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Abstract: The total quota control and reserve of rare earths are important means for the sustainable
development and utilization of rare-earth resources. Focusing on the government reserve of rare-earth
products under stochastic demand, this paper analyses the interactive decisions of the government
and the rare-earth firms from a game-theoretic perspective. The government determines the total
quantity, reserve quantity and reserve–release quantity of the rare-earth products to maximize social
warfare, while the firm decides the price of rare-earth products to maximize its own profit. The
results show that the production cost and the expected net present value (NPV) of the reserve are
important factors affecting the government’s decisions. When the expected NPV of the reserve is
below a threshold, the government adopts the no-reserve strategy: it determines only a total quota
index that maximizes the current-period social welfare but keeps no reserve. When the expected NPV
of a reserve is higher than the above threshold but lower than the production cost, the government
adopts the low-reserve strategy: it determines a total quota index and a low reserve that are both in
increasing in the expected NPV of reserve, and will release the reserve as many as possible if there is
a supply shortage. When the expected NPV of a reserve is higher than both the above threshold and
the production cost, the government adopts the high-reserve strategy: it sets a total quota index which
is sufficiently large to cover the entire market demand, reserves a large amount, and releases part of
the reserve to completely fill the demand gap (if any).

Keywords: rare-earth products; government reserve; total quota management; reserve release;
rare earth price

1. Introduction

Rare earth is a non-renewable strategic mineral resource and a material treasure chest
in the new era. Known as “industrial vitamin” and “industrial monosodium glutamate”,
rare earth is an indispensable element in modern industry [1]. With good characteristics in
photo-electro-magnetism, superconductivity, activity, catalysis and other aspects, rare earth
plays an important role in improving product performance and productivity, and is widely
used in areas such as aerospace, new energy, environmental protection, new materials,
electronic information, etc. [2]. As a non-renewable resource experiencing increasing
demand, the sustainable utilization of rare earth is very important. However, there still
exist various problems in the development of the rare-earth industry, including illegal
mining, the rapid expansion of smelting and separation capacities, the serious waste of
resources, ecological and environmental damage, backward research and the development
of high-end applications, and a chaotic export order [3]. These problems seriously threaten
the sustainable development and utilization of rare-earth resources.
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Total quota control and strategic reserves of rare earth are effective means to achieve
rare-earth sustainability. On the one hand, rare-earth total quota control and reserves
are beneficial to balance the intergenerational allocation of rare-earth resources and their
benefits. On the other hand, rare-earth total quota control and reserve can promote the
progress of utilization technologies and the development of alternative products, reduce
predatory exploitation under the condition of the current immature technological level,
reduce the waste of resources, protect the ecological environment, realize the orderly
development of rare-earth mines, and promote the sustainable development of national
economies and society.

In order to strengthen the sustainable utilization and effective protection of rare-
earth resources, the Chinese government has introduced a series of policies on the total
quota control and strategic reserve of rare earth. On 10 May 2011, China proposed a
strategic reserve of rare-earth products (including rare-earth mineral products and rare-
earth smelting separation products) for the first time, including a government reserve,
enterprise (commercial) reserve, resource (land) reserve and physical reserve [4]. On 18
October 2016, the Ministry of Industry and Information Technology issued the Rare Earth
Industry Development Plan (2016–2020), which clearly stipulates that, by the end of 2020,
the six major rare-earth groups in China will complete the integration of all rare-earth
enterprises (including rare-earth mining enterprises, rare-earth smelting and separation
enterprises, rare-earth comprehensive utilization enterprises and rare-earth metal-smelting
enterprises). The “13th Five-Year Plan” for rare earth states that the mining quantity of
rare earth in 2020 should be strictly controlled to within 140,000 tons [5]. On 15 January
2021, the Ministry of Industry and Information Technology issued Rare Earth Management
Regulations (Draft for Comments), in which Article 16 pointed out that China should
implement the strategic reserve of rare-earth resources and rare-earth products [6]. On 30
September 2021, the Ministry of Industry and Information Technology and the Ministry of
Natural Resources issued the 2021 annual total quota control indexes of rare-earth mining
(168,000 tons) and smelting and separation (162,000 tons), with both increased by 20%
compared with the corresponding indexes in 2020 [7].

Although the total quota management and strategic reserve of rare-earth products are
being increasingly scrutinized, the related theoretical research is very scarce. Previous stud-
ies mainly discussed, at the conceptual level, the effects of rare-earth reserves on rare-earth
price stabilization [8–10], national defense security [11,12], and ecological environment
protection [13–15], etc. Some articles study the rare-earth industry or resources from the
perspective of game theory. For example, Han et al. (2015) attempt to analyze adjustments
in China’s rare-earth regulation policies and the effects on the rare-earth market supply by
using a static game-theoretic model and a dynamic game-theoretic model with complete
information in the contextof China strengthening protection of rare-earth resources and the
environment [16]. Brown and Eggert (2018) use a Stackelberg model to explore the effects
of Chinese rare-earth reserves, environmental taxation, and improvements in recovery
rates on rare-earth markets [17]. Lee et al. (2018) investigate how competition for limited
resources influences firms’ adoption of environmentally sustainable strategies [18]. None
of the above studies consider the interactions between total quota control and rare-earth
reserve or pricing, which is the very focus of this study.

We also employ the game-theoretic framework to analyze the decision-making inter-
actions of the rare-earth industry chain. However, in contrast to the above studies, our
focus falls on the interactions between the government’s total quota management and
strategic reserve of rare-earth products and rare-earth firm’s pricing decisions, which is not
examined by the above studies. We also examine the influence of key parameters such as
production cost, expected net present value (NPV) of reserve, market potential and price
sensitivity coefficient on the above decision results. Although the literature on government
reserves of rare-earth products under total quota management is small, the literature on
government reserves of other mineral resources (e.g., petroleum, iron ore and coal) and
emergency supplies (e.g., protective suits and goggles) is relatively rich. Using a dynamic
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programming model, Wu et al. (2012) examine the optimal stockpiling and drawdown
strategies for China’s strategic petroleum reserve under various scenarios, with the goal
of minimizing the total cost of reserves [19]. Cui and Wei (2017) study the phenomenon
of thermal-coal price distortion through economic theoretical modeling and empirical
cointegration analysis from the perspective of market forces [20]. Rademeyer et al. (2021)
find that a profit-maximizing trader will seek to sell more volumes to domestic consumers
of higher grade coal to compensate for earnings lost due to lower export volumes [21]. With
the goal of minimizing the expected cost of the government (buyer) and maximizing the
profit of the enterprise (supplier), Hu et al. (2019) examine the optimal reserve of emergency
materials and investigate the coordination of an emergency supply chain [22]. Hu and
Dong (2019) design a two-stage stochastic programming model to optimize firms’ material
storage management in a humanitarian supply chain [23]. Liang et al. (2012) design an
option-contract pricing model for a relief-material supply chain [24]. These studies provide
important references for our study of reserves of rare-earth products. However, rare-earth
products have an important difference from the aforementioned minerals or materials, that
is, the government implements total quota management for rare-earth products. The total
quota control of rare-earth products will affect the reserve decision, so the two should
be considered together. Then, under the total quota management of rare-earth products,
how will the government make decisions on the reserve and release of rare-earth products,
taking into account the potential response of enterprises and market demand? How will
rare-earth companies set prices? In addition, how should the government optimize the
total quota management plan? This paper aims to address these issues.

