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Abstract: Climate variability and land-use change are key factors altering the hydrology of a river
basin, which are strongly linked to the availability of water resources and the sustainability of the
local ecosystem. This study investigated the combined and individual impacts of land-use changes
(LUCs) and climate change (CC) on the hydrological processes in subbasins of the Source Region
of the Yellow River (SRYR) through statistical methods and hydrological modeling based on two
land-use maps for the period 1990 and 2010, and two climate periods, i.e., 1976–1995 and 1996–2014.
The results revealed that the climate is anticipated to be warmer and wetter. Land-use changes
were dominated by decreases in sparse grassland. However, the transformation of land-use changes
varied spatially within sub-basins. The combined impacts of climate and land-use changes are more
noticeable in the Maqu subbasin, where the decrease in runoff reached 18% (32.2 mm) and increase in
evapotranspiration (ET) reached 10.4% (34.1 mm), followed by the Tangnaihai and Jimai subbasins.
The changes in runoff and ET caused by LUC seemed to be adequate by comparison, and presented
a 15.1–19.8% decline in runoff and 21.3–28% increase in ET relative to the totals. Overall, climate
change has more influence on hydrological processes in all subbasins of the SRYR than LUC. It is,
therefore, considered that the response to changes in hydrological processes in a subbasin can be
attributed to changes in individual climate parameters and land-use classes.

Keywords: Source Region Yellow River; climate change; land-use change; grassland; runoff;
evapotranspiration; soil and water assessment tool

1. Introduction

It is globally agreed that the main drivers of climate change (CC) and land-use change
(LUC) affect basin hydrology, which has led to the recognition of the need for effective
water management and conservation of fluvial ecosystems at basin scale [1–3]. CC, with
raised temperature and altered precipitation intensity and patterns, causes variations
in hydrological regimes such as low flows, peak flows and time of flow routing [3–8].
Land-use changes also affect hydrological processes such as interception, infiltration and
evapotranspiration [9–12], causing variations in surface and subsurface flows. This is
mainly true in arid and semi-arid areas, where the ecosystems are fragile and sensitive to
climate change, and the scarcity of water significantly constrains economic and ecosystem
developments. The changes in hydrological processes in the source areas of rivers in the
aforementioned regions ultimately affect the water yield in downstream reaches. Thus,
the assessment of impacts by CC and LUC have garnered considerable attention from the
scientific community, as well as decision-makers, for the optimal management of water
resources from the perspective of increasing water scarcity [13,14].

Studies have been conducted to examine climate change’s effects on hydrological
components, and its parameters role has been identified [15–20]. Scientists have also
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paid attention to the combined impacts of climate change and LUC on the hydrological
components of the river basin [1,14,16,21]. The majority of studies used hydrological
modelling or statistical modelling to assess changes in hydrological processes at the basin
scale [17,21,22]. However, some of the research deals with the individual impact of climate
change and LUC and presented different results for different basins. For example, Chung
et al. [17] reported that variations in streamflow are remarkable because of climate change
in the Anyangcheon basin, Korea. In semi-arid region, the impacts of LUC are more
remarkable than those of climate change [18,19]. Daofeng et al. [20] presented the impacts
of CC and LUC on streamflows in the Yellow River’s upper reaches, where climate change
had a greater influence than LUC. However, studies conducted on the Loess Plateau as well
as Yangtze River delta region in China also concluded that the changes in streamflow are
mainly caused by LUC [21–23]. Since the dominant factor, LUC or climate change, varies
spatially due to topographical conditions and geographical varieties, further research is
needed to conserve the eco-environment of a particular basin.

The Yellow River, Mother River of China is the second longest river in China. As a
source of the Yellow River, eco-systems of source region of the Yellow River (SRYR) have
a significant water resource recharging function that determines the water availability in
the river. Since the region is characterized by a complex orography and fragile ecosys-
tem [17,24,25], the water yield is susceptible to average and increased variations in climate
change and LUC [17–20,22,23]. The major ecosystem covered by alpine meadows has been
degraded in the region [26–28]. Moreover, through the implementation of Ecological Protec-
tion and Restoration Program (EPRP) in 2005, the Normalized Difference Vegetation Index
(NDVI), together with temperature and precipitation, has increased in three headwater
regions of China. The increment in grassland was more pronounced in the southeast of
the region [29]. There were degradations in the grassland area, accounting for 36.12%,
which resulted in a substantial impact on water-retaining capacity [30]. Specifically, due to
grassland degradation, water retention decreased in low-lying areas and the freeze–thaw
process declined in high-altitude areas [25]. Moreover, the trend of observed flows in the
SRYR or other regions decreased, although the actual source of this decrease is still unclear
due the differing views in studies. Zhang et al. [31] and Daofeng et al. [20] suggested
that climate change was the major reason of these changes in streamflow in the source
of the three rivers in China and the SRYR, respectively, while the streamflow changes
were primarily attributed to LUC in the Loess Plateau of China by Zou et al. [22] and Yan
et al. [23]. It was proved that the LUC and CC are the main drivers varying the water
supplies in any region, as well as their spatial contributions. Therefore, there is a need
to inspect the contribution of land-use and climate changes to the hydrological processes
(runoff and evaporanspiration) in the SRYR, where the climatic [2] and land-use patterns
vary at the subbasin scale [9].

Numerous studies have been conducted to examine the impacts of climate change and
land-use changes on hydrological response in the SRYR, and they primarily emphasize
two concerns: (i) past or future climate change and its impacts [5–7,9,16,27]; (ii) past
or future hydrological impacts of land-use changes and climate variability [11,20,28,29].
The majority of these studies consider the hydrological variation looking only at climate
change, and few studies have analysed the combined impacts. In addition, the runoff
variation was evaluated statically [5–7,16], instead of using an integrated approach with
a hydrological model. Since the applied statistical methods were not physically explicit,
the quantification of impact caused by climate or land-use will not be easy. Moreover,
the climate or/and land-use data either had a coarse resolution [11,32] or were not the
most recent. Some of the studies analysed the combined hydrological impacts, and climate
change scenarios were established using global climate model (GCM) projection data.
For example, GCM multi-model ensemble projections were used under three emissions
scenarios, A1B, A2 and B1, for the near future, by Zhang et al. [27]. Wang et al. [28]
determined the impacts on streamflows in the SRYR looking at future climate-change
scenarios using three representative concentration pathways (RCPs) (RCP2.6, RCP4.5, and
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RCP8.5) with a land-use scenario for 2025. However, the exploration of hydrological
variation in hypothetical scenarios with the combination of temperature and precipitation
and five land-use scenarios [20], and development of different sets of climate data with
respective land-use for the period of 1981–2005, as conducted by Pan et al. [11], seems more
reliable than GCM climate scenarios when applied to a highly spatially heterogeneous and
complex terrain, such as the SRYR, owing to the inherent coarse resolution of GCMs [33].
Additionally, the quantitative assessment of hydrological processes in response to climate
and land-use changes were rarely explored by applying the integrated modelling approach.

