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Abstract: Knowledge of landscape fragmentation is known to be important in ecological integrity,
hydrological processes, urban planning, sustainable land management, and policymaking. Recent
anecdotal studies reveal a need for analytical quantification of landscape fragmentation at different
levels. Therefore, the present study was conducted at KoozehTopraghi Watershed, Ardabil Province,
Iran, where covers by different land uses/covers, to (a) explore the spatial pattern of landscape frag-
mentation metrics comprehensively in different scales, (b) distinguish the landscape fragmentation
hot spots, and (c) investigate the spatial clustering of landscape fragmentation metrics. The behaviors
of 7, 10, and 13 fragmentation metrics concerning three levels of patch, class, and landscape across
36 sub-watersheds were explored using principal component analysis (PCA) and expert elicitation.
The Getis-Ord Gi* and local Moran’s I indices were also used to analyze the hot spots and clusters of
landscape fragmentation, respectively. The results verified the high degree of spatial variability of the
metrics in the three levels of fragmentation analysis. The class-level fragmentation analysis showed
that the watershed is characterized by high-fragmented residential land use and low-fragmented
dry farming land use. The spatial trend analysis at the landscape level further indicated that sub-
watersheds 1, 2, 11, 21, to 26, and 34 to 36, mainly located in lowlands and central parts, allocated
better status considering the fragmentation metrics rather than other parts of the watershed. The
significant hot spots and high clusters of fragmentation also were distributed in different parts of the
watershed in terms of various landscape metrics.

Keywords: clustering; hot spot analysis; land management; land use pattern

1. Introduction

During the past three decades, rising human needs have resulted in a significant
increase in land use changes and damages [1,2]. Concerns over the effect of changing land
use patterns resulting from deforestation and agricultural development or elimination
have caused a crisis in the quality of water and soil resources [3]. Since economic and
human activities are mainly carried out on the landscape, it is considered an appropriate
spatial scale for studying the environmental changes caused by human activities during
a long-term period [1]; therefore, the assessment of landscape changes and reflection on
the human use of the land in the past are used as dynamic tools for sustainable land
use planning [4]. In this context, the landscape metrics are introduced as algorithms for
quantifying the spatial properties of patches, classes, or mosaics of the entire terrestrial
landscape. Landscape metrics are the best way to compare the state of the landscape of
different land uses (e.g., [4–7]). The use of landscape metrics plays an important role in

Sustainability 2022, 14, 14876. https://doi.org/10.3390/su142214876 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142214876
https://doi.org/10.3390/su142214876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2258-6834
https://orcid.org/0000-0001-9227-0419
https://orcid.org/0000-0001-6960-2876
https://doi.org/10.3390/su142214876
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142214876?type=check_update&version=2


Sustainability 2022, 14, 14876 2 of 23

determining the different features of land use types relative to each other. Additionally,
they can help to monitor better the impact of land use changes on hydrological processes
and nutrient cycles [8]. Therefore, knowledge of human activities’ impacts in different
sectors or land use types, as primary data in spatial–temporal characteristics of landscape
analysis, is of particular importance to land changes interpretation and modeling and
understanding the relations between environmental and human factors [4].

Landscape fragmentation is one of the most critical processes representing human
activities’ impact on the land structure and function disruption [2]. In the fragmentation
process, the landscape is divided into smaller patches which refers to the landscape transfor-
mation for human use that hurts biodiversity. It is one of the significant implications of land
degradation in reducing dominant communications and habitat corridors over the land-
scape [9–11]. The analysis of landscape fragmentation can lead to effective development
strategies to better land reconstruction and conservation [12].

Many studies have been performed regarding the importance of examining land use
changes and landscape fragmentation. For example, Amsalu et al. [13] studied the land
use change in the Ethiopian Highlands watersheds. They reported a reduction trend in
natural vegetation due to forest conversion to agriculture due to policy changes that took
place over 40 years. Furthermore, Aspinall and Hill [14] reviewed the land use changes
and management in the Amazon Forest. They reported a significant forest fragmentation
process. Their results also indicated a reducing trend in the average size of patches and the
total forest length, as well as an increase in the distance between the forest patches due to
forest degradation and land use change. Giraldo [15] also investigated the spatial scale of
land use fragmentation in monitoring the water process in Colombia. In this study, using
remote sensing (RS) and geographical information system (GIS), statistical analysis, and
comparison of man-fabricated patches, a variety of landscape patches were studied. The
results indicated the significant effect of landscape fragmentation on hydrological processes.
In Japan, Kang et al. [16] calculated the Shannon diversity index, dominance index, mean
patch size, edge density, patch density, and mean patch size in 1888, 1909, 1961, and 2002.
They concluded that the landscape diversity was reduced, and urban areas, pasture, rice
fields, and rangelands were increased, which was attributed to large and split patches.

Nohegar et al. [8] analyzed the land use characteristics in the central part of Guilan.
They used 16 metrics to interpret and analyze the landscape structure. The results showed
that the impact of human interference decreased the landscape structure and connectivity,
which reflected very high forest utilization and agricultural evolution. Additionally, in
the Sefidrud, northern Iran, Kiyani and Feghhi [17] calculated different landscape metrics,
including the class area, area percentage, patch number, total edge, landscape shape, the
largest patch, the average landscape of the patch, mean patch area, and Euclidean nearest
neighbor distance. They concluded that the highest and lowest fragmentation occurred in
agricultural and forest land uses, respectively. The highest and lowest patches dispersion
was also related to pasture and forest land uses in that respect. Mitchell et al. [18] also
examined the landscape fragmentation effect of the ecosystem services in Brazil concerning
economic, social, and political dimensions. The results verified both positive and negative
effects of fragmentation on ecosystem services. Subsequently, De Montisa et al. [1] exam-
ined the landscape fragmentation in Mediterranean Europe. They used three indicators,
including indices of infrastructure fragmentation, urban symmetry, and connectivity. The
results showed that the coastal areas face high-pressure utilization, and the fast transport
infrastructure and new settlements showed the highest fragmentation rates.

Lam et al. [12] explored the effect of landscape fragmentation on land losses in the
Louisiana coastline, United States, based on Landsat TM+ images from 1996 to 2010. The
results showed significant land loss due to the fragmentation effects. Kowe et al. [3]
determined the hot and cold spots and clusters of fragmentation during 1994–2017 in
Harare metropolitan city, Zimbabwe. The highly fragmented patterns of vegetation patches
detected as cold spots were mainly located in the densely built-up places of the study
city (i.e., western, eastern, and southern parts). The long-term viability of the Natura
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2000 (N2k) network as the world’s largest coordinated network of protected areas was
evaluated by Lawrence et al. [19]. They quantified the degree to which N2k sites are
insulated from development pressures and found that the anthropogenic pressures lead
to the fragmentation of protected areas. Forest fragmentation of Chitteri Hills in India
was analyzed by Narmada et al. [9]. The results showed an increase in the number of
patches due to the expansion of the urban population during the 2000–2019 period. In
addition, the effects of surrounding areas on the landscape fragmentation of national parks
were assessed by Kubacka et al. [2]. According to their findings, the high natural and
landscape values in the surrounding areas of national parks affect the degree of landscape
fragmentation. Meanwhile, the patch density index was assessed as a suitable indicator to
indicate the dynamic nature of the landscape change.

