design also suffer from a lack of models that are able to measure and control the disruption
risks. Therefore, it is necessary to design reverse logistics networks under disruptions (for
3PL) via the risk management method.

This study proposes a risk-averse model for designing a reverse logistics network for
3PL under uncertain disruptions. In this problem, a manufacturer outsources its reverse
logistics activities to a 3PL provider. The reverse logistics network includes customer zones,
3PL local collection centers, 3PL centralized collection centers, plants, and disposal centers.
A risk-averse two-stage stochastic programming model was developed. The objective of
the model is to minimize the mean risk function, where CVaR and VaR are taken as the risk
measures, respectively. In order to verify the validity of the proposed risk-averse models,
some numerical experiments were executed. Moreover, the effects of the parameters on the
performance of the model were analyzed.

The rest of this article is organized as follows: the relevant literature is reviewed in
Section 2. The problem with the reverse logistics network design for 3PL (under uncertain
disruptions) is described and risk-averse two-stage stochastic programming modes with
mean risk objectives are presented in Section 3. The numeric experiment was conducted to
analyze the effects of the important parameters and demonstrate the validity of the model
in Section 4. Finally, the study is concluded in Section 5.

2. Literature Review

In this section, a summary of the most relevant papers in this area is presented. The
studies can be divided into the following three categories:

2.1. Reverse Logistics Network Design for 3PL Providers

The reverse logistics network design problem has received considerable attention
in the past two decades. The studies on reverse logistics network design have been
surveyed [3,11,12]. However, there are only a few works addressing the problem with the
reverse logistics network design for 3PL. Mahmoudzadeh et al. [6] proposed a mixed-
integer linear programming (MILP) model for the reverse logistics network design of
end-of-life vehicles for 3PL in Iran to determine optimal locations of scrap yards and
material flows. Suyabatmaz et al. [13] presented a hybrid simulation–analytical modeling
framework for the reverse logistics network design of 3PL under uncertainty. Kannan
et al. [14] considered the reverse logistics network design problem, which integrated a
balanced disassembly line for 3PL. They formulated the problem as a mixed-integer non-
linear programming (MINLP) model to optimize the total cost. Eskandarpour et al. [15]
proposed a bi-objective MILP model for the 3PL multi-product post-sale network design
problem to minimize the total cost and total weighted tardiness of returning repaired and
new products. They developed a novel variable neighborhood search algorithm to solve
the problem. Min and Ko [16] developed a MINLP model for the 3PL dynamic reverse
logistics network design problem to determine the location and allocation of repair facilities.
They proposed a genetic algorithm to solve the problem. Du and Evans [17] considered a
reverse logistics network design problem for the post-sales service of a manufacturer. They
developed a bi-objective optimization model for designing a reverse logistics network to
minimize the costs and tardiness of the cycle time. In addition, a few papers have attended
to integrate forward and reverse logistics network designs for 3PL providers, e.g., [5,18–21].
To the best of our knowledge, no study considers disruption risk in the context of reverse
logistics network design for 3PL.
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2.2. Stochastic Reverse Logistics Network Design

Several works have attempted to develop stochastic models for reverse logistics net-
work design problems under uncertainty. Ayvaz et al. [22] developed a two-stage stochastic
programming model to design a reverse logistics network for third-party waste of electrical
and electronic equipment (from recycling companies) with stochastic return quantities,
sorting ratios, and transportation costs. The objective of the model was to maximize
profit. They employed the sample average approximation method to solve the problem.
Trochu et al. [23] considered reverse logistics network design under uncertainty with dy-
namic supply source locations. They presented a two-stage stochastic programming model
to maximize the expected profit. Yu and Solvang [24] proposed a two-stage stochastic
mixed-integer linear programming model for sustainable multi-product multi-echelon
reverse logistics design under uncertainty. The objective of the model was to maximize
the profit with carbon emission constraints. They presented a multi-criteria scenario-based
risk-averse solution method for solving the proposed model. Kara and Onut [4] presented
a reverse logistics network design under uncertainty for recycling/manufacturing types
of systems in a reverse supply chain. They proposed a two-stage stochastic program-
ming model to decide the optimal recycling and collection center locations and optimal
flow amounts between the nodes. Fonseca et al. [25] studied multiple echelons, multiple
commodities, and reverse logistics network designs with stochastic transportation costs
and waste generation. They formulated the problem as a bi-objective two-stage stochastic
programming model to minimize the total cost and the obnoxious effects caused by the
reverse network facilities. Yu and Solvang [26] presented a bi-objective two-stage stochastic
programming model to design a sustainable multi-product multi-echelon reverse logistics
system under uncertainty. In the model, they considered profitability and environmental
performance with flexible capacity. Roudbari et al. [27] proposed a two-stage stochastic
programming model for designing a reverse logistics network with uncertain quality
and quantity of returned products, product variety, and a bill of material. In the model,
various processes of recovering recyclable products were considered. They developed a
hybrid algorithm to solve the model. Fattahi and Govindan [28] addressed an integrated
forward/reverse logistics network design problem in which demand and potential return
uncertainty and multiple tactical periods were considered. The model was formulated in
two-stage stochastic programming. They developed a novel simulation-based simulated
annealing algorithm for solving large-sized test problems. Pishvaee et al. [29] formulated
the integrated forward/reverse logistics network design under uncertainty by a scenario-
based stochastic approach. The model minimizes the total expected costs. Vahdat and
Vahdatzad [30] utilized two-stage stochastic programming to design a multi-period mul-
tistage integrated forward/reverse logistics network under uncertainty. They developed
Benders’ decomposition to solve the problem.

2.3. Reverse Logistics Network Design under Disruption Risk

In the past two decades, a considerable amount of literature has been dedicated to
the supply chain network design under disruptions [8,9]. However, the literature on
the reverse logistics network design with disruption risk is still scarce. Sugimura and
Murakami [31] proposed a MILP model for designing a resilient international reverse
logistics network under disruptions. The objective of the model was to minimize the total
costs with the resilience constraints. Govindan and Gholizadeh [32] studied a resilient
sustainable reverse logistics network design for end-of-life vehicles in Iran, in which the
network facility capacity was disrupted. They developed a robust optimization model
to minimize the total costs. A scenario-based cross-entropy method was used to solve
the proposed model. Some research studies have addressed the integrated forward and
reverse logistics network design under uncertain disruption by a scenario-based stochastic
method, including two-stage stochastic programming [33–35] and scenario-based robust
optimization [36–40]. In fact, none of the above studies considered risk measures to cope
with disruption uncertainties.
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2.4. Incorporating Risk Measures in a Stochastic Reverse Logistics Network Design