To sum up, this study employs a game-theoretic framework to investigate the interac-
tions between the government and rare-earth enterprises under the total quota management
policy, examining issues of rare-earth products reserve, pricing, and reserve release. This
study contributes to the literature by enriching the theoretical results on the optimization of
operation decisions related to the quantity and price of rare-earth products, and by provid-
ing managerial insights for the government and rare-earth enterprises on the sustainable
exploitation and utilization of rare-earth resources.

2. Model Description

Consider a single-period, multi-stage decision-making problem for a rare-earth prod-
uct supply chain composed of the government, a rare-earth firm (hereafter referred to as the
firm), and consumers (or downstream firms) (see Figure 1). At time T1, the beginning of the
period, the government determines the total quota control index q of rare-earth products in
this period, and issues production plans to the rare-earth firm according to the relevant
requirements of the Interim Measures for the Management of Rare Earth Mandatory Production
Plans (which came into effect on 13 June 2012) [25]. Let the firm’s unit production cost in the
current period be c, and assume that the firm always arranges the maximum production
allowed by the total quota index q. It is worth mentioning that the total quota index q
includes the quantities from mining, smelting and separation (which are collectively called
production in this paper), but not imports. Although rare-earth imports and exports may
have an impact on the model results, the current study does not explicitly model them
due to the following reasons. First, rare-earth imports are small compared with the total
quota control index. For example, in 2021, China’s total quota control index of rare earth
(converted to REO) was 330,000 tons (https://bit.ly/3ThW519, accessed on 28 September
2022), while the import quantity (converted to REO) was at the level of 20,000~30,000 tons
(http://www.customs.gov.cn/, accessed on 28 September 2022). Second, rare-earth exports
do not need to be characterized separately, because they are already included in the market
demand. Third, the current model analysis is already complicated, and considering the
influences of imports and exports will further increase analytical difficulties.

https://bit.ly/3ThW519
http://www.customs.gov.cn/
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Figure 1. Model structure and sequence of events.

At T2, the government decides the amount q ∈ [0, q] of rare-earth products to be
reserved in the period. In general, the government buys rare-earth products from rare-earth
firms at a price (set as w) below the market level, and the rare-earth products bought
are reserved and managed by the China State Reserve Bureau. The unit reserve cost of
the government is denoted as cG. At T3, the firm decides the market price p of rare-
earth products in the current period. Influenced by price p and other factors (e.g., supply,
demand, policy, etc.), the demand D of rare-earth products in this period is realized. At
time T4, according to the market supply and demand situation, the government can choose
to release part of the reserve q̂ ∈ [0, q] to alleviate the market demand when necessary. The
rare-earth products put into the market but not sold in the current period will be disposed
of with a certain salvage value; the unit salvage value of residual rare-earth products
processed by the government and enterprises are vG and vF, respectively. If the rare-earth
products put on the market in the current period fail to meet all the demand, the seller
(possibly the government or the firm) shall bear the loss of shortage. Assume that the unit
loss of shortage of the government and the firm are tG and tF, respectively. Unreleased
reserve will enter the next period and generate some value in the future. Assume the
expected net present value (NPV) of the unreleased government reserve to be rG per unit.
In order to make the model conform to reality, it is assumed that the expected NPV of
(unreleased) reserve is higher than the salvage value in the current period, i.e., rG > vG.

In order to formulate the consumer surplus, this paper refers to the modeling of market
demand by Xue et al. (2014) [26] and Li Yao et al. (2006) [27], and assumes that consumers’
purchase willingness ζ for rare-earth products follows the cumulative distribution function
(cdf) Φ(ξ) = bζ/a, ζ ∈ [0, a/b] (the probability density function (pdf) is denoted as φ(ξ)).
Thus, given the price p of rare-earth products, the probability that consumers are willing to
buy is Pr(ξ ≥ p) = 1−Φ(p) = (a− bp)/a, which represents the proportion of consumers
who can form demand when the market price is p. Denote this ratio as y(p) = (a− bp)/a
and refer to it as demand ratio, where a > 0 is the market potential and b > 0 is the price
sensitivity coefficient. Assuming the size of potential consumers as a random variable ε, the
demand at price p (assuming that each consumer can only buy one product at most) can be
expressed as D = y(p)ε. Similar multiplicative form of price-dependent stochastic demand
is very common in the operation management literature (e.g., [28,29]). Assume that the cdf,
pdf and mean of ε are F(·), f (·) and µ, respectively, and write F(·) = 1− F(·). Suppose
that ε satisfies the property of increasing generalized failure rate (IGFR), i.e., x f (x)/F(x)
increases with x. Many common distributions satisfy this assumption, such as uniform
distribution, normal distribution, and exponential distribution, etc. (e.g., [30–32]). Based on
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the above model assumptions, it can be known that, given the market price p ∈ [0, a/b], the
expected surplus of a single consumer is

∫ a/b
p (ξ − p)φ(ξ)dξ = ay(p)2/(2b). After taking

into account the government’s reserve (q) and release (q̂) decisions, the final product supply
is q− q + q̂, and the volume of consumers that can be satisfied is min{ε, (q− q + q̂)/y(p)}.
Thus, the total expected consumer surplus is:

πC(q, q, p, q̂) = min
{

ε,
q− q + q̂

y(p)

}∫ a
b

p
(ξ − p)φ(ξ)dξ = ay(p)

min{D, q− q + q̂}
2b

(1)

For the firm, it faces a demand D and offers a supply quantity of q− q. Thus, the profit
of the firm is:

πF(q, q, p) = −cq + wq + pmin{D, q− q} − tF(D− q + q)+ + vF(q− q− D)+

= (vF − c)q + (w− vF)q− tFD + (p + tF − vF)min{D, q− q} (2)

where (D− q + q)+ = D−min{D, q− q} and (q− q− D)+ = q− q−min{D, q− q}.
In the first equation of Equation (2), the first to the fifth terms are the production

cost, reserve-offer revenue, sales revenue, backorder loss, and salvage value, respectively.
Moreover, since the firm’s supply is assumed to be sold before the government’s supply,
the firm’s profit is independent of the government’s release of reserve q̂.

For the government, it faces a demand of (D− q + q)+ (assuming that the firm’s
supply is sold before the government’s in the case of market supply shortage), offers a
supply of q̂, and keeps an unreleased reserve of q− q̂. Thus, the government’s profit is:

πG(q, q, p, q̂) = −wq− cGq + pmin
{
(D− q + q)+, q̂

}
− tG[(D− q + q)+ − q̂]

+

+vG[q̂− (D− q + q)+]
+
+ rG(q− q̂)

= (rG − cG − w)q + (vG − rG)q̂ + (p + tG − vG)min{D, q− q + q̂}
−(p− vG)min{D, q− q} − tGD

(3)

where
min

{
(D− q + q)+, q̂

}
= min{D, q− q + q̂} −min{D, q− q},

[(D− q + q)+ − q̂]
+
= D−min{D, q− q + q̂}, and

[q̂− (D− q + q)+]
+
= q̂−min{D, q− q + q̂}+ min{D, q− q}.