In this study, we provide an update on the impacts of land-use and climate change
on the hydrological processes by apply integrated modelling combined with the Soil and
Water Assessment Tool (SWAT) and statistical framework proposed by Yang et al. [34].
The objectives are (a) to investigate the variation in climatic and hydrological parameters
using the observed data from 1974 to 2014; (b) to characterize the changes in land-use and
their attribution to changes in the hydrological processes. Overall, the results will provide
beneficial knowledge, allowing for water-resource management to deal with the impacts
that climate and land-use changes have on runoff and evapotranspiration at Tangnaihai,
Maqu, and Jimai subbasins within the SRYR. To the best of our knowledge, this will be first
comprehensive study at the subbasin scale.

Study Area

Figure 1 shows the geographical location of the SRYR, which is situated in the Qinghai-
Tibet (QT) Plateau in China between 32◦12′–35◦48′ N and 95◦50′–103◦28′ E. The region has
an area (121,972 km2) that is covered by the upstream catchment area of the Tangnaihai
hydrological station. The SRYR supplies of 35% of the total annual flow to downstream
reaches; hence, it is called the water tower of the Yellow River Basin. The northern and
southern parts of the region are enclosed by mountains, while the western side is character-
ized by highlands. There are three major subbasins in the SRYR, named Tangnaihai, Maqu
and Jimai. The elevation in the SRYR ranges from 2666 m to 6253 m and falls from the west
to the east. The more highly elevated areas of the region are mostly located in the Jimai
subbasin; however, the highest change in elevation exists in the Tangnaihai subbasin due
to the Anyamaqin Mountain peaks and low elevation area of the basin, such as the outlet
of the region.
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black boundaries, and P stands for their combined average annual precipitation. The values of
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The region’s land cover can be described as lakes/wetland, snow, glaciers, vegetation,
and rivers. The vegetation is of a cold-tolerant perennial type, which covers the grassland
(steppe and shrub meadows, alpine swamp) and forest (coniferous, broadleaf, needle leaf
and mixed forest). Forest covers 11.4 percent of the area, while grassland, the primary
ecosystem of the region, covers over 80 percent of the total land area [35]. However,
grassland has been shown to degrade due to overgrazing and climate change [35,36]. The
Tangnaihai subbasin has a permanent snow cover and 58 glaciers, representing 95.8% of
the total glacier area (134 km2) [9]. There are around 5300 lakes (2000 km2) in the region,
together with two major lakes, Ngoring (610 km2) and Gyaring (550 km2), which exist in
the Jimai subbasin [17,34].

Climatically, the SRYR is characterized by a dry winter and wet summer; however, the
climate conditions vary spatially. The annual average temp in the SRYR varies between
2.0 ◦C and −4.0 ◦C from the southeast to northwest of the region [7]. The southwest
monsoon from the Indian Ocean influences the southern plateau, while the eastern plateau
is influenced by the southeast monsoon from the Pacific Ocean [37]. The mean annual
precipitation is 530 mm yr−1, reaching its maximum in Maqu subbasin (665 mm yr−1),
while the minimum precipitation occurs in the Jimai subbasin (465 mm yr−1). The mean
annual duration of sunshine is 3028 h, the potential evaporation ranges between 800 and
1200 mm yr−1, and the annual average temperature of the region increases from −4.0 ◦C to
2.0 ◦C from the orthwest to the southeast [7].

2. Materials and Methods
2.1. Dataset
2.1.1. Hydro-Meteorological Data

The list of topographic, hydrological and climatic data used in this study is given in
Table 1. The China Meteorological Administration provided the meteorological data for
average, minimum and maximum temperatures, precipitation, sunshine hours, relative
humidity and wind speed of eleven stations for the period 1974–2014. Streamflow records
of the hydrological stations (Tangnaihai, Maqu, and Jimai) were collected from the Yellow
River Conservancy Commission for the same period. To ensure the quality and homogene-
ity of time series data, standard statistical approaches were employed and their results are
discussed in previous studies [2,7,38,39].

Table 1. The catalogue of datasets utilized in this research.

Category Data Set Source

Meteorology Relative humidity, temperature, precipitation,
sunshine hours, wind speed

China Meteorological Administration, Yellow River
Conservancy Commission

Topography Digital elevation model (DEM) Shuttle Radar Topographic Mission (version 4)
(https://srtm.csi.cgiar.org/ (accessed on 15 March 2018))

Hydrology Discharge Yellow River Conservancy Commission

Soil Digital soil maps of China
Harmonized World Soil Database (version 1.2)

(http://webarchive.iiasa.ac.at/Research/LUC/External-
World-soil-database/ (accessed on 20 March 2018))

Land-use Current land-use data of China
Landsat TM/ETM remote sensing images processed by

the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

2.1.2. Topographic Data

The Digital Elevation Model (DEM) of 90 m spatial resolution was downloaded from
the Shuttle Radar Topographic Mission (SRTM) website in Geo TIFF format (Table 1). The
subbasins boundaries for Tangnaihai, Maqu and Jimai were delineated using ArcHydro
tools in an Arc GIS environment (Figure 1).

https://srtm.csi.cgiar.org/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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2.1.3. Land-Use Data