Recently, risk management in a reverse logistics network design problem has received
more attention. In the proposed models, different risk measures are used to control the
risk level. Rahimi and Ghezavati [41] studied the network design problem for reverse
logistics for recycling construction and demolition waste; the stochastic demand for recycled
products and the rate of investment were considered. They proposed a multi-period–multi-
objective MILP model. The objectives of the model were the maximization of profit, social
impact, and minimization of environmental effects. A risk-averse two-stage stochastic
programming based on CVaR was used to deal with the uncertainty in the model. Soleimani
and Govindan [42] utilized a risk-averse two-stage stochastic programming approach
to design a reverse supply chain network under uncertainty. In their model, a mean
CVaR objective function was regarded. Ma et al. [43] proposed a new distributionally
robust optimization model to design a multi-product, multi-echelon closed-loop supply
chain network. In the model, mean CVaR was used as the objective function. Finally,
they validated the proposed model through a case study. Soleimani et al. [44] studied
the design and planning problem of a closed-loop supply chain network with uncertain
parameters. They incorporated three risk measures into the mean risk objective function
in the two-stage stochastic structure. Finally, the performances of the developed models
were evaluated. Ramezani et al. [45] presented a stochastic multi-objective model for
designing a forward/reverse logistic network under uncertainty. In this model, financial
risk is defined as the probability of a determined objective where profit does not meet a
certain target level. Fard et al. [46] developed a bi-objective stochastic programming model
for a closed-loop supply chain network design problem. In the model, they optimized total
costs and downside risks, simultaneously.

2.5. Research Gaps and Contributions

According to the above literature review and Table 1, it can be inferred that the reverse
logistics network design problem under disruption risk for 3PL has not been addressed
and that no study has considered the risk measures to cope with disruption uncertainties
in reverse logistics network design problems. To the best of our knowledge, no study has
considered uncertain disruptions and risk measures in the modeling of third-party reverse
logistics network design problems.

The main contributions of this work can be summarized as follows:

• This study is the first to present a third-party reverse logistics network design problem
considering disruptions and risk management simultaneously.

• For the first time, risk-averse two-stage stochastic programming models were de-
veloped to solve reverse logistics network designs under uncertain disruptions for
3PL.

• Two risk measures, CVaR and VaR, were investigated.
• A numerical example was used to analyze the performances of the risk-averse two-

stage stochastic programming models.
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Table 1. Review of previously published literature.

Authors
Network Type

3PL
Risk Type

Risk Measures Mathematical Model Solution ApproachForward Reverse Operational
Risks

Disruption
Risks

Kannan et al. [14] X X 2MINLP Lingo
Mahmoudzadeh et al. [6] X X 1MILP CPLEX

Suyabatmaz et al. [13] X X
Hybrid

simulation-analytical CPLEX

Eskandarpour et al. [15] X X 2MINLP Metaheuristics
Du and Evans [17] X X 1MILP Metaheuristics
Min and Ko [16] X X X 2MINLP Metaheuristics
Lee et al. [18] X X X 1MILP Metaheuristics
Lee et al. [19] X X X 1MILP Metaheuristics
Lee et al. [20] X X X 2MINLP GAMS
Ko and Evans [5] X X X 2MINLP Metaheuristics
Ghafarimoghadam et al. [21] X X X 3RO GAMS
Ayvaz et al. [22] X X X 5TSSP CPLEX
Trochu et al. [23] X X 5TSSP -
Yu and Solvang [24] X X 5TSSP Lingo
Kara and Onut [4] X X 5TSSP GAMS
Fonseca et al. [25] X X 5TSSP CPLEX
Yu and Solvang [26] X X 5TSSP Lingo
Roudbari et al. [27] X X 5TSSP Metaheuristics
Fattahi and Govindan [28] X X X 5TSSP Metaheuristics
Pishvaee et al. [29] X X X 5TSSP Lingo
Vahdat and Vahdatzad [30] X X X 5TSSP Exact Algorithm

Sugimura and Murakami [31] X X 1MILP
Linear Programming

Kit
Govindan and Gholizadeh [32] X X 4SBRO Metaheuristics
Ghomi-Avili et al. [33] X X X 5TSSP GAMS
Yavari and Zaker [34] X X X 5TSSP -
Yavari and Zaker [35] X X X 5TSSP -
Hatefi and Jolai [36] X X X 4SBRO GAMS
Torabi et al. [37] X X X 4SBRO GAMS
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Table 1. Cont.

Authors
Network Type

3PL
Risk Type

Risk Measures Mathematical Model Solution ApproachForward Reverse Operational
Risks

Disruption
Risks

Jabbarzadeh et al. [38] X X X 4SBRO Heuristics
Hatefi and Jolai [39] X X X 4SBRO GAMS
Fazli-Khalaf et al. [40] X X X 4SBRO GAMS
Rahimi and Ghezavati [41] X X CVaR 5TSSP GAMS
Soleimani and Govindan [42] X X CVaR 5TSSP CPLEX

Ma et al. [43] X X X CVaR Multi-scenario
optimization model CPLEX

Soleimani et al. [44] X X X MAD, VaR, CVaR 5TSSP CPLEX

Ramezani et al. [45] X X X
Probability of a

determined objective
5TSSP CPLEX

Fard et al. [46] X X X Downside risk 5TSSP
Metaheuristics,

CPLEX
Our work X X X VaR, CVaR 5TSSP CPLEX

1 MILP: mixed-integer linear programming. 2 MINLP: mixed-integer nonlinear programming. 3 RO: robust optimization.4 SBRO: scenario-based robust optimization. 5 TSSP: two-stage
stochastic programming.
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3. Problem Description and Proposed Model

In this article, a multi-echelon reverse logistics network design problem of 3PL with un-
certain disruption is presented. As shown in Figure 1, the reverse logistics network consists
of customer zones, 3PL local collection centers, 3PL centralized collection centers, plants,
disposal centers, and transportation links. Moreover, 3PL offers reverse logistics services
for a manufacturer using its local collection centers and centralized collection centers. The
returned products were collected from customer zones and conveyed to 3PL centralized
collection centers via 3PL local collection centers. After testing, inspection, and sorting in
3PL centralized collection centers, the recoverable products were transported to plants, and
non-recoverable products were disposed of in the disposal centers. Uncertain disruptions
at 3PL local collection centers and 3PL centralized collection centers were considered. The
goal of this study was to develop a risk-averse mathematical modeling framework to design
a third-party reverse logistics network considering uncertain disruptions by determining
3PL local collection centers and 3PL centralized collection centers to be opened, as well as
the quantities of products transported between facilities in each scenario.

Plants 

Disposal centers 

3PL centralized 

collection centers 
 

3PL local 

collection centers 

Customer zones 

3PL

Figure 1. Third-party reverse logistics network.

3.1. Assumptions

The main assumptions considered in the presented model are as follows:

1. Multi-echelon, consisting of customer zones, 3PL local collection centers, 3PL cen-
tralized collection centers, disposal centers, and plants are considered in the reverse
network.

2. The locations, numbers, and return quantities of the products at the customer zones
are known.

3. The locations, numbers, and capacities of the plants and disposal centers are known.
4. The potential locations, numbers, and capacities of 3PL local collection centers, 3PL

centralized collection centers, and cost parameters (i.e., fixed opening costs, processing
costs) are known.