In the first equation of Equation (3), the first to the sixth terms are the government’s
procurement cost, reserve cost, sales revenue, backorder loss, salvage value, and total
expected NPV of unreleased reserve, respectively.

In line with previous studies examining the interactions between rare-earth firms
and the government (e.g., [33]), the firm in our model aims to maximize its own profit
πF, while the government aims to maximize the social welfare, defined as the sum of
producer surplus and consumer surplus ([33–35]). Since the government purchasing and
selling reserve plays part of producer’s role, the social welfare in our model (denoted
as πSW) is the sum of the firm’s profit, the consumer’s surplus, and the government’s
profit, i.e.,πSW = πG + πF + πC. From the perspective of sustainable supply-chain manage-
ment, social-welfare maximization reflects the government’s emphasis on both economic
sustainability (i.e., the firm’s and government’s profit) and social sustainability (i.e., the con-
sumer surplus) [36]. The third dimension of sustainability is environmental sustainability
(e.g., [37]), which is beyond the scope of the current study and may be worth investigating
in future research.

Table 1 summarizes the notations used in this paper.
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Table 1. Summary of notations.

Notation Description

q Government’s total quota index;
q Government’s reserve quantity, q ∈ [0, q];
q̂ Government’s reserve-release quantity, q̂ ∈ [0, q];
p Market price of rare-earth products;
w Government’s purchasing price for reserve;
c Firm’s unit production cost;

cG Government’s unit reserve cost;
vG/vF Government’s/firm’s unit salvage value;
tG/tF Government’s/firm’s unit loss of shortage;

rG Expected net present value (NPV) of the unreleased reserve;
ε Size of potential consumers, with cdf F(·), pdf f (·) and mean µ;

y(p) Demand ratio at price p, y(p) = (a− bp)/a;
D Demand at price p, D = y(p)ε;

πG/ΠG Government’s profit/expected profit, ΠG = Eε[πG];
πF/ΠF Firm’s profit/expected profit, ΠF = Eε[πF];
πC/ΠC Consumer’s surplus/expected surplus, ΠC = Eε[πC];

πSW /ΠSW Social welfare/expected social welfare, πSW = πG + πF + πC, ΠSW = Eε[πSW ].

3. Model Analysis

Since the model involves a multi-stage game, by backward induction, we successively
analyzed the government’s optimal release strategy, the firm’s optimal pricing strategy,
and the government’s optimal reserve and total quota control strategy.

3.1. The Government’s Optimal Release Decision

At time T4, given the total quota index q, the reserve quantity q, the price p, and
the current-period demand D, the government’s problem is to choose the optimal release
quantity q̂ ∈ [0, q] to maximize the social welfare πSW :

πSW(q, q, p, q̂) ≡ πG(q, q, p, q̂) + πF(q, q, p) + πC(q, q, p, q̂)
= (vF − c)q + (rG − cG − vF)q + (vG − rG)q̂
−(tG + tF)D + (vG + tF − vF)min{D, q− q}

+

{
[(a + bp)/(2b) + tG − vG]D q̂ > D− q + q
[(a + bp)/(2b) + tG − vG](q− q + q̂) q̂ ≤ D− q + q

(4)

One can verify that πSW(q, q, p, q̂) is a piecewise linear function of the government’s
decision variable q̂. Therefore, the government’s optimal decision on q̂ can be easily
obtained by examining the first-order condition.

Proposition 1. The government’s optimal release quantity q̂∗ at time T4 is given by

q̂∗ =

{
0 (a + bp)/(2b) + tG ≤ rG

min{D, q} −min{D, q− q} (a + bp)/(2b) + tG > rG
(5)

and the corresponding social welfare is given by

πSW(q, q, p) ≡ πSW(q, q, p, q̂∗)
= (vF − c)q + (rG − cG − vF)q− (tG + tF)D + (rG + tF − vF)min{D, q− q}

+

[(a + bp)/(2b) + tG − rG]min{D, q− q} (a + bp)/(2b) + tG ≤ rG

[(a + bp)/(2b) + tG − rG]min{D, q} (a + bp)/(2b) + tG > rG

(6)

All proofs are provided in Appendix A. Proposition 1 shows that the government’s
reserve release strategy at T4 is either not to release at all (q̂∗ = 0), or to release according
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to the demand gap within its maximum reserve (q̂∗ = min{q, D− q + q}). There are two
factors that determine the government’s release strategy. One is whether the current market
supply can meet the demand. If the market is adequately supplied (D ∈ [0, q− q]), there
is certainly no reason for the government to release the reserve. If the market supply is
insufficient (D ∈ [q− q, ∞)), the government needs to weigh the expected NPV of reserve
rG against the social welfare loss (a + bp)/(2b) + tG caused by the current-period supply
shortage. If and only if the latter exceeds the former, will the government release reserves
to meet the demand gap as much as possible.

3.2. The Firm’s Optimal Pricing Decision

At time T3, given the total quota index q and the reserve quantity q, and expecting the
subsequent demand D, the firm’s objective is to determine the optimal price that maximizes
its own expected profit:

ΠF(q, q, p) = (vF − c)q + (w− vF)q− µtFy(p) + (p + tF − vF)S(z1)y(p) (7)

where S(z) = Eε[min{ε, z}] and z1 = (q− q)/y(p). In order to simplify the subsequent
analysis, we define η(z) = zF(z)/S(z) and g(z) = z f (z)/F(z) as in [26], and then the
following lemma can be obtained by following [26] and [38]:

Lemma 1. For any z > 0, (a) S(z) =
∫ z

0 F(ξ)dξ ≤ µ; (b) η(z) is monotonically non-increasing
with respect to z; and(c) η(z) < 1.

Based on Lemma 1, the optimal pricing decision of the firm can be solved, as charac-
terized in the following proposition:

Proposition 2. The firm’s optimal price p∗ at time T3 is the unique solution of the equation
T(p∗) = 0 and satisfies p∗ ∈ (vF, a/b), where:

T(p) ≡ (a/b− tF + vF − 2p)S(z1) + (p + tF − vF)z1F(z1) + µtF (8)

By investigating the influence of relevant parameters on the firm’s optimal price, the
following proposition is obtained:

Proposition 3. The firm’s optimal price p∗ is:

(a) decreasing in the rare-earth supply (q− q), i.e., ∂p∗/∂(q− q) < 0;

(b) increasing in the firm’s unit shortage loss tF, i.e., ∂p∗/∂tF > 0;

(c) increasing in the firm’s unit salvage value vF, i.e., ∂p∗/∂vF > 0;

(d) increasing in the market potential a, i.e., ∂p∗/∂a > 0;

(e) decreasing in the price sensitivity coefficient b, i.e., ∂p∗/∂b < 0.