Land-use maps (1:100,000) of the 1990s and 2010s were requested from the Resources
and Environmental Sciences Data Centre (RESDC), Chinese Academy of Sciences. Previ-
ously, land-use data were interpreted based on the Landsat Thematic Mapper (TM), to
identify ecological land uses [30,40]. The land-use change (LUC) data comprised six major
types, which were further divided into 25 subtypes. The six major LUC types included crop-
lands, woodlands, grasslands, water, construction land, and unused land. (i) The croplands
comprised dry land and paddy; (ii) the forests comprised sparse woodland, shrubland,
and other woods; (iii) the grasslands contained low-coverage, moderate-coverage, and
high-coverage grassland; (iv) the construction land included urban and rural areas and
settlements; (v) the water included lakes, canals, reservoirs, ponds, snow and ice, shoals,
and beaches; (vi) the unused land included desert, sandy land, salty land, bare ground,
and marsh. The LUC data were further reclassified into eight different types, and it was
found that the grassland area was increased by 3.42%, whereas the sparse grassland area
was reduced by 4.63% in 2010 compared to 1990 for the SRYR, as shown in Figure 2.
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2.1.4. Soil Data

Food and Agriculture Organization (FAO) and International Institute for Applied
Systems Analysis provide the Harmonized World Soil Database V 1.2 (HWSD), which
is 30 arc-second database [41]. The soil data are available at the scale of 1:1,000,000. A
soil map of China was used to extract the study area. Each soil unit of HWSD consists of
organic carbon content, depth, electrical conductivity, bulk density and soil texture, which
can be directly utilized in the soil database of the Soil Water Assessment Tool.

The values of a few important factors, including saturation, field capacity, saturated
hydraulic conductivity, wilting point and available water, were determined using the soil-
plant–atmosphere–water (SPAW) model. The calculated parameters were based on the
texture of soil, as given in the soil database. Gelic Leptosols was found to be dominant in the
SRYR, followed by Mollic Leptosols. Gelic properties refer to soils having permafrost within
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200 cm of the soil surface. Mollic lepotols refers to the soils that contain or immediately
over-lie a calcium carbonate content of greater than or equal to 40%.

Due to its rough terrain and vast area, the SRYR was classified into five slope classes:
0–5%, 5–25%, 25–48%, 48–75%, and >75%. Of these, 43% of the SRYR was determined to
have a slope of within 5–25%.

2.2. Methods
2.2.1. Trend Analysis

Sen’s slope method and the Mann–Kendall [42,43] trend analysis were performed on
the hydro-meteorological data of the SRYR to estimate the increasing and decreasing trends
and their magnitudes. The Mann–Kendall test is a rank-based, non-parametric test. It is not
dependent on the data being properly distributed and is less sensitive to inhomogeneous
time series [44]. The details of Sen’s slope method and Mann–Kendall are provided in
Safeeq et al. [45].

2.2.2. Hydrological Modeling

The modelling was performed using the Soil and Water Assessment Tool (SWAT) de-
veloped by Arnold et al. [46]. The SWAT is a physical-based, semi-distributed hydrological
model with the capacity to predict the influence of land-management practices on water,
water-quality parameters and sediment yield in intricate basins with varying land-use and
soil conditions at annual, monthly and daily scales. For example, in the SRYR, the main
hydrological component (runoff) was mainly contributed by precipitation (rainfall and
snow). The contribution from glacial melt is negligible because of its minute coverage
of the total area (0.11%) [9]. The SWAT model is inherently able to deal precipitation to
runoff processes, meaning that it is applicable in the SRYR to evaluate the hydrological
components. The SWAT model proved to be an effective tool for examining hydrological
processes in response to varying climate and land-use changes [4,15,34]. The model divides
a basin into a number of subbasins based on hydrological response units (HRUs). HRU is a
region that exhibits a unique configuration of elevation, soil type and land-use. The model
estimates the water balance for each HRU and accumulates the HRUs at the outlet of the
basin. In this study, hydrological components are simulated at each subbasin by applying
the water balance equation, as provided below [46]:

SWt = SW0 +
t

∑
i=1

(Rday −Qsur f − Ea −Wseep −Qgw) (1)

where Qgw (mm) represents return flow on the ith day, Wseep (mm) describes the volume
of water that entered the vadose zone on day one from the soil profile, Ea (mm) represents
evapotranspiration on the ith day, Qsur f (mm) is the runoff on ith day, Rday (mm) denotes
the precipitation on ith day, SWo (mm) specifies the initial soil moisture, and SWt (mm)
represents the final soil moisture.

The SWAT model estimates surface runoff (Qsur f ) using the SCS curve number
method [47] and Green-Ampt Infiltration method [48]. In this study, the SCS curve number
method was chosen to compute surface runoff by the following equation:

Qsur f =

(
Rday − 0.2S

)2(
Rday + 0.8S

) (2)

where Qsurf (mm) is excess rainfall or surface runoff, Rday (mm) is the rainfall in a day
and S (mm per day) is the maximum retention parameter. This parameter varies spatially
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and temporally due to variations in land-use management, slope and soils, and soil water
content, respectively. The retention parameter equation is given by:

S = 25.4
(

1000
CN

− 10
)

(3)

where S is defined earlier and CN denotes the curve number.

Model Setup

The SWAT model version, i.e., SWAT2012, was applied to the Tangnaihai, Jimai and
Maqu subbasins of the SRYR. The model was driven by topography, soil land-use and
meteorological data [46,49]. The model delineated 34 subbasins for the whole of the SRYR
based on the 150,000 hectare areas, which include hydrological stations, namely, Maqu,
Jimai, and Tangnaihai. To consider the orographic effects and better depict the distribution
of meteorological parameters over subbasins, each subbasin was split into ten bands
based on elevation. The study by Zhang et al. [27] determined that the precipitation and
temperature lapse rates should be set at +0.5 mm/km and −6.5 ◦C/km, respectively. The
homogeneous type of slope, land-use, and soil were used to further classify the subbasins
into 480 HRUs. The hydrological processes were preceded using the SCS-CN method, while
the Muskingum scheme was chosen for channel flow routing and the Penman–Monteith
equation was selected to estimate the evapotranspiration.