In general, different studies were conducted for quantifying landscape metrics; how-
ever, their analysis at different levels of the patch, class, and landscape, which is essential
for the interpretation and comparison of the regional landscape structure, was not well-
considered. KoozehTopraghi Watershed, with diverse land uses located in the northwest of
Iran, is similar to many other areas threatened by human activities such as land use change.
To this end, the extent, intensity, and spatial pattern of landscape fragmentation in this
watershed are under question. In addition, another key question is how landscape metrics
at different levels of landscape fragmentation behave. The third critical question that
remains unanswered in the watershed study point where the hot spots and cold spots of
landscape fragmentation metrics are. Towards this, the present study aims to evaluate the
spatial variation in land fragmentation metrics in three levels of patch, class, and landscape
in the KoozehTopraghi Watershed, Iran. Furthermore, the landscape fragmentation hot
spots and the spatial clustering of landscape fragmentation metrics were investigated. The
results can be the appropriate tools to monitor landscape changes and land use-related
management decisions.

2. Materials and Methods
2.1. Study Area

KoozehTopraghi Watershed (48◦2′ to 48◦31′ E, 37◦46′ to 38◦8′ N) with a total area and
perimeter of 802.98 km2 and 1489 km, respectively, is located in the southern part of Ardabil
Province. The residential areas of the watershed are comprised of 65 villages. The cold semi-
arid climate (Köppen: BSk) is dominant in the area. According to the statistical information
of 40 years, the mean annual rainfall and temperature of the watershed are 300 mm and
6.95 ◦C. Moreover, the lowest and highest altitude of the watershed is 1378 and 2549 m,
respectively. The watershed is further divided into 36 sub-watersheds. Figure 1 shows the
general view of the KoozehTopraghi Watershed in Iran and Ardabil Province [20].

2.2. Methodology
2.2.1. Land Use Mapping

In this research, maps of topography (1:25,000) and Google Earth images of 2018
for the KoozehTopraghi Watershed were prepared for land use map generation. The
main basis of the land use map generation was Google Earth images because of their high
resolution, high precision, and eye-wise interpretation of them [17,21]. Visual interpretation
of the image and information from previous research is adapted as two main tools to
control the accuracy of the prepared land use map [4]. All these analyses were performed
using ArcGIS 10.8 and Google Earth Pro 7.3.2.5491 software. According to the conducted
analysis, the KoozehTopraghi Watershed has allocated different land uses, viz. dry farming,
moderate rangeland, good rangeland, irrigation, rock, orchard, residential, and water body
as tabulated and depicted in Table 1 and Figure 2.
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Figure 1. Location map of KoozehTopraghi Watershed, Ardabil Province, Iran.

Table 1. Type, area, and percent of land use of the KoozehTopraghi Watershed, Ardabil Province, Iran.

Land Use Type Area (km2) Percent (%)

Dry farming 465.33 57.95

Moderate rangeland 194.71 24.25

Good rangeland 74.27 9.25

Irrigation 28.17 28.17

Rock 20.36 1.53

Orchard 12.3 12.30

Residential 6.07 0.76

Water body 1.77 0.22

Sum 802.98 100

2.2.2. FRAGSTATS Software Application

One of the tools for the calculation of landscape metrics is FRAGSTATS Software. This
software is more commonly used as a function of the ability to calculate a wide range of
landscape metrics. FRAGSTATS Software has no limitations in scale and magnification and
is suitable for analyzing the spatial pattern of the landscape patches in heterogeneous envi-
ronments and different conditions [22,23]. Towards this, for the present study, FRAGSTATS
Software 4.2 (Landscape Ecology Lab, University of Massachusetts Amherst, Amherst, MA,
USA) [24] was run for developing three output files of patch, class, and landscape metrics,
all of which are visible as text files [9,10]. For developing the study metrics, the vector-based
map of land use which was generated for KoozehTopraghi Watershed transformed into
Raster format. Hence, all FRAGSTATS analyses were performed at 36 sub-watersheds of
KoozehTopraghi.
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Figure 2. Land use patterns of KoozehTopraghi Watershed, Ardabil Province, Iran in 2018 Figure 2. Land use patterns of KoozehTopraghi Watershed, Ardabil Province, Iran in 2018.

2.2.3. Landscape Metrics Selection

Choosing the appropriate metrics among many metrics is a crucial step to effectually
being aware of minimal numbers of impressive metrics with maximal effectiveness [25].
Some metrics overlap and present similar information on a specific landscape status [26].
Therefore, principal component analysis (PCA) as a type of statistical analysis was used
to help select the most important metrics and thus eliminate some of the insignificant
ones [27]. In the present study, in addition to the PCA results, the correlation coefficient
and expert opinion were also used as auxiliary tools to this end. The experts were selected
from professors and students (five persons) who have special research in this field and are
familiar with the KoozehTopraghi Watershed. The point of view of the experts was acquired
and considered through personal meetings. This study attempted to have representative
metrics from all four features of edge, aggregation, shape, and diversity in each level of
patch, class, and landscape.

The PCA method was performed in IBM SPSS statistics 25.0 software (University of
Stanford, Stanford, CA, USA). In addition, this software with the help of Excel 2016 was
used for component coding and standardizing steps and unit variance, correlation matrix,
Eigenvalues, and Eigenvector eliminating components that justify a lower percentage of the
data variance. Finally, the preparation of component variables and Varimax rotation were
performed to determine the main components of each study level [28,29]. Generally, to ana-
lyze the landscape patterns of the KoozehTopraghi Watershed, the correlation is determined
between landscape metrics. At patch, class, and landscape levels, 7, 10, and 13 metrics
were selected, respectively, out of 40, 40, and 70 available metrics. The calculations of the
selected metrics in each study level are described in Appendix A (Tables A1–A3).
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2.2.4. Analysis of Hot Spots and Clustering

The fragmentation hot spots and cold spots throughout the study watershed were
using Getis-Ord Gi* statistic as provided in Equation (1) [30,31].

Gi∗ =
∑j 6=i j ∗ iwijxj−wix/

s

√
ns1i − w2

i
n− 1

(1)

where w∗i is the sum of wij and wij shows the binary weighting matrix for the adjacent
spaces. The mean and standard deviations of landscape fragmentation values are dedicated
as x and s, respectively. Using ArcGIS 10.8, when calculating this index, a z-score is
generated, and it shows the high or low spatial clusters.

High- and low-value clustering of fragmentation was also mapped using Local
Moran’s I as provided in Equation (2) [32,33].

I(d) =
1

W ∑n
h=1 ∑n

i=1 whi(zh − z)(zi − z)
1
n ∑n

i=1(zi − z)2 (2)

where W, n, and whi, are indicated by the number of pairs of points having distances within
the distance class, the total number of points, and the weight function, respectively. The
whi = 1 means the points h and i are within the distance class. The Moran index is varied
between −1 to +1. Its minimum and maximum limits denote the highly dispersed and
highly clustered patterns, respectively. The random patterns are also determined by Local
Moran’s I of zero.

3. Results
3.1. Patch-Level Metrics

The results of FRAGSTATS to quantify the fragmentation metrics of KoozehTopraghi
Watershed at the patch level were obtained. The patch-level metrics were computed as one
for each patch in the mosaic. By incorporating the FRAGSTATS results into ArcGIS 10.8,
the spatial distribution using the spatial analyst tool at patch-level metrics in KoozehTo-
praghi Watershed was tabulated in Table 2. The seven metrics of AREA_CPS, AREA_LPS,
PERIM, GYRATE, SHAPE, FRAC, and CIRCLE were selected out of 40 metrics at the
patch level according to PCA and expert analyses for fragmentation characterization of the
study watershed.