Proposition 3 has important implications for the market pricing of rare-earth firms.
First, the larger the market supply q− q, the more rare-earth firms should lower the price p∗

to reduce the loss of shortage or salvage. If the government wants to boost the price of rare
earth, it should cut the total quota index q or increase the reserve q to reduce the amount
of rare earths in circulation in the market q− q. Second, when the unit loss of shortage tF
is larger or the salvage value vF of rare-earth products is higher, the firm should increase
the price p∗ to reduce the market demand, because in this case, the backorder will cause
great losses to the firm, but the value loss due to over-supply is small. Third, when the
market potential a is larger, the firm has more pricing power due to the favourable demand
situation. Finally, when the price sensitivity of rare-earth products is higher, the firm
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should reduce the price, because a small price reduction can bring about a large increase in
demand.

3.3. The Government’s Optimal Reserve Decision

By substituting the firm’s optimal price p∗ in Proposition 2 into Equation (6) and
calculating the expectation of potential consumer size ε, the expected social welfare at time
T2 can be obtained as follows:

ΠSW(q, q) = Eε[πSW(q, q, p∗)]
= (vF − c)q + (rG − cG − vF)q +

[
(rG + tF − vF)S(z∗1)− (tF + tG)µ

]
y(p∗)

+

[(a + bp∗)/(2b) + tG − rG]S(z∗1)y(p∗) (a + bp∗)/(2b) + tG ≤ rG

[(a + bp∗)/(2b) + tG − rG]S(z∗2)y(p∗) (a + bp∗)/(2b) + tG > rG

(9)

where z∗1 = (q− q)/y(p∗) and z∗2 = q/y(p∗). The government’s objective at time T2 is to
select the optimal reserve quantity q ∈ [0, q] to maximize ΠSW(q, q).

Under the general demand distribution F(·), the firm’s optimal price p∗ is given by
the implicit function (Equation (8)), which makes it very difficult to solve the government’s
reserve decision. In order to obtain an analytical solution, the following assumptions are
made hereafter to simplify the analysis:

Assumption 1. Reserve cost, salvage value and loss of shortage are not considered, i.e., cG = vG =
vF = tG = tF = 0.

Assumption 2. The size of potential consumers ε is drawn from the uniform distribution on [0, 2µ],
which means that:

F(ε) =

{
ε/(2µ) ε ∈ [0, 2µ]

1 ε ∈ (2µ, ∞)
and S(z) =

{
z− z2/(4µ) z ∈ [0, 2µ]

µ z ∈ (2µ, ∞)

Assumption 3. The market supply q− q is no greater than the upper bound of demand 2µy(p∗),
i.e., q− q ≤ 2µy(p∗), which is equivalent to q− q ≤ µ after transformation. To ensure that this
condition holds for any reserve quantity q ∈ [0, q], assume q ≤ µ.

Under the above assumptions, the expected social welfare (Equation (9)) can be
reformulated as a function of Q:

ΠSW(Q) =


ΠSW1 = −µtQ[4(1− X)Q2 + Q− 4X]/8 + µY2(t− tX− c) Q ∈ [0, A1]

ΠSW2 = −µt[2(1− X)Q4 + Y2Q2 + 2Y4X]/(4Q) + µY2(tY2/8 + t− c
)

Q ∈ (A1, A2]

ΠSW3 = µtQ2[Q2 − 6Q + 8X]/8 + µY2(t− tX− c) Q ∈ (A2, Y]

(10)

where t = a/b, X = 1 − rG/t ∈ (0, 1), Q =
√
(q− q)/µ, Y =

√
q/µ ≤ 1, A1 =

min
{

4X, Y2} and A2 = min{4X, Y}. Due to the one-to-one mapping between Q and
q, optimizing ΠSW with respect to q is equivalent to optimizing ΠSW with respect to Q.

Proposition 4. Under Assumptions 1–3, the government’s optimal reserve quantity q∗ at time T2
is given by:

q∗ =


q∗1 = q− µκ2 rG ∈ [t/8, t) and q ≥ µκ

q∗2 = q− qκ rG ∈ [t/8, t) and q < µκ

q∗3 = 0 rG ∈ (0, t/8)

(11)

where κ ≡ [−1 +
√

1 + 48X(1− X)]/[12(1− X)] (increasing in X), X1 ≡ (6Y2 + 1)Y2/
[2(3Y4 + 1)](increasing in Y). The corresponding expected social welfare is:
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Π∗SW =


Π∗SW1 = µt[8(1− X)κ + 1]κ2/8 + µY2[t(1− X)− c] rG ∈ [t/8, t) and q ≥ µκ

Π∗SW2 = −µtY3[4(1− X)κ + 1]
√

κ/2 + µY2(8t− 8c + tY2)/8 rG ∈ [t/8, t) and q < µκ

Π∗SW3 = µY2(8t− 8c + tY2 − 6tY)/8 rG ∈ (0, t/8)

(12)

Proposition 4 shows that, depending on the expected NPV of its unreleased re-
serve (rG), the government may adopt three different reserve strategies. When rG is
low (rG ∈ (0, t/8)), there is little value in reserving the rare-earth products. Therefore, the
government’s strategy is not to reserve (q∗3 = 0), and all rare-earth products under the total
quota index q enter the market circulation. When rG is not too low (rG ≥ t/8), rare-earth
products have reserve value, but the amount of the government reserve will vary according
to the size of the total quota index q: if q is low (q < µκ), the government will keep a low
reserve level (q∗ = q∗2), and will release as much as possible to fill the demand gap in the
case of market supply shortage. If the total quota index q is high (q > µκ), the government
will keep a high reserve level (q∗ = q∗1), which will cause the firm to set a high price. In this
case, even if there is a market supply shortage, the government can fully fill the demand
gap by only releasing a part of the reserve. Figure 2 illustrates the conditions where each of
the above three strategies is applicable.

Sustainability 2022, 14, 14883 10 of 20 
 

 

Figure 2. The government’s reserve strategies. 

By investigating the influence of parameters on the government’s optimal reserve, 

we obtain the following proposition: 

Proposition 5. The government’s optimal reserve quantity *q  is: 

(a) Increasing in the expected NPV Gr  of unreleased reserve, i.e., * 0Gq r   ; 

(b) Decreasing in the market potential a , i.e., * 0q a   ; 

(c) Increasing in the price sensitivity factor b , i.e., * 0q b   ; 

(d) Increasing in the total quota index q , i.e., * 0Hq q   ; 

(e) Decreasing in the average size   of potential consumers, i.e., * 0q    . 

The implications of Proposition 5 are as follows. With a higher expected NPV Gr  of 

its unreleased reserve, the government should naturally stockpile to meet future de-

mand. When the market potential a  is larger, the market demand of the current period 

is larger, and the government should reduce the reserve quantity to better meet the cur-
rent market demand. When the rare-earth product is more sensitive to the price ( b  is 

larger), the government should reduce the current market supply to maintain a high 

market price, so it should increase the reserve quantity. A higher total quota index q  

means there may be more leftover if demand remains unchanged, so the government 

should increase the reserve quantity. When the expected size   of potential consumers 

is larger, the total demand in the current period is larger, so the government should re-

duce the reserve quantity to better meet the current market demand. 