Calibration and Validation of Model

The Sequential Uncertainty Fitting Method (SUFI-2) algorithm was adopted for cal-
ibration and sensitivity analysis using SWAT calibration and uncertainty programme
(SWAT-CUP) [48]. The parameters of the SWAT-CUP model were adjusted based on actual
streamflow measurements made at the outlets of the Tangnaihai, Maqu and Jimai subbasins.
Parameters were initially sorted from the studies conducted over the whole Yellow River
Basin and the SRYR [5,27,50]. To complete the sensitivity analysis, each parameter within
the range was also altered, while the other parameters were kept at realistic levels. The list
of calibrated parameters is presented in Table 2. The sensitive parameters for the SRYR
were the curve number, bulk density of the soil layer, saturated hydraulic conductivity,
the groundwater delay time, deep aquifer percolation fraction, snowpack temperature
lag factor, melt factor for snow on June, snowmelt base temperature, melt factor for snow
on December 21, snowfall temperature, average slope steepness, and soil evaporation
compensation factor. The model was trained for three years (i.e., 1973–1975) as a warm-up
period, with the climate forcing data to alleviate the effects of imprecise initial conditions.
The SWAT model was jointly calibrated from 1976 to 1995 using land-use for the year 1990,
and validated for the period from 1996 to 2014 with the land-use data for 2010 against the
observed streamflows at the Jimai, Maqu, and Tangnaihai hydrological stations.

Performance Evaluation of Hydrological Model

The coefficient of determination (R2) and the Nash–Sutcliffe efficiency (NSE), the
two statistical indicators suggested by Moriasi et al. [50] were used to assess the model
performance. The performance of the model during the calibration and validation stages
was also measured using the percentage bias (PBIAS) [51]. Their respective equations are
as follows:

R2 =

 ∑n
i=1
(
Qo −Qo

)(
Qs −Qs

)√
∑n

i=1
(
Qo −Qo

)2
∑n

i=1
(
Qs −Qs

)2

2

(4)

NSE = 1− ∑n
i=1(Q0 −Qs)

2

∑n
i=1
(
Q0 −Qo

)2 (5)
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PBIAS =
∑N

i=1(Qo −Qs)
2

∑N
i=1(Qo)

× 100% (6)

where n denotes the number of datapoints; Qs and Qo are the simulated and observed
runoff at ith time step; Qs and Qo denote the simulated and observed runoff, respectively.

Table 2. Final optimized values of calibrated parameters for the SRYR.

Parameter Description Minimum Value Maximum Value Fitted Value

v__GW_DELAY.gw Groundwater delay (days) 64.85 154.97 105.72

v__SMFMN.bsn Minimum melt rate for snow during the
year (winter) H2O/◦C-day) 4.91 14.97 7.58

r__SOL_K.sol Saturated hydraulic conductivity (mm/h) −1.16 0.15 −0.58

r__SOL_BD.sol Moist bulk density (g/cm−3) −0.02 0.94 0.73

v__RCHRG_DP.gw Percolation from deep aquifer 0.20 0.73 0.48

v__TIMP.bsn Snowpack temperature lag factor −0.02 0.66 0.05

v__SMTMP.bsn Snow melt base temperature (◦C) −2.61 2.47 0.69

v__SFTMP.bsn Snowfall temperature (◦C) −6.99 1.01 −0.53

r__CN2.mgt Initial SCS runoff curve number for
moisture condition II −0.70 −0.1 −0.56

v__HRU_SLP.hru Average slope steepness (m/m) 0.46 1.39 0.90

v__ESCO.hru Soil evaporation compensation factor 0.49 1.46 0.95

v__SMFMX.bsn Maximum melt rate for snow during the
year (mm H2O/◦C-day) 8.01 24.03 10.13

2.2.3. Statistical Framework for Individual Impact of Land-Use Changes and Climate Change

LUC and climate change each have a unique effect on hydrological processes and
have been widely studied using the one-factor-at-a-time (OFAT) approach. However, the
impact of each cannot be quantified with a conventional OFAT approach because the total
contribution of each factor does not make 100%. For example, Li et al. [51] identified
the impacts of CC (95.8%) and LUC (9.6%) on streamflow in the Loess Plateau of China
during the 1981–2000, which appeared to be decreasing. The primary drawback of the
conventional OFAT approach is that, while evaluating the impact of one factor on the
hydrological process over a particular study period, the other factors’ effects are not
considered. Therefore, studying the individual impacts of two factors (CC and LUC) on
hydrological processes requires the applicable status of each factor from the reference
period to the entire period to be input, as considered in the modified OFAT proposed by
Yang et al. [14]. Recent researcs on other watersheds found the modified OFAT proposed
by Yang et al. [14] to be efficient [3,4,15], and the same method was adopted. In this study,
climatic data were divided into two periods: the first (C1) was used as a baseline period and
the second one (C2) was used as a comparison period. The land-use conditions are defined
for both periods by two land-use maps, L1 and L2, respectively. The configurations of C1,
C2, L1, and L2 are often used to compute the integrated modelling scenarios (SI, S2, S3, and
S4). Figure 3 shows a schematic representation of this method and the changes in runoff
and ET with climate change variables under various land-use maps. The hydrological
fluctuations caused by the CC and LUC were calculated using Equations (7)–(9), and their
combined impacts, respectively, are as follows:

∆QL =
1
2

[
(QL2

C1 −QL1
C1) + (QL2

C2 −QL1
C2)
]

(7)

∆Q = QL2
C2 −QL1

C1 (8)
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∆QC =
1
2

[
(QL1

C2 −QL1
C1) + (QL2

C2 −QL2
C1)
]

(9)
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Figure 3. A conceptual diagram of the individual impacts under different scenarios on runoff/ET: by
climate change (a) and land-use change (b).

This study employed land-use maps from the 1990s and 2010s and meteorological
data from 1976–1995 and 1996–2014 to reveal the land-use patterns of each. Each of
the four options derived from these two land-use maps and climatic eras was subjected
to a calibrated SWAT model. Here, these are identified as four distinct situations. By
comparing the results of four SWAT model scenarios, the effects of LUC and CC may be
evaluated (Table 3).

Table 3. Scenarios to separately quantify the impacts of CC and LUC on runoff using calibrated
SWAT model.

Scenario Period of Land-Use Map Period of Climatic Data

S1 1990s 1976–1995

S2 2010s 1976–1995

S3 1990s 1996–2014

S4 2010s 1996–2014

3. Results
3.1. Decadal Changes in Hydro-Meteorological Variables of the SRYR

Annual mean monthly temperature, precipitation and runoff, as hydro-metrological
variables, were averaged on the basis of daily and monthly data series. The results of annual
trends per decade and decadal means for the period 1974–2014 are shown in Figure 4.
Over the course of entire period, temperature and precipitation exhibited significant and
insignificant increasing trends at the rate of 0.4 ◦C per decade and 2.3 mm per decade,
while runoff presented an insignificant decreasing trend at the rate of 36.3 m3/s per decade.
It is evident from decadal means that the regional temperature will continuously increase,
with a maximum mean of 0.29 ◦C in the last decade (2004–2014). Runoff following the
decadal average pattern of precipitation was exhibited to decrease from the first to third
decades, over the period 1974–1994. In the last decade (2004–2014) the mean values of
precipitation and runoff increased. However, the mean runoff of the last decade is less than
that of the first, which may result in a significant temperature change in the last decade
(0.29 ◦C), which was quite high compared to the first decadal mean temperature (−0.9 ◦C).