The mean value of the AREA_CPS metric for the KoozehTopraghi Watershed was
obtained between zero (very highly fragmented) to 46.15% (moderately fragmented) out of
100. The AREA_CPS of 100 shows no fragmentation. The highest value of the AREA_CPS
metric was attributed to sub-watersheds 10 and 14, where the altitude is included in
different classes and located in southern parts. Sub-watershed 10 is mainly formed from
land uses of orchard (16.66%), moderate rangeland (25.00%), dry farming (41.66%), and
residential (16.66%). In addition, the land use of sub-watershed 14 is comprised of the
orchard (16.66%), moderate rangeland (25.00%), dry farming (16.66%), residential (41.66%),
and good rangeland (0.00%). Furthermore, the results of the AREA_CPS metric analysis also
indicated the lowest value of zero for sub-watersheds 21 and 23 located in the northwestern
parts, as described in Table 2.
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Table 2. Results of patch-level metrics analysis in the KoozehTopraghi Watershed, Ardabil
Province, Iran.

SW
Metric AREA_CPS AREA_LPS PERIM GYRATE SHAPE FRAC CIRCLE

1 35.71 50.00 8590.11 50.00 1.56 1.07 0.56
2 35.71 50.00 3636.52 249.42 1.36 1.06 0.49

3 41.67 50.00 7216.07 544.75 1.55 1.07 0.66

4 35.71 50.00 8590.11 548.03 1.56 1.07 0.56

5 35.71 50.00 8590.11 548.03 1.56 1.07 0.56

6 42.13 45.26 4864.68 292.45 1.39 1.05 0.44

7 40.00 47.14 8113.71 519.31 1.57 1.05 0.41

8 42.86 50.00 4851.69 351.60 1.51 1.07 0.54

9 37.50 50.00 7004.95 505.73 1.46 1.05 0.51
10 46.15 50.00 5995.91 403.79 1.40 1.05 0.56
11 25.00 50.00 7972.26 605.60 1.60 1.07 0.67

12 28.57 50.00 10710.27 639.60 1.50 1.06 0.52

13 37.50 49.24 7302.62 402.33 1.58 1.07 0.56
14 46.15 49.36 11,855.43 650.73 1.65 1.07 0.53
15 37.50 50.00 12,564.10 796.54 1.64 1.06 0.57
16 38.48 40.67 4680.86 290.45 1.39 1.04 0.37
17 39.33 43.50 4104.57 283.83 1.30 1.04 0.48
18 41.18 46.71 6424.94 427.56 1.59 1.06 0.48
19 38.89 56.67 17,653.78 904.95 1.88 1.07 0.51
20 32.14 47.62 4349.08 309.09 1.67 1.08 0.53
21 0.00 50.00 20,281.91 1624.60 2.07 1.11 0.83
22 30.00 48.00 13,200.00 902.63 1.62 1.06 0.54

23 0.00 50.00 11,631.76 760.68 1.68 1.07 0.62
24 33.33 50.00 6571.59 466.42 1.29 1.04 0.50
25 16.67 50.00 9667.94 598.59 1.92 1.09 0.73

26 38.89 50.00 6537.64 435.55 1.59 1.07 0.60

27 42.86 50.00 3998.94 291.05 1.40 1.05 0.48
28 32.14 47.62 3323.73 211.62 1.26 1.04 0.43
29 25.00 50.00 9324.15 673.95 1.53 1.05 0.53

30 45.45 50.00 6783.38 422.33 1.45 1.05 0.51

31 33.33 50.00 3969.57 292.46 1.41 1.06 0.53

32 35.71 50.00 5255.83 385.30 1.57 1.07 0.63

33 33.33 50.00 6690.10 503.09 1.44 1.05 0.45

34 38.89 50.00 6549.05 392.35 1.68 1.08 0.58

35 33.33 50.00 6690.10 503.09 1.44 1.05 0.45

36 38.89 50.00 6549.05 392.35 1.68 1.08 0.58

Mean 34.33 49.22 7836.01 505.00 1.55 1.06 0.54

Standard Deviation 10.30 2.41 3703.53 265.90 0.17 0.01 0.09

Variance 106.00 5.82 13,716,100.58 70,701.52 0.03 0.00 0.01

The green and red cells indicate the best (least fragmented) and worst (most fragmented) states considering
landscape fragmentation, respectively.

The results of fragmentation analysis at the patch level in the KoozehTopraghi Water-
shed showed that the AREA_LPS metric had a uniform distribution throughout the whole
watershed. The value of this metric varied from 40.67 to 56.67%, indicating a moderate



Sustainability 2022, 14, 14876 8 of 23

state of the watershed in the viewpoint of landscape fragmentation at the patch-level class
(Table 2).

The minimum, maximum, and average PERIM metric through KoozehTopraghi Wa-
tershed were 20 and 21 m, respectively, as tabulated in Table 2. GYRATE reaches its extreme
value when the patch encompasses the whole landscape as obtained for sub-watershed
21 with the value of 1624.60 m (Table 2). Furthermore, sub-watershed 1, with a GYRATE
metric of the value of 50.00 m, had the worst state in terms of landscape fragmentation.
The mean and standard deviation of the GYRATE metric for KoozehTopraghi Watershed
were 495.71 and 261.46 m, respectively (Table 2).

The SHAPE metric is a widely used and straightforward metric for complexity as-
sessment. The patch shape is a function of the complexity of its morphology rather than
particular morphologies. The lowest value of this index (i.e., one) denotes the square shape
of the patch, and then it increases without limit as the shape develops more irregularly. This
index solved the size problem of the perimeter-area ratio by considering a constant for a
square standard. According to Table 2, the value of the SHAPE metric varied from 1.30 (sub-
watershed 17) to 2.07 (sub-watershed 21), which is greater than one in all sub-watersheds,
which is relatively irregular given the patch shape in the whole study watershed.

FRAC metric described the shape complexity through a series of patch sizes. A fractal
dimension above one for a two-dimensional patch obtained for a disappearance from
Euclidean geometry verifies a complexity increase. Fractal dimensions, whatever the value
of greater complexity, increase between patches. According to the results provided in
Table 2, all the study sub-watersheds spanned with values of 1.03 to 1.09 did not have
complex patch shapes. A low and high CIRCLE is attributed to the highly convoluted but
narrow patch and narrow and elongated patch. As shown in Table 2, a relatively uniform
state of CIRCLE with a mean value of 0.54 ± 0.09 was obtained for the KoozehTopraghi
Watershed. The corresponding minimum and maximum of CIRCLE were about 0.37 and
0.83, respectively.

The results of patch-level metrics analysis can help to adapt the appropriate potential
policy implications in the study watershed. The present study also clearly reveals the
different behavior of the selected fragmentation metrics at the patch level throughout the
whole KoozehTopraghi Watershed.

3.2. Class-Level Metrics

Table 3 shows the results of the class-level metrics of fragmentation analysis in the
KoozehTopraghi Watershed. As can be seen from Table 3, the class-level metrics were
generated in each land use type, and it could not process into the sub-watershed scale.
Totally, 10 metrics among 40 calculated metrics by FRAFSTATS were selected based on the
used methodologies for quantifying the fragmentation state of the study watershed at the
class level as detailed in Figure 3.