5. Unit transportation costs for the product between the two adjacent echelons are
known.

6. Penalty costs will be incurred for uncollected returned products.
7. The disruptions of the 3PL local collection centers and 3PL centralized collection

centers are uncertain and can be described by the set of scenarios.

3.2. Notations

The following sets, parameters, and decision variables are used in the proposed
models:
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3.2.1. Sets

L Set of customer zones
K Set of 3PL local collection centers
J Set of 3PL centralized collection centers
I Set of disposal centers
M Set of plants of the manufacturer
S Set of scenarios

3.2.2. Parameters

ql Quantity of returned products in customer zone l
PW

k Unit processing cost of returned products at 3PL local collection center k
QW

k Capacity of processing for 3PL local collection center k
FW

k Fixed opening cost of 3PL local collection center k
PH

j Unit processing cost of returned products at 3PL centralized collection center j
QH

j Capacity of processing for 3PL centralized collection center j
FH

j Fixed opening cost of 3PL centralized collection center j
QR

i Capacity of disposal for disposal center i
QO

m Capacity of production for plant m
CA

lk Unit transportation cost for products shipped from customer zone l to 3PL
local collection center k

CB
kj Unit transportation cost for products shipped from 3PL local collection center

k to 3PL centralized collection center j
CC

ji Unit transportation cost for products shipped from the 3PL centralized collec-
tion center j to disposal center i

CD
jm Unit transportation cost for products shipped from the 3PL centralized collec-

tion center j to plant m
τ Unit penalty cost for the uncollected returned products
γ Disposal ratio of products at 3PL centralized collection center
ps Probability of disruption scenario s

3.2.3. Decision Variables

xk Binary variable equals 1 if 3PL local collection center k is opened and 0 other-
wise

yj Binary variable equals 1 if 3PL centralized collection center j is opened and 0
otherwise

zA
lks Quantity of products shipped from customer zone l to 3PL local collection

center k in scenario s
zB

kjs Quantity of products shipped from 3PL local collection center k to 3PL central-
ized collection center j in scenario s

zC
jis Quantity of products shipped from the 3PL centralized collection center j to

disposal center i in scenario s
zD

jms Quantity of products shipped from the 3PL centralized collection center j to
plant m in scenario s

The x and y denote the vectors of the respective decision variables, where x =
{xk|∀k ∈ K} and y =

{
yj|∀j ∈ J

}
.

3.3. Risk-Neutral Two-Stage Stochastic Programming Model

In terms of the above notations, the risk-neutral two-stage stochastic programming
model can be formulated as follows:

min ∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + ∑
s∈S

psCs(x, y) (1)
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s.t.
xk ∈ {0, 1} ∀k ∈ K (2)

yj ∈ {0, 1} ∀j ∈ J (3)

The objective function (1) minimizes the expected total cost of the logistics network,
including the fixed opening costs of 3PL local collection centers and 3PL centralized
collection centers, as well as the expected operation costs. Cs(x, y) indicates the operation
costs of the network in scenario s, including the processing and transportation costs of
the returned products, and the penalty costs for uncollected returned products. Indeed,
Cs(x, y) is the optimal value of the second-stage problem and it is illustrated as follows:

Cs(x, y) = ∑
k∈K

∑
l∈L

PW
k zA

lks + ∑
j∈J

∑
k∈K

PH
j zB

kjs + ∑
l∈L

∑
k∈K

CA
lkzA

lks

+ ∑
k∈K

∑
j∈J

CB
kjz

B
kjs + ∑

j∈J
∑
i∈I

CC
ji zC

jis + ∑
j∈J

∑
m∈M

CD
jmzD

jms + ∑
l∈L

τ

(
ql − ∑

k∈K
zA

lks

) (4)

s.t.
∑
l∈L

zA
lks = ∑

j∈J
zB

kjs ∀k ∈ K, ∀s ∈ S (5)

∑
k∈K

zB
kjs = ∑

i∈I
zC

jis + ∑
m∈M

zD
jms ∀j ∈ J, ∀s ∈ S (6)

γ ∑
k∈K

zB
kjs = ∑

i∈I
zC

jis ∀j ∈ J, ∀s ∈ S (7)

∑
k∈K

zA
lks ≤ ql ∀l ∈ L, ∀s ∈ S (8)

∑
l∈L

zA
lks ≤ QW

k xkaks ∀k ∈ K, ∀s ∈ S (9)

∑
k∈K

zB
kjs ≤ QH

j yjbjs ∀j ∈ J, ∀s ∈ S (10)

∑
j∈J

zC
jis ≤ QR

i ∀i ∈ I, ∀s ∈ S (11)

∑
j∈J

zD
jms ≤ QO

m ∀m ∈ M, ∀s ∈ S (12)

zA
lks ≥ 0 ∀l ∈ L, ∀k ∈ K, ∀s ∈ S (13)

zB
kjs ≥ 0 ∀k ∈ K, ∀j ∈ J, ∀s ∈ S (14)

zC
jis ≥ 0 ∀j ∈ J, ∀i ∈ I, ∀s ∈ S (15)

zD
jms ≥ 0 ∀j ∈ J, ∀m ∈ M, ∀s ∈ S (16)

Equations (2) and (3) are related to the binary restrictions of the first-stage decision
variables. Constraints (5) and (6) ensure the flow balance at 3PL local collection centers and
3PL centralized collection centers. Constraint (7) indicates that the disposal ratio of the
returned products at each 3PL centralized collection center is γ. Constraint (8) means that
the products shipped out of a customer zone cannot exceed the return quantity. Equation (9)
is the capacity constraint of 3PL local collection centers and prohibits the products from
being transferred into 3PL local collection centers, which are not opened or disrupted,
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where aks = 0 if the 3PL local collection center k is disrupted in scenario s, and aks = 1
otherwise. Equation (10) is the capacity constraint of 3PL centralized collection centers
and prohibits the products from being transferred to the 3PL centralized collection centers
that are not opened or disrupted, where bjs = 0 if the 3PL centralized collection center
j is disrupted in scenario s, and bjs = 1 otherwise. Equations (11) and (12) are capacity
constraints for disposal centers and plants, respectively. Equations (13)–(16) enforce the
non-negative restrictions on decision variables.

3.4. Risk-Averse Two-Stage Stochastic Programming Model

By integrating risk measures into the objective function of the above two-stage stochas-
tic programming model, a risk-averse two-stage stochastic programming model can be
obtained [47]:

min ∑
s∈S

ps

(
∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)

)
+ λρ

(
∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)

)
(17)

s.t.
xk ∈ {0, 1} ∀k ∈ K (18)

yj ∈ {0, 1} ∀j ∈ J (19)

where ρ(·) is a risk mapping function, λ is a non-negative weighted coefficient of risk part;
Cs(x, y) is the optimal value of the second-stage problem (4)–(16).