The Mann–Kendall test was performed to determine the significance of the trends,
as shown in Figure 5, to ensure statistical validity. This analysis showed different trends
in three variables, as well as statistically significant trends for certain months over the
entire period (Table 4). The precipitation trends were insignificant in all months except
May, where a significant upward tendency in precipitation, of 3.39 mm per decade at a
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confidence level of 10%, was observed. The substantial positive spikes in precipitation
from May to July may lead to increases in annual precipitation.
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Table 4. Sen’s slope (per decade) and the MK tests are used to analyze trends in hydrometeorological
variables.

Month
Temperature Precipitation Runoff

Test Z Sig. β Test Z Sig. β Test Z Sig. β

January 2.75 ** 0.59 −0.01 −0.02 −0.01 0.00

February 2.68 ** 0.70 1.11 0.51 −0.57 −2.71

March 2.84 ** 0.38 −0.39 −0.50 −0.08 −0.44

April 2.44 * 0.31 0.35 0.44 −1.16 −13.76

May 2.41 * 0.28 1.85 + 3.39 −1.84 + −41.63

June 2.59 ** 0.30 0.24 1.09 −0.61 −20.90

July 4.35 *** 0.55 0.73 3.15 −0.13 −10.31

August 3.38 *** 0.42 −0.15 −0.45 −0.70 −39.21

September 3.31 *** 0.52 −1.31 −3.76 −2.15 * −143.67

October 1.34 0.18 0.91 1.33 −0.98 −44.92

November 1.99 * 0.24 0.08 0.03 −0.95 −16.70

December 2.35 * 0.42 −1.02 −0.27 −0.71 −5.77

Note: Plus, single, double and triple asterisk signs indicating the significance of the trends at p < 0.10, p < 0.05,
p < 0.01 and p < 0.001, respectively.

The statistics on air temperature showed a warming trend over the whole year. Except
for October, the increasing trends were significant at different confidence levels (Table 4).
The highest rate, of 0.70 ◦C/decade, was observed in the month of February. The average
rate between June and August (0.42 ◦C/decade) was 1.3 times slower than the average
between December and February (0.57 ◦C/decade). The warming tendency was more
pronounced during the winter months compared to the summer months.

The runoff trends showed a decreasing tendency during all the months, but appeared
to be significant in May and September. Between April and November, variations occurred
in the trends in monthly runoff, and this fluctuation persisted throughout the whole period
(Table 4). These variations showed positive responses to the variation in precipitation,
which were not subject to delays over the following months. Interestingly, the variations in
precipitation and runoff over the monthly period occasionally reached statistical signifi-
cance, reflecting trends that could be seen in both yearly and monthly scales runoff and
precipitation data (Figures 4 and 5).

3.2. Changes in SRYR Land-Use

Figure 2 and Table 5 indicated changes in land-use composition in the SRYR that
have occurred since the early 1990s. The dominating land-use class was sparse grassland,
followed by grassland, which covered 56% and 15% of the entire expanse, respectively. An
increase in grassland, settlements, unused land, woodland and water, and arable land was
observed, and only sparse grassland showed a decrease. Overall, during the study period,
the grassland in the SRYR area increased and the environment improved.

Table 6 showed the land transformation from the 1990s to 2010s, which comprised
11,614 km2, 9.7% of the total area. In this study, sparse grassland, grassland, woodland, and
unused land remained under special consideration, as they may have substantial effects
on various hydrological processes. Analysis showed that grassland mainly increased due
to the changes in sparse grassland (7790 km2), unused land (1621 km2), and woodland
(1406 km2), all a result of the ecological restoration programs launched in the early 2000s.
Unused land increased due to changes from grassland (1505 km2) and into grassland
(1621 km2). Figure 6 shows major transformations in specific subbasins of the SRYR and
Table 7 shows the predominating form of these changes. Changes in a certain pair of
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land-use classes depend on net transformations from and into other land-use classes. More
than 10 km2 of total land-use underwent nine changeovers in two categories: one is sparse
grassland to other types of land-use and the second is other types of land-use to grassland
and water.

Table 5. Comparison of land-use changes in the SRYR during the 1990s–2010s.

Land-Use Type
1990 2010 Change

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Settlements 33.00 0.03 44.00 0.04 11.00 0.01

Glaciers 157.00 0.13 157.00 0.13 0.00 0.00

Arable land 394.00 0.33 469.00 0.40 75.00 0.06

Water 2281.00 1.93 2345.00 1.98 64.00 0.05

Woodland 8543.00 7.21 8662.00 7.31 119.00 0.10

Unused land 16,573.00 13.99 17,747.00 14.98 1174.00 0.99

Grassland 18,248.00 15.40 22,311.00 18.83 4063.00 3.42

Sparse grassland 72,238.00 60.98 66,771.00 56.34 −5467.00 −4.63

Table 6. Land-use change matrices in the SRYR from 1990 to 2010.

Transformation Matrix
The 2010s

Sparse Grassland GrassLand Unused Land WoodLand Water Arable Land Glacier Settlements

The 1990s

Sparse Grassland 53,101 7790 7159 3488 551 106 20 19

Grassland 4002 11,329 1505 1252 105 42 0 11

Unused land 5855 1621 8691 184 176 28 16 2

Woodland 3175 1406 196 3710 53 3 0 0

Water 514 126 158 23 1451 7 0 2

Arable land 67 19 21 0 5 280 0 2

Glacier 27 0 9 0 0 0 121 0

Settlement 11 8 3 0 0 3 0 8

Note: The units for changing land-use are in km2.
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Table 7. Changes in land-use in the SRYR catchment between 1990 and 2010.