The results showed that dry farming land use has the highest EDC. This result ver-
ifies that the patches with dry farming (5.01 m ha−1) followed by moderate rangeland
(2.98 m ha−1) in the study watershed are made of larger values indicating increased frag-
mentation compared with other land uses. The EDC contains a user-specified proportion of
internal background edge segments encompassing the corresponding patch type. About
Table 3, the maximum and minimum EDC is related to dry farming and water body, re-
spectively. In Table 3, the LPIC showed that although dry farming is dominant in the
KoozehTopraghi Watershed and had the highest value of LPIC (49.72%), the moderate
rangeland with an LPIC value of 21.95% also had a fragmented landscape.
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Table 3. Results of class-level metrics analysis in the KoozehTopraghi Watershed, Ardabil
Province, Iran.

Land Use ED
C

LP
I C

A
R

EA
_M

N
C

T
E C

SH
A

PE
_M

N
C

LS
I C

C
O

H
ES

IO
N

C

SP
LI

T
C

D
IV

IS
IO

N
C

PD
C

Dry farming 5.01 49.72 5916.66 406,050.00 1.81 5.69 99.66 3.93 0.75 0.01
Moderate
rangeland 2.98 21.95 6490.50 241,500.00 2.68 5.26 99.27 20.63 0.95 0.00

Good rangeland 0.92 9.16 7427.25 74,250.00 3.14 3.14 98.78 119.23 0.99 0.00
Irrigation 1.86 2.98 117.38 151,200.00 1.43 7.15 96.19 1124.91 1.00 0.03

Rock 0.35 2.28 407.25 28,500.00 1.24 2.21 95.90 1909.08 1.00 0.01
Orchard 1.55 0.27 39.70 126,000.00 1.53 9.09 82.55 59193.68 1.00 0.04

Residential 1.05 0.06 8.80 84,900.00 1.05 8.58 55.26 640,020.70 1.00 0.09
Water body 0.12 0.20 88.88 9600.00 1.39 1.78 86.59 242,170.00 1.00 0.00

Mean 1.73 10.83 2562.05 140,250.00 1.78 5.36 89.28 118,070.27 0.96 0.02

Standard Deviation 1.50 16.26 3161.76 121,553.11 0.69 2.63 14.14 212,207.71 0.08 0.03

Variance 2.25 264.26 9,996,722.26 14,775,159,375.00 0.48 6.91 199.91 45,032,114,060.40 0.01 0.00

The green and red cells indicate the best (least fragmented) and worst (most fragmented) states considering
landscape fragmentation, respectively.
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Figure 3. Results of class-level metrics analysis in the KoozehTopraghi Watershed.

For the KoozehTopraghi Watershed, AREA_MNC indicates that the rangelands have
more connectivity and cohesion with the lack of human interferences and the residential
land use has the highest degree of fragmentation. It is found that the overall average
of AREA_MNC metric was 2562.05 ± 3380.06 ha varying from 8.80 ha in residential to
7427.25 ha in good rangeland land uses (Table 3). TEC is an absolute measure of the total
edge length of a patch type varied from 9600 (water body) to 406050 m (dry farming)
with a mean and standard deviation of 140,250 and 121,553.11 m, respectively, in the
KoozehTopraghi Watershed (Table 3). The SHAPE_MNC obtained was greater than one in
all sub-watersheds, which indicates the high irregularity of the patch shape. The mean and
standard deviation of the SHAPE_MNC metric was obtained at 1.78 and 0.73, respectively.
Furthermore, the best and worst state of SHAPE_MNC was observed in residential (1.05)
and good rangeland (3.14), respectively. The maximum COHESIONC was in dry farming
(99.66) and the lowest amount was obtained for residential (55.26) land uses.

As shown in Table 3, the large variability of SPLITC with a mean value of
118,070.27 ± 226,859.59 was obtained for the KoozehTopraghi Watershed. The correspond-
ing minimal and maximal of SPLITC were about 3.93 in dry farming and 640,020.70 in
residential, respectively. The DIVISIONC of the study watershed varied from 0.75 to 1 ha
with a mean value of 0.96 ± 0.09 ha. The general spatial trend of SPLIT was in line with
DIVSIONC at a direct correlation. The rangeland and dry farming in the KoozehTopraghi
Watershed had less connectivity and cohesion than other land uses in terms of DIVISIONC.

3.3. Landscape-Level Metrics

As explained in Table 4, 13 landscape-level metrics were evaluated to make a final
determination about the sub-watershed classification and priority rank of KoozehTopraghi
Watershed from the viewpoint of fragmentation.

For the study watershed, a mean EDL metric of 7.27 ± 3 m ha−1 was found. Further-
more, the results suggested that sub-watersheds 21 and 27, with EDL values of 0.83 and
13.85 m ha−1 at the landscape level were the least and most fragmented in the KoozehTo-
praghi Watershed (Table 4), respectively. The spatial pattern of LPIL at the KoozehTopraghi
Watershed, with a mean value of 69.78 ± 21.69%, indicated the relatively low level of
fragmentation status in most sub-watersheds (more than 20 sub-watersheds). However,
some parts of the watershed experienced highly critical conditions from the viewpoint
of LPIL (such as 9, 31, 32, etc.). According to Table 4, the value of LPIL was attributed to
sub-watershed 21 with a value of 99.35, where land use is dominated by irrigation (0.65%)
and dry farming (99.35%); while the lowest LPIL was allocated to sub-watershed 31 with
a value of 33.70, which mainly included irrigation (98.99%), residential 0.01%), and dry
farming (1%) land uses.
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Table 4. Results of landscape-level metrics analysis in the KoozehTopraghi Watershed, Ardabil
Province, Iran.

SW
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1 7.16 91.55 217.49 9340.32 1.71 2.57 99.88 1.19 0.16 0.46 0.31 0.34 0.17

2 5.36 93.25 121.23 4550.81 1.36 1.79 99.80 1.15 0.13 0.82 0.35 0.29 0.14

3 4.79 34.45 222.07 6379.59 1.55 2.52 99.52 3.14 0.68 0.45 0.23 0.74 0.66

4 7.34 46.38 294.67 10,812.02 1.61 2.76 99.75 2.72 0.63 0.34 0.27 0.83 0.73

5 8.14 45.24 277.58 22,595 1.54 2.75 99.73 2.70 0.63 0.36 0.11 0.75 0.70

6 8.23 54.75 179.64 29,578.77 1.39 2.82 99.51 2.52 0.60 0.56 0.14 0.98 0.85

7 8.10 69.54 314.99 38,271.82 1.57 3.03 99.56 1.93 0.48 0.32 0.08 0.83 0.62

8 5.60 77.73 176.75 6932.02 1.51 1.92 99.64 1.58 0.37 0.57 0.24 0.56 0.43
9 10.35 38.43 182.76 15,134.26 1.46 2.67 99.57 4.05 0.75 0.55 0.27 0.77 0.50

10 8.12 66.26 230.25 24,316.34 1.40 2.45 99.56 2.04 0.51 0.43 0.17 0.82 0.65
11 2.13 94.78 328.51 2799.25 1.60 2.00 99.79 1.11 0.10 0.30 0.23 0.23 0.11
12 5.61 52.60 485.29 19,065.46 1.50 2.40 99.77 2.02 0.51 0.21 0.12 0.73 0.70