In this study, two risk measures, VaR and CVaR, are used as the risk part of the
risk-averse two-stage stochastic programming model.

3.4.1. Mean VaR Objective

VaR is a widely used risk measure; it is defined as the maximum loss under a given
probability. For random variables Z, VaR at the confidence level α is defined as follows:

VaRα(Z) = inf{η ∈ R : FZ(η) ≥ α} (20)

where FZ(·) denotes the cumulative distribution function of random variables Z.
According to the risk-averse two-stage stochastic programming framework, a mean

VaR two-stage stochastic programming model is obtained by taking VaR as a risk measure
and its equivalent mixed-integer linear programming model is as follows:

min ∑
s∈S

ps

(
∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)

)
+ λ f (21)

s.t.

∑
s∈S

psUs ≥ α (22)

∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)− N(1−Us) ≤ f ∀s ∈ S (23)

Us ∈ {0, 1} ∀s ∈ S (24)

xk ∈ {0, 1} ∀k ∈ K (25)

yj ∈ {0, 1} ∀j ∈ J (26)
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The objective function (21) is to minimize the total cost and VaR, where f is an auxiliary
variable, which represents the VaR value at the confidence level α. Constraints (22) and
(23) require that the probability that the total cost in scenario s does not exceed f and
is not less than α, where N is a large and positive number. Constraint (24) enforces the
binary restrictions on the auxiliary variable Us, which is equal to 1 if ∑

k∈K
FW

k xk + ∑
j∈J

FH
j yj +

Cs(x, y) ≤ f and 0 otherwise.

3.4.2. Mean CVaR Objective

As an effective risk measure, CVaR is also called mean excess loss. The CVaR at the
confidence level α can be defined as follows [48]:

CVaRα(Z) = E(Z|Z ≥ VaRα(Z)) (27)

CVaRα(Z) can be expressed by the following linear minimization formula:

CVaRα(Z) = min
{

η +
1

1− α
E{max{Z− η, 0}}

}
(28)

Taking CVaR as a risk measure of the risk-averse two-stage stochastic programming
framework, a mean CVaR two-stage stochastic programming model can be obtained and
reformulated as the following mixed-integer linear programming problem:

min ∑
s∈S

ps

(
∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)

)
+ λ

(
η +

1
1− α ∑

s∈S
psvs

)
(29)

s.t.

vs ≥ ∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y)− η ∀s ∈ S (30)

vs ≥ 0 ∀s ∈ S (31)

η ∈ R (32)

xk ∈ {0, 1} ∀k ∈ K (33)

yj ∈ {0, 1} ∀j ∈ J (34)

The objective function (29) minimizes the total cost and CVaR, where η denote the
optimal VaR at level α and vs represents tail loss in scenario s. Constraint (30) assures
that vs is not less than ∑

k∈K
FW

k xk + ∑
j∈J

FH
j yj + Cs(x, y)− η. Constraint (31) is non-negative

restriction on auxiliary variable vs. Constraint (32) indicates that auxiliary variable η is a
real number.

All of the above models are mixed-integer linear programming, so professional linear
programming software can be used to solve them.

4. Numerical Experiments

In order to assess the performance of the risk-averse two-stage stochastic programming
models, a third-party reverse logistics network, composed of 30 customer zones, 15 potential
3PL local collection centers, 15 potential 3PL centralized collection centers, 5 plants, and 5
disposal centers, was constructed. The value ranges of the parameters are given in Table
2. Twenty disruption scenarios are considered, which are generated randomly. The data
about uncertain disruptions of 3PL local collection centers and 3PL centralized collection
centers in each scenario are presented in Table 3, in which 0 denotes disruption and
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1 denotes normality. The unit penalty cost for the uncollected returned product, τ, is
considered 100, and the disposal ratio of products at the 3PL centralized collection center,
γ, is considered 0.3.

Table 2. Value ranges of parameters.

Parameter Value Range

ql 100–600
PW

k 5–15
QW

k 1000–1500
FW

k 10,000–20,000
PH

j 5–15
QH

j 1500–2000
FH

j 20,000–30,000
QR

i 2000–3000
QO

m 2000–2500
CA

lk , CB
kj, CC

ji , CD
jm 1–20

Table 3. Related data for disruption scenarios.

Scenario Probability Disruption Data of 3PL Local
Collection Centers

Disruption Data of 3PL
Centralized Collection Centers

1 0.0018 [1,0,1,1,1,0,0,1,1,1,0,1,1,1,0] [1,0,0,0,0,1,0,1,1,0,1,0,0,1,1]
2 0.0165 [1,0,1,1,1,1,0,1,0,0,1,0,1,1,0] [1,1,0,1,0,0,0,1,1,1,0,0,1,0,0]
3 0.1019 [1,0,1,1,1,0,1,0,0,0,1,1,0,1,0] [1,0,1,0,0,0,1,1,1,1,1,0,1,1,1]
4 0.0369 [1,0,1,1,0,1,0,0,1,0,0,0,0,1,1] [1,1,0,0,0,1,1,1,0,1,1,1,1,1,1]
5 0.0043 [0,0,1,0,1,0,0,1,1,1,0,0,0,0,1] [1,0,1,0,1,1,1,0,0,1,1,0,0,0,1]
6 0.0052 [0,0,1,1,1,0,1,0,0,0,0,1,0,1,1] [0,0,0,1,1,1,1,0,0,1,0,1,0,1,0]
7 0.0522 [1,1,0,0,0,0,0,1,1,1,1,1,0,0,0] [1,0,0,1,1,0,1,0,0,1,0,1,1,1,1]
8 0.0226 [1,1,0,0,1,1,0,1,0,0,1,1,1,0,1] [1,0,0,1,0,1,0,1,1,1,0,1,1,1,1]
9 0.0837 [1,1,1,0,0,1,1,0,0,1,0,0,1,0,1] [0,0,0,0,0,0,0,1,0,1,0,0,0,0,1]

10 0.1052 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,1,0,0,1,1,0,0]
11 0.0454 [1,0,1,1,1,0,1,1,0,1,1,0,0,0,1] [1,0,0,1,0,0,1,0,1,1,1,1,1,1,1]
12 0.0622 [0,0,1,1,1,0,0,0,0,1,1,1,1,1,0] [1,0,1,0,1,0,0,0,1,0,1,1,0,1,1]
13 0.0175 [1,1,0,1,1,1,1,0,1,1,0,1,0,0,1] [1,1,0,1,1,1,1,1,1,1,0,1,1,0,0]
14 0.0701 [1,1,0,0,1,0,0,1,1,0,1,0,1,1,0] [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0]
15 0.0687 [0,0,1,0,1,0,0,1,1,0,1,0,1,0,1] [0,0,0,1,1,0,0,1,1,0,1,0,1,1,1]
16 0.0300 [0,0,0,1,0,1,0,1,0,0,1,0,0,0,1] [0,0,0,1,0,1,1,0,1,0,1,1,0,1,1]
17 0.0419 [0,0,0,0,0,1,0,1,1,0,0,0,0,1,1] [1,0,1,0,1,0,1,0,0,1,1,1,1,0,0]
18 0.0598 [0,1,1,0,1,0,1,0,1,0,0,0,0,0,1] [0,0,1,1,1,1,0,0,0,0,0,1,0,0,1]
19 0.0856 [0,0,1,1,0,1,1,0,0,0,1,1,1,1,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
20 0.0886 [0,0,0,0,1,1,1,0,0,1,1,0,0,0,1] [1,0,0,0,1,1,0,0,1,0,0,1,1,0,1]

All of the models are coded and solved by IBM ILOG CPLEX 12.5, which can obtain
the global optimal solution of the proposed risk-averse two-stage models. All computations
were conducted on an Intel i5 CPU 2.2 GHz PC with 4 GB RAM.