Predominating Transformation The Net Change in Area
(km2) Change in Land-Use (%)

Unused land to water 18.00 0.11

Water to grassland 21.00 0.92

Grassland to arable land 23.00 0.13

Woodland to water 30.00 0.35

Unused land to grassland 116.00 0.70

Woodland to grassland 154.00 1.80

Sparse grassland to woodland 313.00 0.43

Sparse grassland to unused land 1304.00 1.81

Sparse grassland to grassland 3788.00 5.24

Note: The proportion of the changing area in the principal land-use pattern area is known as the converted
land-use percent change.

3.3. SWAT Model Calibration and Validation at Subbasins of the SRYR

Simulated monthly runoff at Tangnaihai, Maqu and Jimai showed positive correlation
against observed runoff during calibration and validation periods (Figure 7). For the certain
runoff values throughout the peaks, the results remained underestimated or overestimated.
At annual and monthly timescales, there was a good correlation between simulated and
observed runoff at Tangnaihai, followed by the Maqu and Jimai subbasins (Table 8). Im-
portantly, the PBIAS values for Tangnahai, Maqu and Jimai were 0.1%, −2.6%, and −5.1%
during calibration and 3.1%, 2.0%, and 5.0% during validation, respectively. Overall, the
SWAT model was more accurate during the validation period than during calibration, and
performed well at the monthly timescale as compared to the annual timescale. The coeffi-
cient of determination (R2) and Nash Sutcliffe Efficiency (NSE) values at monthly timescales
ranged from 0.71 to 0.8 for the calibration period and 0.76 to 0.86 for the validation period.
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Table 8. Performance evaluation indices of the SWAT model in the subbasins of the SRYR.

Monthly Yearly
PBAIS

Period Basin R2 NSE R2 NSE

Calibration (1976–1995)
Tangnaihai 0.83 0.83 0.78 0.73 0.10

Maqu 0.83 0.82 0.82 0.77 −2.60
Jimai 0.72 0.71 0.64 0.57 −5.10

Validation (1996–2014)
Tangnaihai 0.86 0.85 0.82 0.75 3.10

Maqu 0.85 0.84 0.82 0.76 2.00
Jimai 0.77 0.76 0.79 0.69 5.00

Since the performance of the SWAT model could not achieve a very high accuracy
at annual timescales, the results can be considered satisfactory in the Jimai subbasin.
According to the classification of Moriasi et al. [52], the results of the SWAT model ranged
from the satisfactory to very good performance classes. These findings demonstrated the
applicability of the SWAT model simulations to determine the effects of climate change and
LUC in the SRYR.

3.4. Impacts of Climate Change and LUC on Runoff and Evapotranspiration at Annual Timescale

In this section, simulated results were adopted instead of the observed data to compare
the hydrological results in subbasins of the SRYR. Table 9 shows the simulated results of
evapotranspiration and runoff by SWAT under four scenarios, as presented in Section 2.2.3.

Table 9. Simulated average annual runoff and evapotranspiration (mm) under different climate and
land-use scenarios.

Scenario Climate LUC
P Runoff ET Runoff Change ET Change

mm mm mm mm % mm %

Tangnaihai

S1 1976–1995 1990 507.0 175.8 325.8
S2 1976–1995 2010 507.2 178.0 326.6 ∆QC −22.4 80.2 21.4 72.0
S3 1996–2014 1990 509.6 161.1 339.6 ∆QL −5.5 19.8 8.3 28.0
S4 1996–2014 2010 509.6 148.0 355.4 ∆Q −27.9 100.0 29.6 100.0

Maqu

S1 1976–1995 1990 508.2 177.4 328.8
S2 1976–1995 2010 508.4 181.7 327.9 ∆QC −27.3 84.9 26.1 76.6
S3 1996–2014 1990 511.5 159.2 346.0 ∆QL −4.9 15.1 8.0 23.4
S4 1996–2014 2010 511.6 145.3 362.9 ∆Q −32.2 100.0 34.1 100.0

Jimai

S1 1976–1995 1990 411.4 96.3 300.6
S2 1976–1995 2010 411.5 102.3 301.1 ∆QC −11.1 82.6 30.1 78.7
S3 1996–2014 1990 428.8 93.5 323.1 ∆QL −2.3 17.4 8.1 21.3
S4 1996–2014 2010 428.7 82.8 338.8 ∆Q −13.5 100.0 38.2 100.0

Note: For both runoff change and ET change, the total change ∆Q = (S4 − S1). For runoff change, ∆QC = average
of (S3 − S1) + (S4 − S2), and ∆QL = average of (S2 − S1) + (S4 − S3). Percent % ∆QC = ∆QC/∆Q × 100. Percent %
∆QL = ∆QL/∆Q × 100.

3.4.1. Tangnaihai Subbasin

The simulated runoff declined by 27.9 mm (15.9%) and ET increased by 29.6 mm
(9.1%) in the S4 scenario compared to the S1 scenario with respect to their totals. Thus,
the combined influence of CC and LUC was noticeable from 1990 to 2010. The results
suggested that, due to change in land-use, runoff decreased by 5.5 mm and ET increased by
8.3 mm, which, in turn, accounted for 19.8% and 28%, respectively, of the change in total
runoff and ET. Climate variations also appeared to decrease the runoff and increase the ET
by 22.4 mm and 21.4 mm, which comprised about 80.2% and 72.0% of the total changes,
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respectively. Resultantly, CC was the predominant factor that affected the hydrological
processes, while the influence of land-use changes was smaller.

3.4.2. Maqu Subbasin

The simulated runoff appeared to decrease, and ET appeared to increase by 32.2 mm
and 34.1 mm, accounting for 18% and 10.4% of the totals. CC and LUC contributed to
27.3 mm (84.9%) and 4.9 mm (15.1%) of the total decline in runoff, respectively. CC and LUC
contributed to 26.1 mm (76.6%) and 8.0 mm (23.4%) of the total increase in ET, respectively.

3.4.3. Jimai Subbasin

In the Jimai subbasin, the simulated runoff decreased by 13.5 mm and ET increased by
38.2 mm, accounting for 14% and 12.7% of the totals. In response to CC and LUC, runoff
reduced by 11.1 mm and 2.3 mm, respectively, and ET increased by 30.1 mm and 8.1 mm.
CC effected the ET in this subbasin more than the others because most of the subbasin area
lies at a higher altitude.