13 9.61 78.88 236.54 27,271.08 1.58 2.83 99.70 1.54 0.35 0.42 0.18 0.64 0.41

14 7.58 67.08 519.32 51,193.57 1.65 3.13 99.60 1.89 0.47 0.19 0.07 0.80 0.63
15 9.09 43.25 422.19 30,691.45 1.64 3.00 99.48 2.84 0.65 0.24 0.15 1.03 0.96
16 9.82 87.66 145.78 35,782.36 1.39 3.36 99.53 1.30 0.23 0.69 0.14 0.50 0.26

17 8.25 50.48 149.78 30,903.23 1.30 2.93 99.29 2.89 0.65 0.67 0.13 0.91 0.80
18 9.46 52.98 360.50 61,383.00 1.67 3.71 99.47 2.60 0.62 0.28 0.09 1.18 0.78
19 8.17 46.95 409.81 23,446.00 1.79 2.82 99.72 2.28 0.56 0.24 0.14 0.90 0.82

20 6.76 91.76 128.06 6059.63 1.67 2.03 99.69 1.18 0.15 0.78 0.33 0.26 0.14
21 0.83 99.35 1020.68 1699.01 2.07 2.15 99.95 1.01 0.01 0.10 0.10 0.04 0.01
22 4.99 88.17 417.51 12,510.00 1.57 2.83 99.78 1.27 0.22 0.24 0.24 0.49 0.24
23 1.77 98.98 649.57 5753.66 1.38 1.98 99.93 1.02 0.02 0.15 0.06 0.06 0.02
24 6.59 88.32 393.80 10,373.36 1.68 2.27 99.92 1.26 0.21 0.25 0.25 0.41 0.23
25 1.78 98.70 641.09 4572.39 1.32 1.76 99.94 1.03 0.03 0.16 0.08 0.07 0.03
26 1.45 99.33 308.04 1338.37 1.29 1.51 99.96 1.01 0.01 0.32 0.22 0.04 0.01
27 13.85 88.70 201.74 16,760.36 1.92 2.96 99.88 1.26 0.20 0.50 0.41 0.43 0.23

28 9.92 58.37 169.46 15,131.20 1.59 2.79 99.41 2.48 0.60 0.59 0.20 0.57 0.44

29 9.51 72.42 104.32 6943.37 1.40 1.95 99.59 1.77 0.43 0.96 0.41 0.58 0.42

30 5.42 93.32 104.28 3959.57 1.26 1.79 99.84 1.14 0.13 0.96 0.41 0.28 0.13
31 10.64 33.70 245.77 10,457.27 1.53 2.14 99.65 3.00 0.67 0.41 0.31 0.64 0.59
32 11.85 35.74 177.89 23,193.51 1.45 2.91 99.50 3.36 0.70 0.56 0.15 0.72 0.64
33 9.62 50.43 61.13 3529.91 1.41 2.65 99.62 2.63 0.62 1.64 0.82 0.71 0.61
34 7.92 73.92 309.87 12,335.15 1.51 2.37 99.71 1.80 0.33 0.62 0.30 0.42 0.32

35 7.96 74.19 310.70 12,040.57 1.51 2.36 99.72 1.79 0.33 0.63 0.31 0.41 0.31

36 8.00 74.46 311.53 11,745.99 1.51 2.35 99.72 1.78 0.32 0.64 0.31 0.40 0.30

Mean 7.27 69.78 300.85 16,912.49 1.54 2.51 99.69 1.95 0.39 0.49 0.23 0.57 0.43

Standard Deviation 2.96 21.38 186.10 13,890.26 0.17 0.49 0.17 0.79 0.23 0.29 0.14 0.29 0.27

Variance 8.78 457.25 34,634.27 192,939,422.56 0.03 0.24 0.03 0.62 0.05 0.09 0.02 0.08 0.07

The green and red cells indicate the best (least fragmented) and worst (most fragmented) states considering
landscape fragmentation, respectively.
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The results of the AREA_MNL for the present study were computed as 300.85 ± 188.74 ha.
The large spatial variability was found for AREA–MNL significantly with a range of 61.15
(sub-watershed 33) to 1020.68 (sub-watershed 21) ha.

TEL at the landscape level is an absolute measure of the total edge length of all patch
types. The maximum and minimum of TEL for KoozehTopraghi Watershed at landscape
level were obtained for sub-watersheds 37 (61,383.00 m) and 21 (1338.37 m), respectively.
SHAPE_MNL varied between 1.32 (sub-watershed 25) and 2.07 (sub-watershed 21). Since
all the LSIL values of KoozehTopraghi sub-watersheds are more than one (Table 4), it can
be concluded that the shape of the patches in all sub-watersheds is irregular. LSIL was
found equal to 2.51 ± 0.5 with minimal and maximal values of 1.51 (sub-watershed 26) and
3.71 (sub-watershed 18).

According to Table 4, the COHESIONL values obtained for all sub-watersheds are
approximately between 99.50 and 99.96. SPLITL, also called effective mesh number (meff),
is found at 1.95 ± 0.8 for KoozehTopraghi Watershed. This index varied from 1.01 in
sub-watersheds 21 and 26 to 3.38 in sub-watershed 32. The value of DIVISIONL for
KoozehTopraghi Watershed was obtained at 0.39 ± 0.23 m out of one with minimal and
maximal values of 0.75 m (sub-watershed 9) and 0.01 m (sub-watersheds 21 and 26),
respectively. As shown in Table 4, the values for the PDL in sub-watershed 33 are greater
than one, which shows the highest diversity and frequency in this sub-watershed, and
sub-watershed 21 has minimal PDL.

PRD as a quantitative measure of landscape composition was obtained at 0.23 ± 0.14
with minimal and maximal of 0.06 and 0.80 No. per ha for KoozehTopraghi Watershed.

It was found that the KoozehTopraghi Watershed had a mean and standard deviation
of 0.57 ± 0.29 in terms of SHDI. Sub-watershed 18 with an SHDI value of 1.18, and sub-
watershed 11 with a value of 0.23, were the best and worst parts of the study area in terms
of fragmentation state.

MSIDI values in the study watershed ranged from 0.01 to 0.96 with a mean of
0.42 ± 0.26. According to Table 4, the values obtained for MSIDI show the high land
use diversity in all sub-watersheds except 21, 25, and 26. Low diversity is due to the
patches uniformity and the non-appropriate distribution of patches.

3.4. Fragmentation Hot Spots and Clustering Analysis

The summary of the classification of 36 study sub-watersheds of KoozehTopraghi
at different categories of hot and cold spots and various confidence levels is provided in
Figure 4 and Table 5. According to the results of the Getis-Ord Gi* statistic and its generated
ZScore and p-value (Figure 4), in most study sub-watersheds, there was no significant
spatial pattern. For instance, the significant cold spots of PD metric in sub-watersheds
23 and 25 were classified at a 99% confidence level. Regarding LPI, sub-watersheds
23 and 36 were classified as significant hot spots at a 99% confidence level, and sub-
watersheds 34 and 17 were classified as significant cold spots at a 90% confidence level. In
addition, sub-watersheds 1, 25, 26, and 27 were recognized as significant hot spots at a 95%
confidence level.

Regarding AREA-MN, sub-watersheds 9, 28, 29, and 34 were classified as significant
cold spots at a 90% confidence level, and sub-watersheds 23, 35, and 36 were classified
as significant hot spots at a 99% confidence level. Sub-watersheds 22 and 25 were also
significant hot spots at a 95% confidence level. Out of 36 study sub-watersheds, 20 cases
accounted for significant hot spots at a 90% confidence level. According to the TE results,
52.5% of the whole study watershed (including sub-watersheds 23, 24, 25, 27, 30, 35, and
36) were identified as significant cold spots at a 90% confidence level, and 1.44% of the total
watershed was placed in the significant cold spots category at the 95% confidence level
(Table 5).
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Figure 4. Spatial distribution of hot spots of fragmentation metrics in the KoozehTopraghi Watershed.