4.1. Sensitivity Analysis

In order to analyze the effects of λ and α on the results, risk-averse two-stage stochastic
programming models are solved with different values of λ (0.01, 0.1, 0.5, 1, 5, and 10) and α
(0.7, 0.8, and 0.9).

4.1.1. Sensitivity Analysis of Mean VaR Two-Stage Stochastic Programming Model

Figure 2 depicts the sensitivity analysis on VaR, total expected cost, fixed opening cost,
and the expected operating cost of the mean VaR two-stage stochastic programming model.
In Figure 2a, one can see that VaR increases as α increases. According to the definition
of VaR, a larger α lead to a higher VaR value. However, VaR decreases as λ increases.
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That is because increasing the value of λ means the weight of the VaR value in the mean
risk objective function becomes larger, which will lead to a lower VaR and a higher total
expected cost. As shown in Figure 2b, the total expected cost increases as λ increases.
However, for a fixed λ, the total expected cost may increase or decrease as α increases.
Moreover, as shown in Figure 2c,d, the fixed opening cost and expected operation cost do
not vary monotonically with α or λ. Table 4 shows the summary results of the sensitivity
analysis for the mean VaR two-stage stochastic programming model.
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Figure 2. Influences of risk parameters α and λ on the results in the two-stage mean VaR stochastic pro-
gramming model. (a) VaR versus λ. (b) Total expected cost versus λ. (c) Fixed opening cost versus λ.
(d) Expected operation cost versus λ.
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Table 4. Detailed results of the mean VaR two-stage stochastic programming model under different risk parameters.

α λ VaR CVaR Worst Total Expected
Cost

Fixed Opening
Cost

Expected
Operation Cost

Expected
Transportation

Cost

Expected
Processing Cost

Expected
Penalty Cost

0.7 0.01 1,037,594.60 1,094,627.08 1,151,182.60 994,475.09 299,268 695,207.09 66,980.01 117,110.48 511,116.59
0.1 1,037,594.60 1,094,627.08 1,151,182.60 994,475.09 299,268 695,207.09 66,994.16 117,096.34 511,116.59
0.5 1,002,970.40 1,121,136.06 1,222,722.20 999,803.05 358,562 641,241.05 80,300.41 143,152.68 417,787.96
1 993,717.40 1,127,758.72 1,262,939.00 1,007,159.40 343,970 663,189.40 72,461.61 131,912.60 458,815.19
5 993,717.40 1,127,758.72 1,262,939.00 1,007,159.40 343,970 663,189.40 72,451.31 131,922.90 458,815.19
10 993,717.40 1,127,758.72 1,262,939.00 1,007,159.40 343,970 663,189.40 72,420.69 131,953.52 458,815.19

0.8 0.01 1,061,405.20 1,117,673.23 1,162,129.40 994,473.84 305,718 695,207.09 66,992.08 117,098.42 511,116.59
0.1 1,054,955.20 1,118,634.57 1,151,182.60 994,475.09 299,268 695,207.09 66,981.78 117,108.72 511,116.59
0.5 1,027,541.40 1,124,429.54 1,148,453.60 998,229.30 296,539 701,690.30 66,655.23 115,581.35 519,453.71
1 1,027,541.40 1,124,429.54 1,148,453.60 998,229.30 296,539 701,690.30 66,653.55 115,583.04 519,453.71
5 1,015,483.30 1,148,701.42 1,206,844.80 1,011,424.01 293,411 718,013.01 63,196.09 116,157.54 538,659.38
10 1,015,483.30 1,148,701.42 1,206,844.80 1,011,424.01 293,411 718,013.01 63,196.02 116,157.61 538,659.38

0.9 0.01 1,151,182.60 1,151,182.60 1,151,182.60 994,475.09 299,268 695,207.09 66,994.16 117,096.34 511,116.59
0.1 110,7691.60 110,7691.60 1,107,691.60 997,850.55 255,777 742,073.55 60,701.46 101,415.48 579,956.62
0.5 1,059,486.40 1,071,031.55 1,077,241.60 1,006,287.47 218,290 787,997.47 51,224.97 84,298.83 652,473.67
1 1,047,369.60 1,053,348.75 1,057,225.60 1,015,030.57 198,274 816,756.57 46,402.94 74,988.33 695,365.30
5 1,047,369.60 1,053,348.75 1,057,225.60 1,015,030.57 198,274 816,756.57 46,368.60 75,022.67 695,365.30
10 1,047,369.60 1,053,348.75 1,057,225.60 1,015,030.57 198,274 816,756.57 46,407.21 74,984.06 695,365.30
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4.1.2. Sensitivity Analysis of Mean CVaR Two-Stage Stochastic Programming Model

Figure 3 shows the sensitivity analysis on the CVaR, total expected cost, fixed opening
cost, and expected operation cost of the mean CVaR two-stage stochastic programming
model. In Figure 3a, it can be seen that, for a fixed α, the value of CVaR decreases when λ
increases. However, the total expected cost increases as λ increases, as shown in Figure 3b.
Similar to the above mean VaR two-stage stochastic programming model, a larger λ repre-
sents an increase in the risk aversion level, which will lead to a lower CVaR value and a
higher total expected cost. As shown in Figure 3c,d, for a fixed α, the fixed opening cost
may decrease but the expected operating cost may increase when the λ increases. Figure 3
also shows that CVaR, the total expected cost, fixed opening cost, and expected operation
cost do not vary monotonically with α. Table 5 shows the summary results of the mean
CVaR two-stage stochastic programming model under different risk parameters.