3.5. Impacts of Climate Change and Land-Use Changes on Runoff and Evapotranspiration at the
Monthly Timescale

Figure 8 elaborated the intra-annual runoff and ET variations caused by CC and
LUC in all subbasins. A reasonable variation in runoff and ET affected by climate change
became evident in different months, where the combined effect of climate parameters
appeared. Since the air temperature and precipitation changes occurred over the whole
year, changes in runoff were not correlated with precipitation (Table 4). Nevertheless,
precipitation changes controlled the runoff from March to September. The variations in ET
were correlated with runoff in May and June for Tangnaihai and in May for the Maqu and
Jimai subbasins, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 23 
 

 

changes in runoff were not correlated with precipitation (Table 4). Nevertheless, precipi-
tation changes controlled the runoff from March to September. The variations in ET were 
correlated with runoff in May and June for Tangnaihai and in May for the Maqu and Jimai 
subbasins, respectively. 

 

 
Figure 8. Monthly runoff (R) and evapotranspiration (ET) changes as a result of land-use changes 
(right column) and climate change (left column). 

Figure 8 (right column) showed the effects of LUC on runoff and ET at the monthly 
scale in all subbasins. The graph clearly presented ET peaks in May and troughs in Octo-
ber and November. The observed multiple peaks relate to the changes in vegetation. As 
per the analysis, the land-use change transformation of vegetation coverage from low to 
high can lead to an increase in ET due to the intercepted evaporation and vegetation tran-
spiration. 

However, the runoff decreased from April to October, which may be attributed to an 
increase in vegetation growth in the same period. This decrease in runoff has the potential 
to increase regulation capability and canopy interception, which, in turn, may have 
caused the changes to be stored in the root zone. It is interesting to know that, from No-
vember to March, the runoff increased as a consequence of the increased base flow driven 
by higher soil storage and, in April and May, runoff increased as a result of early snow-
melting. The effect caused by the LUC was demonstrated to be relatively low, and varied 
between −3 and 5 mm for the Tangnaihai and Maqu subbasins and between −4 and 4 mm 
for the Jimai subbasin. 

4. Discussions 
For SWAT, the sensitive parameters were primarily adopted from the previous stud-

ies conducted in the whole Yellow River basin and the SRYR, as mentioned earlier (refer-
ence). The sensitive parameters can be characterized into groups of soil, groundwater, 
basin and HRU. However, the optimal values of the sensitive parameters differ, which 

Figure 8. Monthly runoff (R) and evapotranspiration (ET) changes as a result of land-use changes
(right column) and climate change (left column).

Figure 8 (right column) showed the effects of LUC on runoff and ET at the monthly
scale in all subbasins. The graph clearly presented ET peaks in May and troughs in October
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and November. The observed multiple peaks relate to the changes in vegetation. As per the
analysis, the land-use change transformation of vegetation coverage from low to high can
lead to an increase in ET due to the intercepted evaporation and vegetation transpiration.

However, the runoff decreased from April to October, which may be attributed to an
increase in vegetation growth in the same period. This decrease in runoff has the potential
to increase regulation capability and canopy interception, which, in turn, may have caused
the changes to be stored in the root zone. It is interesting to know that, from November to
March, the runoff increased as a consequence of the increased base flow driven by higher
soil storage and, in April and May, runoff increased as a result of early snow-melting. The
effect caused by the LUC was demonstrated to be relatively low, and varied between −3
and 5 mm for the Tangnaihai and Maqu subbasins and between −4 and 4 mm for the
Jimai subbasin.

4. Discussions

For SWAT, the sensitive parameters were primarily adopted from the previous studies
conducted in the whole Yellow River basin and the SRYR, as mentioned earlier (reference).
The sensitive parameters can be characterized into groups of soil, groundwater, basin
and HRU. However, the optimal values of the sensitive parameters differ, which could be
explained as the difference in the climate data period that was used, as well as differences
in the sources of other physical parameters, such as land-use or soil data. For example,
the optimal value of the soil evaporation compensation factor (ESCO) obtained by [27]
was 0.8, which was slightly than that of this study, where its value was optimized at 0.95.
ESCO accounts for the effects caused by cracking, crusting and capillary action, allowing
fpr the user to fix the distribution of soil evaporation demand. The higher values of ESCO
(0.95) may be related to the fact that soil evaporation is not significant in the evaporation
process, which may be due to the high vegetation coverage in the SRYR. CN2 is a highly
sensitive parameter in all the watersheds, reflecting characteristics such as soil type, soil
moisture, and management practices in the land. This affects the surface runoff which, in
turn, affects the total runoff. GW_DELAY is the parameter dealing with the geology of
the region, i.e., it indicates the delay in time between the water exiting the soil profile and
moving to the shallow aquifer. The higher value of GW_DELAY (105.72) can be elucidated
by the lower water content in the vadose zone due to the increasing evapotranspiration
that plays an important role in the hydrological processes in the region [9]. Usually,
mostly hydrological models are set under the assumptions that the influence of climatic
conditions is comparatively more pronounced than the change in calibrated parameters,
which represents the biasness of the hydrological model [53].

The transition matrix of land-use change presented in Table 6 indicates that the more
pronounced changes are the reduction in sparse grassland and augmentations in grassland,
unused land and woodland; however, these LUC transitions vary among the subbasins of
the SRYR. The decrease in sparse grassland can principally be attributed to the transition
into woodland, unused land and grassland. In the Jimai subbasin (a higher-altitude area),
the conversion of sparse grassland to unused land may lead to a reduced interception and
water retention, causing a reduced decrease in runoff, which is in agreement with [6,14]. The
degradation of sparse grassland in the Jimai subbasin may be due to the more pronounced,
warmer climate, as reported by [2,7,9,16], and lower number of rainy days (>0.1 mm per
day) [39]. However, in the Maqu subbasin, the major conversion in land-use is to an
increase in grassland and woodland (Figure 6). This is due to the reduced decrease in the
frequency of precipitation events and increased agricultural activities in low-lying areas
of the Maqu and Tangnaihai subbasin, as reported by [39]. Overall, in the Maqu subbasin,
the conversion to vegetation is greater as compared to the others, which could ultimately
decrease the water supply. Yang et al. [14] stated that this increase in vegetation leads to an
increase in transpiration and canopy interception, which may affect the response to runoff.
The results of the degraded land in the Jimai subbasin are consistent with the studies
of [27,28,54], where they reported on the significant degradation in the alpine ecosystem in
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the the last 30 years, which seriously affected the regional water storage capacity [55]. The
increase in grassland in the Maqu and Tangnaihai subbasin due to the Three Rivers Source
Area Ecological Protection Project greatly enhanced the vegetation coverage condition and
increased the water storage capacity of the region [11].