Table 5. Summary of the spatial distribution of hot spots of fragmentation metrics in the sub-
watersheds of KoozehTopraghi (No. 1–36).

Classification
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Cold spot—99%
Confidence 25, 23 - - - - 25 17 - 23, 25 - - 23, 25 23, 25

Area (%) 0.72 - - - - 0.36 0.36 - 0.72 - - 0.72 0.72

Cold spot—95%
Confidence - - - 28, 29, 31,

33 - 24 15, 18 23, 26,
26, 27 26, 27 25 - 1,26 1, 24,

26, 27

Area (%) - - - 1.44 0.36 0.72 1.44 0.72 0.36 0.72 1.44

Cold spot—90%
Confidence - 17, 34 9, 28,

29, 34

24, 25, 23,
27, 30, 35,

36
- 23, 26,

27 - 1 1, 24 - - 24, 27 -

Area (%) - 0.72 1.44 2.52 - 1.08 - 0.36 0.72 - - 0.72 -

Hot spot—90%
Confidence - - 20 6, 19 22 15 1, 24,

27
11, 17,

35
8, 17,

35 9 27 36 14, 18

Area (%) - - 0.36 0.72 0.36 0.36 1.08 1.08 1.08 0.36 0.36 0.36 0.72

Hot spot—95%
Confidence - 1, 25,

26, 27 22, 25 14 20 17, 19 - 34, 36 36, 34 29, 30,
31, 33 28, 34, 9 - 15

Area (%) - 1.44 0.72 0.36 0.36 0.72 - 0.72 0.72 1.44 1.08 - 0.36

Hot spot—99%
Confidence - 23, 36 23, 35,

36
15, 16, 17,

18 - 16, 18 23, 25,
26 - - 25, 36

29, 30,
31, 33,
35, 36

- 17

Area (%) - 0.72 1.08 1.44 - 0.72 1.08 - - 0.72 2.16 - 0.36

Not Significant Other sub-watersheds

Area (%) 99.28 97.12 96.4 93.52 99.28 96.4 96.76 96.4 96.04 97.12 96.4 97.48 96.4
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According to Local Moran’s I results (Figure 5), most of the study sub-watersheds
were recognized with no specific clustering pattern. Nevertheless, in the ED metric, sub-
watersheds 23 and 25 and sub-watersheds 11 and 35 were clustered in the high and low
classes, respectively. For the LPI metric, sub-watersheds 23, 25, and 26 were classified
as high cluster, and sub-watershed 11 as high outlier. For the AREA-MN metric, sub-
watersheds 23, 25, and 26 were classified as a high cluster, and sub-watershed 29 was
classified as low outlier. For the TE metric, sub-watersheds 13, 14, 16, 17, and 18 were
classified as high cluster. For the SHAPE-MN metric, sub-watershed 20 was clustered
in high-class, and sub-watershed 26 was classified as a low outlier. For the LSI metric,
sub-watersheds 16, 17, and 18 were classified as high cluster, and sub-watershed 25 was
classified as low outlier.
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For the COHESION metric, sub-watersheds 16, 17, and 18 were classified as low
cluster, sub-watershed 28 was classified as low outlier, and sub-watersheds 23, 25, and 26
were classified as a high cluster class. For the SPLIT metric, sub-watersheds 23, 25, and 26
were classified in the low cluster class, and sub-watershed 11 was classified as a low outlier.
For the DIVISION metric, sub-watersheds 23, 25, and 26 were classified as high cluster, and
sub-watersheds 11 and 35 were classified as low outlier. For the PD metric, sub-watersheds
29, 30, and 33 were classified as a high cluster class, and sub-watershed 25 was classified as
a low outlier. Regarding PRD metrics, sub-watersheds 29, 30, 31, 33, 34, 35, and 36 were
classified into a high cluster class. For the SHDI metric, sub-watersheds 23, 25, and 26 were
classified as low cluster as well as sub-watersheds 15 and 17 as high cluster.

4. Discussion

Fragmentation metrics at three levels of patch, class, and landscape provide easy-
to-use maps of spatial distribution and informative approaches for regional sustainable
land planning. Patches that characterize distinct areas with akin features are subjected
to patch-level metrics. While entire patches of land use/land cover categories are used
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to calculate class-level metrics. Finally, landscape-level metrics are computed through a
mixture of entire patch and class types in study sub-watersheds [24].

Our results about the AREA_CPS (34.33 ± 10.30%) and AREA_LPS (49.22 ± 2.41%)
at patch-level study were relatively similar to the result reported by Esfandiyari Darabad
et al. [34] in Gharesou River Watershed, Ardabil Province who found the AREA_CPS be-
tween 25.75 and 36.96 and AREA_LPS between 28.94 and 38.95%, indicating the relatively
high fragmentation. These metrics also indicated that the sub-watersheds with the maxi-
mum value had the maximum landscape continuity. PERIM is another fundamental metric
that is considered a basis for many landscape analyses. Specifically, the patch perimeter is
studied as an edge length. Here, the edge’s intensity and distribution establish the main
characteristic of landscape configuration and pattern [23]. In addition, its connection with
the patch area provided the critical basis for many shape metrics [9,24]. GYRATE is a degree
of patch extent affected by patch size and compaction [24]. If the patch contains a single
cell and rises without limit with increasing patch extent, it results in to GYRATE of zero. It
reaches its extreme value when the patch encompasses the whole landscape as obtained
for sub-watershed 21 with the value of 1624.60 m (Table 2). As the GYRATE increase, the
cohesion between the patches decreases [24]. The high variability was observed for PERIM
and GYRATE at a spatial scale, indicating the extreme heterogeneity in patch extent and
affectability by both patch size and patch compaction.

Patches with less geometrical complexity can be observed in the managed land-
scape [26]. SHAPE and FRAC metrics are in a positive relationship with fragmented.
Their low mean (Shape = 1.04, FRAC = 1.26) represented low fragmentation in the study
watershed. However, Yuan et al. [35] observed the increase in FRAC at the Qinhuai River
Basin from 2003 to 2017, emphasizing the increase in urban lands and their complexity.
The CIRCLE metric was also estimated in low to medium value (0.37 ± 0.83). CIRCLE
metric quantifies the overall patch elongation. Indeed, it assessed the patch shape or
related circumscribing circle according to the patch area/the smallest circumscribing circle
area [36].

Considering the average value of metrics as a threshold, sub-watershed 7 is recognized
as the most fragmented sub-watershed in terms of all study patch-level metrics. Sub-
watersheds 18 and 25 are in a critical situation in terms of five metrics. Therefore, in these
watersheds, taking into account special management programs and measures should be
the prime goal to functionally and structurally enhance the vegetation cover.