3.4. The Government’s Total Quota Index Decision 

At time T1, the government needs to make a decision on the total quota index q  by 

maximizing the expected social welfare *

SW  (Equation (12)). Due to the one-to-one 

correspondence between Y q =  and q , the optimization of *

SW  with respect to 

q  is equivalent to the optimization of *

SW  with respect to Y . 

Proposition 6. Under Assumptions 1–3, the government’s optimal decision of total quota index at 

time T1 is * *2q Y= , where: 

Figure 2. The government’s reserve strategies.

By investigating the influence of parameters on the government’s optimal reserve, we
obtain the following proposition:

Proposition 5. The government’s optimal reserve quantity q∗ is:

(a) Increasing in the expected NPV rG of unreleased reserve, i.e., ∂q∗/∂rG ≥ 0;

(b) Decreasing in the market potential a, i.e., ∂q∗/∂a ≤ 0;

(c) Increasing in the price sensitivity factor b, i.e., ∂q∗/∂b ≥ 0;

(d) Increasing in the total quota index q, i.e., ∂q∗/∂qH ≥ 0;

(e) Decreasing in the average size µ of potential consumers, i.e., ∂q∗/∂µ ≤ 0.

The implications of Proposition 5 are as follows. With a higher expected NPV rG of
its unreleased reserve, the government should naturally stockpile to meet future demand.
When the market potential a is larger, the market demand of the current period is larger,
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and the government should reduce the reserve quantity to better meet the current market
demand. When the rare-earth product is more sensitive to the price (b is larger), the
government should reduce the current market supply to maintain a high market price, so it
should increase the reserve quantity. A higher total quota index q means there may be more
leftover if demand remains unchanged, so the government should increase the reserve
quantity. When the expected size µ of potential consumers is larger, the total demand in
the current period is larger, so the government should reduce the reserve quantity to better
meet the current market demand.

3.4. The Government’s Total Quota Index Decision

At time T1, the government needs to make a decision on the total quota index q
by maximizing the expected social welfare Π∗SW (Equation (12)). Due to the one-to-one
correspondence between Y =

√
q/µ and q, the optimization of Π∗SW with respect to q is

equivalent to the optimization of Π∗SW with respect to Y.

Proposition 6. Under Assumptions 1–3, the government’s optimal decision of total quota index at
time T1 is q∗ = µY∗2, where:

Y∗ =


Y∗1 = 1 rG ∈ [t/8, t) and rG ≥ c

Y∗2 = 3
√

κ[2(1− X)κ + 1/2]−
√

9κ[2(1− X)κ + 1/2]2 − 4(1− c/t) rG ∈ [t/8, t) and rG < c
Y∗3 = 9/4−

√
64ct + 17t2/(4t) rG ∈ (0, t/8)

= (13)

The corresponding expected social welfare is:

Π∗∗SW =


Π∗∗SW1 = µt[8(1− X)κ + 1]κ2/8 + µ[t(1− X)− c] rG ∈ [t/8, t) and rG ≥ c
Π∗∗SW2 = (t− c)µY∗22 /2− µY∗22 t

√
κ[4(1− X)κ + 1]Y∗2 /8 rG ∈ [t/8, t) and rG < c

Π∗∗SW3 = µt(3−Y∗3 )Y
∗3
3 /8 rG ∈ (0, t/8)

(14)

By Proposition 6, the government will formulate the total quota index according to
the relationship between the expected NPV rG of the unreleased reserve and the unit
production cost c. When rG is very low (rG < t/8), the government only needs to consider
meeting the market demand of the current period, but will not consider the need of
reserving, so its optimal decision of total quota index does not include rG. When rG
exceeds a certain threshold (rG > t/8) but is not enough to cover the production cost
(rG < c), the government will appropriately increase the total quota index to meet the
current market demand as much as possible. At the same time, if the current supply is
sufficient, the government will reserve part of it. When rG exceeds the aforementioned
threshold (rG > t/8) and is higher than the production cost (rG < c), the government will
set the total quota index to the maximum extent and supply the current period according
to the maximum possible value of market demand, with the remaining part being reserved.

4. Numerical Analysis

In this section, numerical simulation is used to verify the model results and observe
the relevant equilibrium properties. Firstly, we investigate the decision results regarding
the rare-earth quantities (i.e., the total quota index q∗, the reserve quantity q∗, and expected
unreleased reserve q∗ −E[q̂∗]) and their influencing factors. Assume that the mean value
of potential consumer size is µ = 1 and the relative market potential is t = a/b = 1.
Figure 3 depicts how the total quota index q∗, the reserve quantity q∗, and the expected
unreleased reserve q∗ −E[q̂∗] change with the expected NPV rG of the unreleased reserve,
under production costs (a) c = 0.3, (b) c = 0.5 and (c) c = 0.7, respectively.
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As can be seen from any sub-figure in Figure 3, when rG changes from small to large,
the government’s reserve strategy will go through three different stages: no reserve, low
reserve and high reserve (Proposition 4). Among them, the total quota index q∗ in the
no-reserve stage is low, and is independent of rG. Both q∗ and q∗ increase in rG, and the
government will release part of the reserve in the case of insufficient market supply (the
release amount is equal to the difference between the dot-dashed line and the dashed
line). In this case, the supply may still be insufficient after the release of the reserve (part
rG ∈ (0.125, 0.5) in Figure 3c), but the expected unreleased reserve increases in rG. When
rG crosses the threshold of production cost c, the government will enter the stage of high
reserve, and both the total quota and reserve quantity will see a sharp increase. In this
case, even if there is a shortage of supply, the government only needs to release a part of
the reserve to fully satisfy the market, and the expected quantity of unreleased reserve
still increases in rG. Note that Figure 3 shows that the expected release quantity E[q̂∗] (the
difference between the dotted line and the dashed line) first increases and then decrease in
rG. A horizontal comparison of the three sub-figures in Figure 3 shows that, given that other
conditions remain unchanged, when the production cost c increases: (i) the possibilities
of no reserve, low reserve, and high reserve are unchanged, increased, and decreased,
respectively; and (ii) the government’s total quota index decreases under the strategy of no
reserve and low reserve, and the reserve quantity decreases under the low-reserve strategy.