The impacts on hydrological processes (runoff and evapotranspiration) can be syn-
thesized by considering the integrated approach, consisting of the hydrological modelling
and statistical framework proposed by [14], since the total contribution of CC and LUC ap-
proached 100%. Overall, the reduction in runoff and enhanced evapotranspiration climate
remained dominant in all three subbasins compared to land-use; however, the magnitude
of impacts due to climate and land-use varies among subbasins, which may attribute to
the climate and land-use variability of a particular subbasin. The pattern of reductions in
runoff of 11.1 mm, 27.3 mm and 22.4 mm in Jimai, Maqu and Tangnaihai, respectively, was
in accordance with the conclusions of Meng et al. [9], where 3.2 mm, 9.2 mm and 6.0 mm
reductions in runoff per decade were concluded for these subbasins, respectively. The
increment in evapotranspiration in subbasins was also in agreement with [9]. A detailed
analysis of recent studies that explored the effects of CC and LUC on hydrology revealed
that the contributions of the two components discussed in this article may vary in different
study areas [18,19,56]. According to Ma et al. [57], LUC can have a significant influence,
altering the streamflows of subtropical watersheds, as the LUC was primarily driven by
anthropogenic activities. The effects of LUC on streamflows were more pronounced than
those of CC, as explored by Li et al. [58] and Saifullah et al. [59]. Due to the regional
diversity of CC and LUC, the varied impacts of the two components in the various research
regions is reflected accordingly. The decline in runoff found in our study, caused by CC
in subbasins of the SRYR, which was significantly larger than the decline caused by LUC,
presented CC as the dominant factor affecting the hydrological processes. This result is
in line with the results of Cuo et al. [60], who found that the hydrological changes above
Tangnaihai are mostly caused by CC, and the consequences of LUC and reservoir release
become significant below Tangnaihai. These results were also consistent with those of Pan
et al. [11], who found that water supply noticeably decreased from 1980 to 1985, and CC
remained the dominant factor decreasing the water supply in the SRYR. However, from
2000 to 2005, due to an increase in precipitation, CC played a positive role in increasing the
water supply [11].

The reduction in runoff and increase in evapotranspiration in the Jimai subbasin
may be attributed to the warmer climate and reduced canopy interception. However, the
magnitude of change in both runoff and evapotranspiration was greater in the Maqu and
Tangnaihai subbasins because of the increased temperature and interclass land-use changes.
These results are similar to those of [9] and in contradiction with [14], where the response
of land-use changes suggested an incremental runoff. This could be more or less than that
which was carried using the simulated results of a single period, from 1960 to 1979, or in
different periods, indicating that LUC was not apparent compared to climate change in
a different period. Basins with varied climates, rainfall–runoff processes, and patterns of
land cover often cannot be studied with such an approach. The results suggest that better
management is necessary for the SRYR, where few human activities have occurred [5,61,62].

This study also emphasizes the vital demand for an integrated model that incorporates
both CC and LUC impacts to appropriately analyze the hydrological processes. In contrast
to the conventional OFAT approach, a novel method that combines statistical analysis with
hydrological modelling may consider the interaction between CC and LUC’s impacts on
hydrological processes during the entire study period.

5. Conclusions

Understanding the relationship between variations in hydrological processes has
become more crucial as China’s water resources become scarcer. It has been established
that the climatic conditions have the greatest impact on these activities. Additionally, it was
believed that LUC had a significant impact on how the hydrological processes occurred.
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Recently, it has been suggested that one of the causes of CC and the primary contributor
to the LUC is anthropogenic activity. Climate change undoubtedly can alter the flora in
arid and semi-arid areas, which will then have an impact on the hydrology of the area.
Therefore, LUC as well as CC has an impact on the area streamflows. In this study, the
SWAT model was successfully applied in three subbasins, Tangnaihai, Maqu, and Jimai, of
the SRYR. Later, to distinguish the impacts of CC and the LUC on runoff and ET, SWAT
model results were obtained for four scenarios (based on two land-use maps and two CC
periods). The important conclusions are as follows:

• Broadly, the results characterized the SRYR as warmer, wetter, and showing a greater
decrease in water availability during the period 1974–2014. Average annual tem-
perature experienced a significant increasing trend, with a warming rate of 0.4 OC
per decade. The average annual precipitation presented a slight increase of about
3.64 mm per decade. Runoff showed decreasing trend of about 36.4 m3/s per decade
in the region.

• Analysis of the land-use changes revealed an increase in grassland, unused land and
woodland, while a decrease was found in sparse grassland. Land-use transformation
showed an increase in grassland, which accounted for 5.2% of the entire area.

• The SWAT model simulations showed that the integrated impacts of climate and
land-use changes caused a decrease in runoff of 27.9 mm, 32.2 mm and 13.5 mm in
the Tangnaighai, Maqu and Jimai subbasins; that is, 15.9%, 18% and 14% of the total
runoff, respectively. The results establish that climate change has more pronounced
impacts than land-use changes, causing decreases in runoff measured at 80.2%, 84.9%
and 82.6% of the total runoff changes at the Tangnaighai, Maqu and Jimai subbasins,
respectively. The land-use changes also showed a decrement of 19.8%, 15.1% and
17.4% of the total runoff changes.

• In contrast to the runoff, ET increased by 29.6 mm, 34.1 mm and 38.2 mm in the
Tangnaighai, Maqu and Jimai subbasins, respectively, where climate change played a
more important role (>70%) than land-use changes (<30%) in increasing the ET.

• The findings also demonstrated that most of the reduction in runoff occurred in the
Maqu subbasin and there was a greater increase in ET in the Jimai subbasin, which may
be attributed to the increase in vegetation and unused land in the respective subbasins.

Therefore, the CC and LUC had different impacts on runoff and ET depending on the
changes in these variables in a particular basin. As an important strategic result, this study
delivers possible pathways that could be considered by numerous policy-makers when
designing adaptive measures for CC and planning sustainable development policies for
the ecological systems of the SRYR.
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