In terms of class-level analysis, metrics of EDC, SHAPE_MNC, LSIC, SPLITC, DIVISIONC,
and PDC are in positive relation with fragmentation, and they recorded different spatial
variations (Table 3, Figure 3). The highest values of them were found in dry farming, good
rangeland, orchard, residential, residential, and residential land uses. In addition, the resi-
dential land use is in the lowest value of LPIC and EA_MNC. EDC, as the equivalent total
length of the edge, is considered the most commonly used metric in studies quantifying the
effects of fragmentation at class level [25]. LPIC, as a simple metric of dominance, assesses
the percent of total landscape area contained within the largest patch [37]. LPIC is equal to
0 and 100 when the largest patch of the specific patch type is very small and the whole land-
scape entails a single patch of the corresponding patch type, respectively. With an increase
in the values of LPIC, the connection and continuity of the surface of the landscape increase.
At the class level, if the patch is larger, the EDC is greater. In this regard, Kowe et al. [3]
found an increase in EDC from 109.5 m ha−1 (in 1994) to 117.8 m ha−1 (in 2017), denoting
an increasing trend in vegetation fragmentation. The high value of this metric was also
found by Mohammadi and Fatemizadeh [38] in southern Iran, and its increasing trend
(from 1.77 to 1.85 m ha−1 for rangeland) was approved due to highway construction.

Our results showed LPIC with lower than 50 throughout all land uses of KoozehTo-
praghi Watershed. This shows that there are high and moderate levels of disconnectivity
through the dominant land uses. In this regard, Mohammadi and Fatemizadeh [38] also
found a high LPIC for the Tang-e Bostanak Protected Area (more than 83%); however,
a 0.41% decrease in LPIC was observed after highway construction. Narmada et al. [9]
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reported LPIC ranges of 0.45–31.13, 0.98–27.69, and 2.25–18.45% for 2000, 2008, and 2019,
respectively. In all study years, the highest LPIC was obtained for the evergreen class, with
an increasing trend in its fragmentation. This is inconsistent with the higher value of AREA–
MNC in moderate rangeland and dry farming, for the State of Rondônia, Brazilian Amazon.
Batistella et al. [39] also found the highest AREA–MNC in the forest (76.94–106.59 ha) fol-
lowed by bareland/cropland (7.27–8.81 ha). They reported the highest and lowest TEC
in the forest (3,905,970–3,905,970 m) and water bodies (30,030–175,020 m), respectively.
The LSIC metric indicates the degree of patch irregularity. In addition, the relative im-
portance of edge length and area of patch types is explained by LSIC [39]. Therefore,
increasing the amount of LSIC means increasing the irregularity and class complexity in
the study watershed.

COHESIONC is employed to describe the class aggregation and physical connected-
ness of the corresponding patch type [25,40] in the subjected land uses of KoozehTopraghi
Watershed. As the patches continue to increase, the value of this indicator also increases.
Jaeger [41] considered the SPLITC as a fragmentation metric for quantifying six fragmenta-
tion phases, including perforation, incision, dissection, dissipation, shrinkage, and attrition.
It was found that by increasing the PDC, the connectivity of the landscape decreases, and the
patches become smaller and more regularized, as also noted by Kang et al. [16]. Therefore,
the abundant presence of small patches in various vegetation coatings lead to a decrease in
the intervals of two similar patches and an increasing PDC of residential land use in the
KoozehTopraghi Watershed. Then, orchard and irrigation land uses had PDC values of 0.04
and 0.03 per ha, respectively. The rangeland land use had a lower PDC, indicating that the
cohesion and continuity in this land use are high.

At the landscape level, metrics of AREA_MNL, TEL, SHAPE_MNL, LSIL, COHESIONL,
SPLITL, DIVISIONL, PDL, PRD, SHDI, and MSIDI allocated more than 50% variance
throughout study sub-watersheds. The EDL has been recognized as a powerful metric
representing the watershed structure (e.g., [7]), habitat loss (e.g., [42]), abundance (e.g., [6]),
and spatial aggregation (e.g., [6,25]), habitat pattern and composition (e.g., [6]), and so
on. At the landscape level, the relationship between EDL and landscape fragmentation is
positive [43].

The spatial pattern of LPIL for different conditions was obtained similar to our results
(e.g., [5–7,17]). Liu et al. [42] found an exponential and positive relationship with decreasing
trend between Area_MN and habitat loss based on the analysis of 16 large cities around
the world. In addition, Rakhmawati [44] reported a significant reduction in AREA_MNL
metric from 2001 to 2016 at Gunung Halimun Salak National Park (GHSNP) as one of the
protected areas in Indonesia. The range of Area_MNL through GHSNP was noted between
3.2 and 295.5 ha. The results verified a progressive reduction in the size of the study forests.
TEL at the landscape level is an absolute measure of the total edge length of all patch types.
According to Table 4, the maximum and minimum of TEL for KoozehTopraghi Watershed
at landscape level were obtained for sub-watersheds 37 (61,383.00 m) and 21 (1338.37 m),
respectively. As the TEL increases, the landscape connectivity and cohesion decrease, and
the patches become more petite and more regular, similar results were reported by Khazaei
and Azari Dehkordi [45] and Kiyani and Feghhi [17] for the north of Iran.

SHAPE_MNL is used as the representative metric of the shape complexity of landscape
structure [46]. This metric varied between 1.32 (sub-watershed 25) and 2.07 (sub-watershed
21). Moreover, this metric for a square-shaped patch is equal to one. With increasing the
shape irregularity, it becomes larger [17]. SHAPE_MNL demonstrates the critical conse-
quences of human impacts on landscapes [46]. Furthermore, LSIL is an aggregation metric
that deals with the spatial property of dispersion [43]. The LSIL is equal to one, indicating
the landscape consists of a patch with maximum compression and approximately has a
square shape. When the patch is more fragmented, the boundary is more amorphous,
and its shape becomes more complicated. The high correlation between LSIL and habitat
abundance and spatial aggregation was found by Wang et al. [6] in northeast Alberta,
Canada. AREA_MNL is a type of landscape metric based on the mean patch character-
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istic providing a measure of central tendency in the corresponding patch characteristic
across the entire landscape [43]. In addition, the value of the COHESIONL metric was
reported by Akçakaya et al. [23] for some parts of the United States between 96.14 and
97.65. The COHESIONL explains the physical connectivity of the land use patches, it
is generally employed to describe the changes in landscape connectivity resulting from
fragmentation in different studies (e.g., [6,40]). Uuemaa et al. [46] noted that the theoretical
range of COHESIONL is 0−100, but the actual range was 98−100 for Estonian landscapes.
PRD metric is also used in other studies to analyze landscape fragmentation (e.g., [47] in
Germany, [46] in Estonia, [48] in the Czech Republic).

According to Akçakaya [23], Jaeger [41], and McGarigal [43], SPLITL represents the
“number of patches one gets when dividing the region into parts of equal size in such a way
that the new configuration leads to the same degree of landscape division”. DIVISIONL
characterizes “the anthropogenic penetration of landscapes based on the distribution
function of the remaining patch sizes” as also mentioned by Jaeger [41] and Wang et al. [6].
The presence of high PDL in the study sub-watersheds indicates the land use degradation,
which has led to fragmentation increase. It is believed that the PDL of a particular land
use type may influence critical ecological processes of the watershed. These results are
inconsistent with finding by Kang et al. [16] who found that PDL in Japan was reduced, and
the urban areas, pastures, and rangelands were concentrated within the large patches. It is
believed that the PDL of a particular habitat type may affect various ecological processes,
depending on the landscape context.