0.01 0.1 0.5 1 5 10

1.04

1.06

1.08

1.1

1.12

1.14

1.16

C
V

a
R

10
6

=0.7

=0.8

=0.9

(a)

0.01 0.1 0.5 1 5 10
0.99

0.995

1

1.005

1.01

1.015

1.02

T
o

ta
l 

ex
p

ec
te

d
 c

o
st

10
6

=0.7

=0.8

=0.9

(b)

0.01 0.1 0.5 1 5 10
1.8

2

2.2

2.4

2.6

2.8

3

3.2

F
ix

ed
 o

p
en

in
g

 c
o

st

10
5

=0.7

=0.8

=0.9

(c)

0.01 0.1 0.5 1 5 10
6.8

7

7.2

7.4

7.6

7.8

8

8.2

E
x

p
ec

te
d

 o
p

er
at

io
n

 c
o

st

10
5

=0.7

=0.8

=0.9

(d)

Figure 3. Influences of risk parameters on the results in the two-stage mean CVaR stochastic program-
ming model. (a) CVaR versus λ. (b) Total expected cost versus λ. (c) Fixed opening cost versus λ.
(d) Expected operation cost versus λ.
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Table 5. Detailed results of the mean CVaR two-stage stochastic programming model under different risk parameters.

α λ CVaR VaR Worst Total Expected
Cost

Fixed Opening
Cost

Expected
Operation Cost

Expected
Transportation

Cost

Expected
Processing Cost

Expected
Penalty Cost

0.7 0.01 1,094,627.08 1,037,594.60 1,151,182.60 994,475.09 299,268 695,207.09 66,994.16 117,096.34 511,116.59
0.1 1,094,627.08 1,037,594.60 1,151,182.60 994,475.09 299,268 695,207.09 66,992.71 117,097.79 511,116.59
0.5 1,066,580.95 1,014,649.80 1,095,753.40 1,002,941.46 254,557 748,384.46 53,617.49 96,667.46 598,099.51
1 1,048,723.75 1,042,608.40 1,057,225.60 1,015,030.57 198,274 816,756.57 46,413.63 74,977.64 695,365.30
5 1,048,723.75 1,042,608.40 1,057,225.60 1,015,030.57 198,274 816,756.57 46,368.45 75,022.82 695,365.30
10 1,048,723.75 1,042,608.40 1,057,225.60 1,015,030.57 198,274 816,756.57 46,404.46 74,986.80 695,365.30

0.8 0.01 1,117,673.23 1,061,405.20 1,162,129.40 994,473.84 305,718 688,755.84 71,543.25 122,969.82 494,242.76
0.1 1,117,673.23 1,061,405.20 1,162,129.40 994,473.84 305,718 688,755.84 71,544.61 122,968.47 494,242.76
0.5 1,064,766.19 1,054,883.80 1,077,241.60 1,006,287.47 218,290 787,997.47 51,227.72 84,296.08 652,473.67
1 1,050,214.05 1,045,932.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,367.92 75,023.35 695,365.30
5 1,050,214.05 1,045,932.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,367.92 75,023.35 695,365.30
10 1,050,214.05 1,045,932.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,367.92 75,023.35 695,365.30

0.9 0.01 1,151,182.60 1,151,182.60 1,151,182.60 994,475.09 299,268 695,207.09 66,994.16 117,096.34 511,116.59
0.1 1,107,691.60 1,107,691.60 1,107,691.60 997,850.55 255,777 742,073.55 60,701.46 101,415.48 579,956.62
0.5 1,053,348.75 1,047,369.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,368.56 75,022.71 695,365.30
1 1,053,348.75 1,047,369.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,368.60 75,022.67 695,365.30
5 1,053,348.75 1,047,369.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,365.81 75,025.45 695,365.30
10 1,053,348.75 1,047,369.60 1,057,225.60 1,015,030.57 198,274 816,756.57 46,365.81 75,025.45 695,365.30
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4.2. Comparison with the Risk-Neutral Modeling Approach

In order to illustrate the significance of the risk-averse modeling approach, risk-
averse two-stage stochastic programming models were solved under α and λ, respectively.
Moreover, the change in the total expected cost, the worst of the total cost, VaR, and CVaR
were analyzed for different values of the risk parameters. Table 6 shows the total expected
cost, the worst of the total cost, VaR, and CVaR of the total cost at confidence level α for the
optimal solution of the risk-neutral two-stage stochastic programming model (1)–(16).

Table 6. Detailed results of the risk-neutral two-stage stochastic programming model.

Total
Expected Cost Worst VaR CVaR

α = 0.7 α = 0.8 α = 0.9 α = 0.7 α = 0.8 α = 0.9

994,473.84 1,162,129.40 1,052,990.90 1,061,405.20 1,162,129.40 1,096,925.72 1,117,673.23 1,162,129.40

4.2.1. Mean VaR Modeling Approach versus Risk-Neutral Modeling Approach

Table 7 shows the relative differences in the total expected cost, the worst of the total
cost, VaR, and CVaR obtained by the mean VaR approach with respect to the corresponding
values obtained by the risk-neutral approach. It can be seen that the mean VaR approach
can obtain a smaller VaR than the risk-neutral approach. However, for the CVaR and
the worst of the total cost, the mean VaR approach performs better than the risk-neutral
approach only when the confidence level α is large enough (α = 0.9). That is because when
α increases, CVaR and the worst of the total cost are close to VaR.

Table 7. Mean VaR modeling approach versus risk-neutral modeling approach.

α λ

Relative Difference
Total

Expected
Cost (%)

VaR (%) CVaR (%) Worst (%)

0.7 0.01 0.0001 −1.4621 −0.2096 −0.9420
0.1 0.0001 −1.4621 −0.2096 −0.9420
0.5 0.5359 −4.7503 2.2071 5.2139
1 1.2756 −5.6291 2.8109 8.6746
5 1.2756 −5.6291 2.8109 8.6746
10 1.2756 −5.6291 2.8109 8.6746

0.8 0.01 0.0000 0.0000 0.0000 0.0000
0.1 0.0001 −0.6077 0.0860 −0.9420
0.5 0.3776 −3.1905 0.6045 −1.1768
1 0.3776 −3.1905 0.6045 −1.1768
5 1.7044 −4.3265 2.7761 3.8477
10 1.7044 −4.3265 2.7761 3.8477

0.9 0.01 0.0001 −0.9420 −0.9420 −0.9420
0.1 0.3395 −4.6843 −4.6843 −4.6843
0.5 1.1879 −8.8323 −7.8389 −7.3045
1 2.0671 −9.8750 −9.3605 −9.0269
5 2.0671 −9.8750 −9.3605 −9.0269
10 2.0671 −9.8750 −9.3605 −9.0269

4.2.2. Mean CVaR Modeling Approach versus Risk-Neutral Modeling Approach

Table 8 presents the relative difference in the total expected cost, the worst of the total
cost, VaR, and CVaR obtained by the mean CVaR approach with respect to the risk-neutral
approach. It can be seen in Table 8 that CVaR, VaR, and the worst of the total cost obtained
by the mean CVaR approach are all smaller than those obtained by the risk-neutral approach
for different risk parameters. It is clear that, compared with the risk-neutral model, the



Sustainability 2022, 14, 14936 18 of 24

mean CVaR approach performs more efficiently. It also reflects that CVaR, as a risk measure,
can avoid risks more effectively than VaR.

Table 8. Mean CVaR modeling approach versus the risk-neutral modeling approach.