Next, the influence of parameters on the equilibrium rare-earth price p∗ is investigated.
Figure 4 plots p∗ as a function of rG under (a) relative market potential t = a/b = 1 and
rare-earth production cost c = 0.5 (solid line), (b) t = 1 and c = 0.7 (dashed line), and (c)
t = 1.1 and c = 0.5 (dot-dashed line).
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As can be seen from any curve in Figure 4, with the increase in rG, p shows three
different changes: When rG is small, the government adopts the no-reserve strategy, and
the equilibrium price p is independent of rG. When rG is at a medium level, the government
adopts the low-reserve strategy. In this case, p increases first and then decreases in rG,
because the market supply q∗ − q∗ decreases first and then increases in rG. When rG is high,
the government adopts the high-reserve strategy, and p increases with rG. By comparing
the solid line with the dashed line in Figure 4, it can be seen that when the production cost c
increases, the equilibrium price will increase both in the case of no reserve and low reserve,
while the price will remain unchanged in the case of high reserve. The former is because the
firm’s rare-earth supply q∗ − q∗ decreases with the production cost in the case of no reserve
or low reserve, so the firm should adjust the price in the opposite direction to balance the
supply and demand. The latter is because, in the case of high-reserve, the government will
always control the firm’s supply quantity according to q∗− q∗ = µκ2 (Equation (11)), which
is not affected by the firm’s production cost. Comparing the solid line with the dot-dashed
line in Figure 4, it is found that an increase in the relative market potential t = a/b leads
to an increase in rare-earth price. This is because, when the relative market potential t
increases, either the potential market demand faced by the firm increases (i.e., the market
potential a increases) or the consumer becomes less sensitive to the rare-earth price (i.e., the
price sensitivity factor b decreases), both of which will prompt the firm to set a higher price.

Finally, the influence of parameters on the expected social welfare and the firm’s
expected profit is investigated. Figure 5a shows how the expected social welfare Π∗∗SW
varies with rG under different parameter conditions. For the whole system, the expected
NPV rG of unreleased reserve, the mean size of potential consumers µ and the relative
market potential t can be regarded as efficiency parameters, while the firm’s production cost
c is a cost parameter. Therefore, Figure 5a shows that the expected social welfare increases
with rG, µ, and t and decreases with c. Figure 5b shows how the firm’s expected profit
is affected by parameters when the government acquires rare-earth reserves at the price
equaling the firm’s production cost. It can be seen that the firm’s expected profit increases
with the mean size of potential consumers µ and the relative market potential t, and
decreases with the production cost c, for the same reasons as before. However, Figure 5b
also shows that the impact of rG on the firm’s expected profit is not monotone: when rG is
small, the government does not reserve, and the firm’s expected profit is independent of rG;
when rG is not very small, the government adopts the low-reserve or high-reserve strategy,
and an increase in rG will impact both the firm’s price and sales volume, so the firm’s
expected profit may either increase or decrease. In addition, the firm’s expected profit
is also related to the government’s reserve price w. Figure 5c simulates the relationship
between the firm’s expected profit and rG when the government purchases reserves at a
price that is α ∈ {1, 1.1, 1.2} times of the firm’s production cost.
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5. Conclusions

In the new wave of scientific and technological revolution and industrial transforma-
tion, the application value of rare earth in social development and national economies has
been further enhanced, and the importance of the total quota management and strategic
reserve of rare-earth products has become increasingly prominent. This paper examines a
multi-stage decision model of a rare-earth supply chain in a game-theoretic framework,
and examines the government’s reserve decision and the rare-earth firm’s pricing decision
under total quota management.

Several meaningful implications are generated for both the government and rare-earth
firms. For the government, critical conditions of whether and at what level the government
should keep rare-earth reserves are identified. The production cost and the expected net
present value (NPV) of unreleased reserves are found to be key factors affecting the above
decision. When the expected NPV of reserves is below a threshold, the government should
not keep any reserve. Otherwise, it should keep a low or high level of reserve, depending
on the relationship between the expected NPV of the reserve and the production cost: a low-
reserve (high-reserve) strategy should be adopted if the former is lower (higher). Under
situations where the low-reserve strategy is appropriate, the total quota index should be set
as an increasing function of the expected NPV of the reserve, and the government should
also release as much of the reserve as possible to meet the demand gap (if any). Under
situations where the high-reserve strategy is appropriate, the total quota index should be
set to be sufficiently large to cover the entire market demand, and the government can fill
the demand gap (if any) by releasing only part of the reserve.

For the rare-earth firm, implications are derived from how the rare-earth price should
be determined under different reserve strategies of the government. Under situations
where the government adopts the no-reserve strategy, the firm should set a relatively
low price that is independent of the expected NPV of reserve. Under situations where a
low-reserve strategy is adopted, the firm should determine a price that first increases and
then decreases with the expected NPV of reserves. Under situations where a high-reserve
strategy is adopted, the firm should set a price that is increasing with the expected NPV
of reserves. Moreover, a somewhat counterintuitive finding is observed: Under situations
where the government adopts a high-reserve strategy, the equilibrium price does not change
with the production cost. This is because the government, in this case, will always control
the firm’s supply quantity to a certain level that is not affected by the production cost.

It should be noted that in order to obtain analytical solutions to the government’s
optimization problem, we made some simplifications to the model, such as assuming a
uniform demand distribution and ignoring the reserve costs of the government and the
firm. In addition, China implements the policy of combining government reserves and
commercial reserves. The preliminary study of the government reserve of rare earth in this
paper will provide useful reference for future research on commercial and hybrid reserves
of rare-earth products.
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Appendix A

Proof of Proposition 1. The first-order derivative of πSW(q, q, p, q̂) with respect to q̂ is:

∂πSW
∂q̂

=

{
vG − rG < 0 q̂ > D− q + q
(a + bp)/(2b) + tG − rG q̂ ≤ D− q + q

(i) when (a + bp)/(2b) + tG − rG ≤ 0, obviously, ∂πSW/∂q̂ ≤ 0 always holds, and the
optimal solution is q̂ = 0. (ii) When (a + bp)/(2b) + tG − rG > 0, πSW(q, q, p, q̂) increases
in q̂ first and then decreases, and reaches the maximum value at q̂ = D− q + q. Combined
with the range of q̂, i.e., [0, q], the optimal solution can be obtained as follows:

q̂ =


q D ∈ [q, ∞)

D− q + q D ∈ [q− q, q)
0 D ∈ [0, q− q)

= min{D, q} −min{D, q− q}

Summarizing the above two cases, it can be seen that the government’s optimal release
quantity is Equation (5).