α λ

Relative Difference
Total

Expected
Cost (%)

VaR (%) CVaR (%) Worst (%)

0.7 0.01 0.0001 −1.4621 −0.2096 −0.9420
0.1 0.0001 −1.4621 −0.2096 −0.9420
0.5 0.8515 −3.6412 −2.7663 −5.7116
1 2.0671 −0.9860 −4.3943 −9.0269
5 2.0671 −0.9860 −4.3943 −9.0269
10 2.0671 −0.9860 −4.3943 −9.0269

0.8 0.01 0.0000 0.0000 0.0000 0.0000
0.1 0.0000 0.0000 0.0000 0.0000
0.5 1.1879 −0.6144 −4.7337 −7.3045
1 2.0671 −1.4577 −6.0357 −9.0269
5 2.0671 −1.4577 −6.0357 −9.0269
10 2.0671 −1.4577 −6.0357 −9.0269

0.9 0.01 0.0001 −0.9420 −0.9420 −0.9420
0.1 0.3395 −4.6843 −4.6843 −4.6843
0.5 2.0671 −9.8750 −9.3605 −9.0269
1 2.0671 −9.8750 −9.3605 −9.0269
5 2.0671 −9.8750 −9.3605 −9.0269
10 2.0671 −9.8750 −9.3605 −9.0269

4.3. Stochastic Measures

To illustrate the risk-averse two-stage stochastic programming approach to model the
randomness, the stochastic measures were investigated. As discussed by [47], the stochas-
tic measures for the proposed two risk-averse modeling approaches can be calculated
as follows:

MRWSVaR = E(ψs) + λ ·VaRα(ψs) (35)

MRWSCVaR = E(ψs) + λ · CVaRα(ψs) (36)

MRVPIVaR = MRRPVaR −MRWSVaR (37)

MRVPICVaR = MRRPCVaR −MRWSCVaR (38)

where MRRPVaR is the optimal objective of the mean VaR two-stage stochastic program-
ming (see Section 3.4.1); MRRPCVaR is the optimal objective of the mean CVaR two-stage
stochastic programming (see Section 3.4.2); ψs is the optimal total cost for scenario s, which
is shown in Appendix A.

MREVVaR = E

(
∑
k∈K

FW
k x̄k + ∑

j∈J
FH

j ȳj + Cs(x̄, ȳ)

)
+ λ ·VaRα

(
∑
k∈K

FW
k x̄k + ∑

j∈J
FH

j ȳj + Cs(x̄, ȳ)

)
(39)

MREVCVaR = E

(
∑
k∈K

FW
k x̄k + ∑

j∈J
FH

j ȳj + Cs(x̄, ȳ)

)
+ λ · CVaRα

(
∑
k∈K

FW
k x̄k + ∑

j∈J
FH

j ȳj + Cs(x̄, ȳ)

)
(40)

MRVSSVaR = MREVVaR −MRRPVaR (41)

MRVSSCVaR = MREVCVaR −MRRPCVaR (42)

where Cs(x̄, ȳ) is the operation cost in scenario s for the optimal solution (x̄, ȳ) of the
expected value (EV) problem, in which the uncertain parameters are replaced by their
expected value. The EV problem is formulated as shown in Appendix B.
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Figures 4 and 5 illustrate the effects of risk parameters of the ratios MRVSS/MRRP
and MRVPI/MRRP of the mean VaR modeling approach. As shown in Figure 4, for a fixed
α, the ratio MRVSS/MRRP increases when λ varies from 0.5 to 10. However, the ratio
MRVPI/MRRP decreases as λ or α increases, as seen in Figure 5. One can see in Figure 5
that the gap between the ratios under different α tends to widen as λ increases. Table 9
shows the summary of the stochastic measures for the mean VaR modeling approach under
different risk parameters, λ and α.

Table 9. Measures for the mean VaR modeling approach.

λ α MRRPVaR MREVVaR MRVSSVaR
MRVSSVaR
MRRPVaR

MRWSVaR MRVPIVaR
MRVPIVaR
MRRPVaR

0.5 0.7 1,501,288.25 1,566,361.47 65,073.22 4.3345 1,140,708.76 360,579.49 24.0180
0.8 1,512,000.00 1,573,980.52 61,980.52 4.0992 1,160,976.66 351,023.34 23.2158
0.9 1,536,030.67 1,631,699.27 95,668.60 6.2283 1,185,744.96 350,285.71 22.8046

1 0.7 2,000,876.80 2,112,288.37 111,411.57 5.5681 1,541,339.46 459,537.34 22.9668
0.8 2,025,770.70 2,127,526.47 101,755.77 5.0231 1,581,875.26 443,895.44 21.9124
0.9 2,062,400.17 2,242,963.97 180,563.80 8.7550 1,631,411.86 430,988.31 20.8974

5 0.7 5,975,746.40 6,479,703.57 503,957.17 8.4334 4,746,385.06 1,229,361.34 20.5725
0.8 6,088,840.51 6,555,894.07 467,053.56 7.6706 4,949,064.06 1,139,776.45 18.7191
0.9 6,251,878.57 7,133,081.57 881,203.00 14.0950 5,196,747.06 1,055,131.51 16.8770

10 0.7 10,944,333.40 11,938,972.57 994,639.17 9.0882 8,752,692.06 2,191,641.34 20.0254
0.8 11,166,257.01 12,091,353.57 925,096.56 8.2848 9,158,050.06 2,008,206.95 17.9846
0.9 11,488,726.57 13,245,728.57 1,757,002.00 15.2933 9,653,416.06 1,835,310.51 15.9749
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Figure 4. The value of MRVSS/MRRP under various λ and α for the mean VaR modeling approach.
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Figure 5. The value of MRVPI/MRRP under various λ and α for the mean VaR modeling approach.

Figures 6 and 7 illustrate the effects of risk parameters of the ratios MRVSS/MRRP
and MRVPI/MRRP of the mean CVaR modeling approach. As seen in Figure 6, the
ratio MRVSS/MRRP increases when λ varies from 0.5 to 10, and a larger value of α can
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also lead to a higher value of MRVSS/MRRP. However, as shown in Figure 7, the ratio
MRVPI/MRRP decreases as λ or α increases. In Figure 7, one can see that the gap between
the ratios under the different α tends to widen when λ increases. Table 10 shows the
summary of the stochastic measures for the mean CVaR modeling approach under different
risk parameters λ and α.

Table 10. Measures for the mean CVaR modeling approach.