Substituting Equation (5) back into the government’s objective function (Equation (4)),
the social welfare under the optimal release quantity can be obtained after necessary
transformations, as given by Equation (6). �

Proof of Lemma 1. For part (a), S(z) =
∫ z

0 F(ξ)dξ is easily obtained by applying integration
by parts according to the definition of expectation. In addition, S(z) ≤ Eε[ε] = µ since
min{ε, z} ≤ ε. Part (b) is directly obtained from [38]. Part (c) is because S(z) =

∫ z
0 F(ξ)dξ >∫ z

0 F(z)dξ = zF(z). �

Proof of Proposition 2. The first-order derivative of ΠF with respect to p is ∂ΠF/∂p =
bT(p)/a. Since both a and b are positive, the sign of ∂ΠF/∂p depends entirely on T(p).
Easy to verify is that T(p) is decreasing in p:

T′(p) = −2S(z1)[1− η(z1)]− bz2
1(p + tF − vF) f (z1)/(a− bp) < 0

when p = vF(< a/b), we have: T(vF) = (a/b− vF)S(z1) + tFz1F(z1) + tF[µ− S(z1)] > 0
(where µ − S(z1) > 0 is guaranteed by Lemma 1a); when p→ a/b , we have:
z1 → ∞ , S(z1)→ µ and z1F(z1)→ 0 , so limp→a/bT(p) = −(a/b− vF)µ < 0 holds. There-
fore, there exists a unique p∗ ∈ (vF, a/b) such that T(p∗) = 0, and p∗ is the firm’s optimal
price. �

Proof of Proposition 3. Proposition 2 and its proof have shown that p∗ is the unique
solution to T(p∗) = 0, and T′(p) < 0 holds for all p ∈ [0, a/b] and z > 0. Since
η′(z) = F(z)[1− g(z)− η(z)]/S(z) (by definition) and η′(z) ≤ 0 (by Lemma 1b), it follows
that 1− g(z)− η(z) ≤ 0, i.e., g(z) ≥ 1− η(z), there is:

∂T(p)/∂z1 = F(z1)[a/b− p− (p + tF − vF)g(z1)]
≤ F(z1){a/b− p− (p + tF − vF)[1− η(z1)]}
= F(z1)[T(p)− µtF]/S(z1)

Thus, at p = p∗, ∂T(p)/∂z1 ≤ −µtFF(z1)/S(z1) < 0 holds. Below, we prove the conclu-
sions in Proposition 3 one by one.
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(a) Take (q− q) as a whole, and take the derivatives with respect to (q− q) from both
sides of Equation T(p∗) = 0, there is:

T′(p∗)
∂p∗

∂(q− q)
+

∂T(p)
∂z1

1
y(p)

∣∣∣∣
p=p∗

= 0 (A1)

As T′(p∗) < 0, [∂T(p)/∂z1]
∣∣p=p∗ < 0 and y(p∗)−1 > 0, there must be ∂p∗/∂(q− q) < 0 to

make the equation hold.
(b) Take the derivatives with respect to tF on both sides of the equation T(p∗) = 0,

and one obtains
T′(p∗)

∂p∗

∂tF
− S(z∗1) + z∗1 F(z∗1) + µ = 0 (A2)

As T′(p∗) < 0 and −S(z∗1) + z∗1 F(z∗1) + µ > 0, there must be ∂p∗/∂tF > 0 for the equation
to hold.

(c) Take the derivatives with respect to vF on both sides of Equation T(p∗) = 0, and
one obtains:

T′(p∗)
∂p∗

∂vF
+ S(z∗1)− z∗1 F(z∗1) = 0 (A3)

As S(z∗1) − z∗1 F(z∗1) = S(z∗1)[1− η(z∗1)] > 0 (Lemma 1c) and T′(p∗) < 0, there must be
∂p∗/∂vF > 0 for the equation to hold.

(d) Take the derivatives with respect to a on both sides of Equation T(p∗) = 0, and we
obtain

T′(p∗)
∂p∗

∂a
+

∂T(p)
∂z1

∂z∗1
∂a

∣∣∣∣
p=p∗

+
S(z∗1)

b
= 0 (A4)

As T′(p∗) < 0, [∂T(p)/∂z1]
∣∣p=p∗ < 0 , ∂z∗1/∂a = −bp∗z∗1/(a2y(p∗)) < 0, and S(z∗1)/b > 0,

there must be ∂p∗/∂a > 0 to make the equation hold.
(e) Take the derivatives with respect to b on both sides of the equation T(p∗) = 0, and

we obtain

T′(p∗)
∂p∗

∂b
+

∂T(p)
∂z1

∂z∗1
∂b

∣∣∣∣
p=p∗

−
aS(z∗1)

b2 = 0 (A5)

As T′(p∗) < 0, [∂T(p)/∂z1]
∣∣p=p∗ < 0 ,−aS(z∗1)/b2 < 0, and ∂z∗1/∂b = p∗z∗1/(a− bp∗) > 0,

there must be ∂p∗/∂b < 0 for the equation to hold. �

Proof of Proposition 4. Noting that ΠSW(Q) is a piecewise function of Q, we will solve
the local optimal solution for each piece, and then determine the global optimal solution by
comparing the local optimal values of the three pieces.

(1) When Q ∈ [0, A1], the second-order derivative of ΠSW1(Q) with respect to Q
is Π′′ SW1(Q) = −µt[12Q(1− X) + 1]/4 < 0, implying that ΠSW1(Q) is concave in Q.
Therefore, its local optimal solution can be uniquely determined by the following Kuhn–
Tucker (KT) conditions:

Π′SW1(Q) + λ1 − λ2 = 0,
λ1Q = 0, λ2(A1 −Q) = 0,

0 ≤ Q ≤ A1, λ1 ≥ 0, λ2 ≥ 0

where Π′SW1(Q) = µt(6XQ2 − 6Q2 −Q + 2X)/4. Solving the above KT conditions yields
the local optimal solution on the interval [0, A1]:

Q1 =

{
Q∗1 ≡ κ i f 6A2

1(1− X) + A1 − 2X ≥ 0
A1 i f 6A2

1(1− X) + A1 − 2X < 0
(A6)

(2) When Q ∈ [A1, A2], the second-order derivative of ΠSW2(Q) with respect to Q
is Π′′ SW2(Q) = −µt[3Q4(1− X) + XY4]/Q3 < 0, implying that ΠSW2(Q) is concave in
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Q. Therefore, its local optimal solution can be uniquely determined by the following KT
conditions:

Π′SW2(Q) + λ1 − λ2 = 0,
λ1(Q− A1) = 0, λ2(A2 −Q) = 0,
A1 ≤ Q ≤ A2, λ1 ≥ 0, λ2 ≥ 0

where Π′SW2(Q) = µt(6XQ4 + 2XY4 − 6Q4 −Q2Y2)/(4Q2). Solving the above KT condi-
tions yields the local optimal solution on the interval [A1, A2]:

Q2 =


A1 i f 6A4

1(1− X) + A2
1Y2 − 2XY4 > 0

Q∗2 = Y
√

κ i f

{
6A4

1(1− X) + A2
1Y2 − 2XY4 ≤ 0

6A4
2(1− X) + A2

2Y2 − 2XY4 ≥ 0
A2 i f 6A4

2(1− X) + A2
2Y2 − 2XY4 < 0

(A7)

(3) When Q ∈ [A2, Y], the first-order derivative of ΠSW3(Q) with respect to Q is
Π′SW3(Q) = µtQ(2Q2 − 9Q + 8X)/4, whose sign is determined by the term 2Q2 − 9Q +
8X. On the interval [A2, Y], 2Q2− 9Q+ 8X is decreasing in Q, and Q′3 = [9−

√
81− 64X]/4

is the root of 2Q2 − 9Q + 8X = 0 (the other larger root is rounded off). Therefore, the local
optimal solution of ΠSW3(Q) on [A2, Y] is

Q3 =


A2 i f 2A2

2 − 9A2 + 8X < 0

Q′3 i f

{
2A2

2 − 9A2 + 8X ≥ 0
2Y2 − 9Y + 8X ≤ 0

Y i f 2Y2 − 9Y + 8X > 0

(A8)

Below we determine the global optimal solution by comparing the above three local optimal
solutions.

(1) when 4X < Y2, we have A1 = A2 = 4X, and 6A2
1(1− X) + A1 − 2 = 48X(1−

X) + 1 > 0 in Equation (A6) is always true. Therefore, the optimal solution of the first
piece (Equation (A6)) is simplified to Q1 = Q∗1 . Similarly, the optimal solutions of the
second and third pieces (Equations (A7) and (A8)) can be simplified to Q2 = A1 = 4X
and Q2 = A2 = 4X, respectively. Since Q = 4X is the feasible but non-optimal solution of
the first piece, the local optimal solution Q1 = Q∗1 of the first piece is the global optimal
solution, namely

Q∗ = Q∗1 , X < Y2/4 (A9)

(2) When Y2 ≤ 4X < Y, we have A1 = Y2 and A2 = 4X. In this case, 6A2
1(1− X) +

A1− 2X ≥ 0 in Equation (A6) is equivalent to X ≤ X1, where X1 ≡ (6Y2 + 1)Y2/[2(3Y4 + 1)].
It is easy to verify that X1 > Y2/4, but X1 can be either larger or smaller than Y/4, so the
optimal solution (Equation (A20)) of the first piece is

Q1 =

{
Q∗1 X ∈ (Y2/4, min{Y/4, X1}]
Y2 X ∈ (min{Y/4, X1}, Y/4]

(A10)

Similarly, 6A4
1(1− X) + A2

1Y2 − 2XY4 > 0 in Equation (A7) is equivalent to X < X1,
and 6A4

2(1− X) + A2
2Y2 − 2XY4 > 0 is always true, so Equation (A7) is converted to

Q2 =

{
Y2 X ∈ (Y2/4, min{Y/4, X1}]
Q∗2 X ∈ (min{Y/4, X1}, Y/4]

(A11)

2A2
2− 9A2 + 8X < 0 in Equation (A8) is equivalent to X < 7/8, which obviously holds,

and 2Y2 − 9Y + 8X ≤ 0 also always holds. Therefore, Equation (A8) can be simplified to
Q3 = 4X. Since 4X is a feasible but non-optimal solution of the second piece, Equation (A8)
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cannot be a global optimal solution. Comparing Equations (A10) (A11), we can see that the
global optimal solution for Y2 ≤ 4X < Y is

Q∗ =

{
Q∗1 X ∈ (Y2/4, min{Y/4, X1}]
Q∗2 X ∈ (min{Y/4, X1}, Y/4]

(A12)

(3) When Y ≤ 4X < 4, we have A1 = Y2 and A2 = Y. In this case, 6A2
1(1− X) + A1 −

2X ≥ 0 in Equation (A6) is equivalent to X ≤ X1, while X1 can be either larger or smaller
than Y/4; therefore, Equation (A6) becomes

Q1 =

{
Q∗1 X ∈ (Y/4, max{Y/4, X1}]
Y2 X ∈ (max{Y/4, X1}, 1)

(A13)

In Equation (A7), 6A4
1(1− X) + A2

1Y2 − 2XY4 > 0 is equivalent to X < X1, 6A4
2(1−

X) + A2
2Y2 − 2XY4 > 0 is equivalent to X < 7/8, and X1 < 7/8; therefore, Equation (A7)

becomes

Q2 =


Y2 X ∈ (Y/4, max{Y/4, X1}]
Q∗2 X ∈ (max{Y/4, X1}, 7/8]
Y X ∈ (7/8, 1)

(A14)

In Equation (A8), letting A2 = Y yields Q3 = Y. Since Y is a feasible but non-optimal
solution to the second piece, Equation (A8) cannot be a globally optimal solution. By
comparing Equations (A13) and (A14), the global optimal solution for Y ≤ 4X < 4 can be
obtained as follows:

Q∗ =


Q∗1 X ∈ (Y/4, max{Y/4, X1}]
Q∗2 X ∈ (max{Y/4, X1}, 7/8]
Y X ∈ (7/8, 1)

(A15)

By combining Equations (A9), (A12) and (A15), the complete global optimal solution
can be obtained as follows:

Q∗ =


Q∗1 = κ X ∈ (0, X1]

Q∗2 = Y
√

κ X ∈ (X1, 7/8]
Q∗3 = Y X ∈ (7/8, 1)

(A16)

Substituting Equation (A30) into q∗ = q − µ(Q∗)2, the optimal reserve quantity is
obtained as shown in Equation (11). Then, substituting Equation (A16) back to Equation (10)
obtains the maximized social welfare as shown in Equation (12). �

Proof of Proposition 5. By Equation (11), q∗ is increasing in q and decreasing in µ, so parts
(d)–(e) are immediately proved. As (i) q∗ is decreasing in κ, (ii) κ is increasing in X, and (iii)
X = 1− brG/a is decreasing in b and rG and increasing in a, respectively, one can verify
that q∗ is increasing in b and rG and decreasing in a; hence, parts (a)–(c) are proved. �

Proof of Proposition 6. Since ∏∗SW (Equation (12)) is a piecewise function of Y, below we
first find the local optimal solution in each piece, and then determine the global optimal
solution through comparison.

(1) Case rG ∈ [t/8, 1) and q ≥ µκ (i.e., Y2 ≥ κ). Since ∂Π∗SW1/∂Y = 2µ(rG − c)Y,
Π∗SW1 is increasing in Y when rG ≥ c. Thus, the local optimal solution is Y = 1, and the
corresponding expected social welfare is Π∗∗SW1, as given by Equation (14); when rG < c,
Π∗SW1 is decreasing in Y. Thus, the local optimal solution is Y =

√
κ, and the corresponding

expected social welfare is Π∗∗SWB = Π∗∗SW1 − µ(1− κ)(rG − c).



Sustainability 2022, 14, 14883 18 of 19

(2) Case rG ∈ [t/8, 1) and q ≤ µκ (i.e., Y2 ≤ κ). The following KT conditions are
necessary for finding the local optimal solution of Y:

∂Π∗SW2/∂Y− λ = 0, λ(
√

κ −Y) = 0,
√

κ ≥ Y, λ ≥ 0

Solving the above K-T conditions yields: if rG < c, then Y = Y∗2 , and the corresponding
expected social welfare is Π∗∗SW2, as given in Equation (14); if rG ≥ c, then Y =

√
κ, and the

corresponding expected social welfare is Π∗∗SWB.
(3) Case rG ∈ (0, t/8). Solving ∂Π∗SW3/∂Y = µY(2tY2 − 9tY− 8c + 8t)/4 = 0 yields

the optimal solution Y = Y∗3 , and the corresponding expected social welfare is Π∗∗SW3.
Comparing the above three cases, one can verify that the global optimal solution is

as shown in Equation (13), and the corresponding expected social welfare is as shown in
Equation (14). �
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