λ α MRRPCVaR MREVCVaR MRVSSCVaR
MRVSSCVaR
MRRPCVaR

MRWSCVaR MRVPICVaR
MRVPICVaR
MRRPCVaR

0.5 0.7 1,536,231.94 1,594,245.87 58,013.93 3.7764 1,168,964.18 367,267.76 23.9071
0.8 1,538,670.56 1,606,205.26 67,534.70 4.3892 1,178,721.81 359,948.75 23.3935
0.9 1,541,704.94 1,631,699.27 89,994.33 5.8373 1,185,744.96 355,959.98 23.0887

1 0.7 2,063,754.32 2,168,057.16 104,302.84 5.0540 1,597,850.30 465,904.02 22.5756
0.8 2,065,244.62 2,191,975.95 126,731.33 6.1364 1,617,365.57 447,879.05 21.6865
0.9 2,068,379.32 2,242,963.97 174,584.65 8.4406 1,631,411.86 436,967.46 21.1261

5 0.7 6,258,649.31 6,758,547.52 499,898.21 7.9873 5,028,939.26 1,229,710.05 19.6482
0.8 6,266,100.82 6,878,141.47 612,040.65 9.7675 5,126,515.61 1,139,585.21 18.1865
0.9 6,281,774.31 7,133,081.57 851,307.26 13.5520 5,196,747.06 1,085,027.25 17.2726

10 0.7 11,502,268.05 12,496,660.47 994,392.42 8.6452 9,317,800.46 2,184,467.59 18.9916
0.8 11,517,171.08 12,735,848.37 1,218,677.29 10.5814 9,512,953.16 2,004,217.92 17.4020
0.9 11,548,518.06 13,245,728.57 1,697,210.51 14.6963 9,653,416.06 1,895,102.00 16.4099
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Figure 6. The value of MRVSS/MRRP under various λ and α for mean CVaR modeling approach.
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Figure 7. The value of MRVPI/MRRP under various λ and α for mean CVaR modeling approach.

5. Conclusions

A reverse logistics network design is important due to its impact on the efficiency of
reverse logistics, which is receiving considerable attention from researches and practitioners.
However, the existing studies have not considered uncertain disruptions and risk measures
in the context of 3PL, simultaneously.
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In this study, a risk-averse two-stage stochastic programming framework was pro-
posed for designing a reverse logistics network under uncertain disruptions for 3PL. Two
models were developed that incorporated VaR and CVaR into the mean risk objective
function of risk-averse two-stage stochastic programming, respectively. Finally, sensitivity
analyses of the risk parameters in the proposed two models were carried out. Moreover, the
significance of the risk-averse modeling approach, with respect to the risk-neutral modeling
approach, was verified. Stochastic measures were used to illustrate that the risk-averse
two-stage stochastic programming approach could model the randomness efficiently.

This work can assist 3PL managers and deciders in designing an effective and reliable
reverse logistics network with uncertain disruptions. The proposed models can be applied
to other network design cases that consider uncertain disruptions or risk management.

Our study is not without limitations. There are some recommendations for future
researches:

• In this paper, we considered single-type return products in the network. However, in
many real cases, we have multiple-type return products, which can be a subject for
future research.

• In this paper, the scenario-based stochastic programming method was applied to deal
with disruption uncertainty. In future research, mixed uncertainty could be considered
for this problem and there is a need to develop other approaches to confront (with
uncertainty), such as fuzzy-stochastic programming.

• Because of the limitations of the solvers, we could not consider large problem sizes.
Thus, developing a meta-heuristic algorithm for solving large-sized problems can be
another interesting area for future research.

• Finally, some methods, such as Benders’ decomposition, can be employed to solve the
proposed problem in future research.
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Appendix A. The Optimal Total Cost of Each Scenario

The optimal total cost ψs in scenario s can be calculated as follows:

ψs = min ∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + Cs(x, y) (A1)

s.t.
xk ∈ {0, 1} ∀k ∈ K (A2)

yj ∈ {0, 1} ∀j ∈ J (A3)
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Objective (A1) minimizes the fixed opening cost and the optimal operation cost
of solution (x, y) in scenario s, where Cs(x, y) is the optimal value of the second-stage
problem (4)–(16).

Appendix B. The EV Problem

In order to formulate the EV problem, the following decision variables are introduced:
zA

lk Quantity of products shipped from customer zone l to 3PL local collection
center k

zB
kj Quantity of products shipped from 3PL local collection center k to 3PL central-

ized collection center j
zC

ji Quantity of products shipped from 3PL centralized collection center j to dis-
posal center i

zD
jm Quantity of products shipped from 3PL centralized collection center j to plant

m
The EV problem is formulated as follows:

EV = min ∑
k∈K

FW
k xk + ∑

j∈J
FH

j yj + C(x, y) (A4)

s.t.
xk ∈ {0, 1} ∀k ∈ K (A5)

yj ∈ {0, 1} ∀j ∈ J (A6)

The objective function (A4) is to minimize the total cost, including the fixed opening
cost and optimal operation cost in the solution (x, y), where Cs(x, y) is the optimal value of
the following problem:

C(x, y) = ∑
k∈K

∑
l∈L

PW
k zA

lk + ∑
j∈J

∑
k∈K

PH
j zB

kj + ∑
l∈L

∑
k∈K

CA
lkzA

lk + ∑
k∈K

∑
j∈J

CB
kjz

B
kj

+ ∑
j∈J

∑
i∈I

CC
ji zC

ji + ∑
j∈J

∑
m∈M

CD
jmzD

jm + ∑
l∈L

τ

(
ql − ∑

k∈K
zA

lk

) (A7)

s.t.
∑
l∈L

zA
lk = ∑

j∈J
zB

kj ∀k ∈ K (A8)

∑
k∈K

zB
kj = ∑

i∈I
zC

ji + ∑
m∈M

zD
jm ∀j ∈ J (A9)

γ ∑
k∈K

zB
kj = ∑

i∈I
zC

ji ∀j ∈ J (A10)

∑
k∈K

zA
lk ≤ ql ∀l ∈ L (A11)

∑
l∈L

zA
lk ≤ QW

k xk

(
∑
s∈S

psaks

)
∀k ∈ K (A12)

∑
k∈K

zB
kj ≤ QH

j yj

(
∑
s∈S

psbjs

)
∀j ∈ J (A13)

∑
j∈J

zC
ji ≤ QR

i ∀i ∈ I (A14)

∑
j∈J

zD
jm ≤ QO

m ∀m ∈ M (A15)

zA
lk ≥ 0 ∀l ∈ L, ∀k ∈ K (A16)

zB
kj ≥ 0 ∀k ∈ K, ∀j ∈ J (A17)
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zC
ji ≥ 0 ∀j ∈ J, ∀i ∈ I (A18)

zD
jm ≥ 0 ∀j ∈ J, ∀m ∈ M (A19)

The objective function (A7) minimizes the operation cost. Equations (A8)–(A10)
are the flow balance constraints for the 3PL local collection center and 3PL centralized
collection centers. Constraint (A11) is related to limitations on the flow at customer zones.
Equations (A12) and (A13) are the capacity constraints of the 3PL local collection center
and 3PL centralized collection centers. Equations (A14) and (A15) are capacity constraints
for disposal centers and plants, respectively. Equations (A16)–(A19) are related to the
non-negative restrictions on decision variables.
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