SHDI [49] is one of the crucial metrics frequently used to measure the diversity of
the constituents of the landscape [37]. The SHDI calculates the relative variation in each
patch. If there is only one patch in the landscape, then this index is equal to zero, and
when the number of patches increases and the distribution of the area is proportional to the
increase with the patches types, it would be equal to one [24]. The MSIDI [50,51] is selected
along with SHDI as the most popular diversity index and is widely employed to quantify
landscape composition [37]. MSIDI is more sensitive to the most abundant patches. When
the number of the homogeneity is one, the landscape is very diverse, and when it descends
to zero, the landscape diversity diminishes [24]. Therefore, the most suitable diversity and
appropriate spatial patterns between different landscapes were observed in most study
sub-watersheds.

Generally, the Moran index showed mainly positive values for different metrics in
most sub-watersheds (Figures 4 and 5, Table 5). This indicates that the spatial distribution
of the metrics is clustered. However, the correlation of the study fragmentation metrics
was not high, indicating a high data concentration. Results of the Getis-Ord Gi* and Moran
indices for Harare metropolitan city in Zimbabwe [3] dedicated various spatial vegetation
clustering varied from dispersed to highly clustered. Hot spots of vegetation patches were
also found at confidence levels of 90, 95, and 99%. Furthermore, a slight reduction in hot
spots and an increase in cold spots at a 99% confidence level were obtained. The statistically
significant hot spots were mainly concentrated in the northern part of Harare metropolitan
city, a more vegetated area of large and contiguous vegetation patches.

The results of the present study are significant for prioritizing sub-watersheds to land
management objectives. Our findings also are valuable for illustrating the spatial variation
in fragmentation patterns for regional studies, as concluded by others (e.g., [12,37]). Practi-
cal analysis of fragmentation metrics affords a forthright tool for assessing the impact of
future land-management projects and human activities on landscape integrity.

Regarding the limitations of the current research, it can be said that the scale de-
pendence of some landscape metrics with spatial resolution requires special attention in
choosing the appropriate scale in landscape ecology studies and the accurate interpretation
of ecological processes. Therefore, calculating the landscape metrics on a suitable scale af-
fects the identification of ecological processes, prediction of ecological functions (landscape
modeling), and the reduction in uncertainty. By increasing the spatial resolution (smaller
cell size), the difference in the behavior of the gauges is better understood. The weighting
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and selection of more effective landscape metrics in ecological processes is influenced
by the views of experts and the study objectives. Therefore, the selection of the panel
members in an expert elicitation procedure with a comprehensive view on landscape ecol-
ogy and ecological processes and their potential impacts on different landscape changes is
strongly recommended. Moreover, emphasizing the selection of metrics that better interpret
change processes is important, and in this regard, focusing on composition (amount) and
configuration (i.e., connectivity) provides more details and a better understanding of the
landscape analysis.

Considering all factors affecting the spatial pattern of clusters and analyzing hot spots
is also another research limitation. In other words, it is difficult and complex to incorporate
all the driving forces affecting the change and fragmentation of the landscape, such as
population, climate, human activities, and the cumulative effect of land degradation. It is
possible to understand changes in landscape patterns under different management condi-
tions by combining spatial and temporal analysis of different criteria, but the limitations
caused by changes in land management, as well as climatic and physical conditions, should
also be taken into account.

5. Conclusions

Spatial patterns of fragmentation metrics for quantifying environmental change are
supported by landscape ecology research. Three levels of patch, class, and landscape
metrics were separately widely used to assess the degree and spatial dynamics of landscape
fragmentation. These different levels of landscape metrics also contain different natures
of shape, patch, and isolation and are applied for detecting structural and functional
aspects of vegetation cover. The present study provides an integrated and comprehensive
analysis of all landscape metrics in the three levels simultaneously. At the same time,
their clustering patterns and spatial autocorrelation were also investigated. Such multi-
lateral analysis, which obtains less attention by researchers, provides a road map for land
managers and decisionmakers at local, regional, national, and international levels to reach
reliable monitoring tools to change detection in land cover and use, particularly from the
arid and semi-arid areas. This study was planned for the KoozehTopraghi Watershed, NW
Iran, as a case study located in cold semi-arid parts. To this end, land use datasets were
provided to derive or calculate fragmentation metrics. As a result, the following patterns of
the land fragmentation metrics through 36 study sub-watersheds should be noted:

– A high spatial variation was found between different study fragmentation metrics;
– At the patch level, most watersheds are in a moderate or critical state regarding

AREA_CPS, AREA_LPS, SHAPE, FRAC, and CIRCLE metrics. About 50% of the
watershed is under the average state regarding AREA_CPS, PERIM, and GYRATE
metrics. Therefore, it is imperative to develop effective conservation strategies in the
critical sub-watersheds;

– At the class level, the most and least fragmented land use was mainly allocated to
residential and dry farming land uses, respectively. It can be concluded that although
the residential land use comprises only 0.75% of the study watershed, residential land
use needs more management attention because it leads to the most degradation and
threats in the watershed;

– At the landscape level, sub-watersheds 1, 2, 11, 21, to 26, and 34 to 36 obtained the
better status of the study fragmentation metrics and had a better general situation
than other parts of the watershed. These sub-watersheds are located in regions with
less than 1732 m elevations and are almost covered by dry farming land use. The
present results show the hot and cold spots for future consideration of the design
features and best management practices.

The prominent target organizations in Iran (e.g., Department of Environment, Natural
Resources and Watershed Management Organization, and Research Institute of Forests and
Rangelands) as well as at the international level (e.g., Convention on Biological Diversity,
the European Biodiversity Observation Network, and the Biodiversity Indicators Partner-
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ship) can apply and implement the informative results of the present research in different
subjects such as land use planning, process-based interactions modeling, environmental
impact assessments, natural resources management, rural development, and biodiversity
conservation for national and international contexts.

For future research, since KoozehTopraghi Watershed has been under urban and
agriculture development pressure during the last two decades, analysis of the temporal
variation in the fragmentation metrics on a long-term scale, which is important for con-
servation purposes, is suggested. In addition, using novel fragmentation metrics and
comparing their results with the present study complements and supplements the analysis
of land fragmentation. Providing a core set of best and adaptive management and conser-
vation practices to reduce the landscape fragmentation impacts should be performed by
future research.
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Appendix A

Table A1. Selected metrics at patch level for fragmentation analysis of the KoozehTopraghi Watershed,
Ardabil Province, Iran.

Metrics Name (Its
+/− Relation with

Fragmentation)
Description Symbol Formula Value Range Units

Percentile of the
class distribution (−)

“These metrics are obtained by rank
ordering observations from lowest to
highest and computing the percentage

of observations smaller than the
observed value for the focal patch.”

AREA_CPS

CPS =(
rank(Xij)−1

ni−1

)
(100) 0 ≤metric ≤ 100 %

Percentile of the
landscape

distribution (−)
AREA_LPS

LPS =(
rank(Xij)−1

N−1

)
(100)

0 ≤metric ≤ 100 %

Perimeter (−)

“This metric indicated the perimeter
of patch, including internal holes,
regardless of whether perimeter

represents true edge or not.”

PERIM PERIM = pij
PERIM > 0,

without limit m

Radius of gyration
(−)

“The measure of patch extent; that is,
how far across the landscape a patch

extends its reach. All other things
equal, the larger the patch, the larger

the radius of gyration.”

GYRATE GYRATE =
z
∑

r=1

hijr
z

GYRATE ≥ 0,
without limit m

Shape index (+)
“This index measures the complexity
of patch shape compared to a standard

shape (square) of the same size.”
SHAPE SHAPE =

0/25Pij√aij

SHAPE ≥ 1,
without limit -
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Table A1. Cont.

Metrics Name (Its
+/− Relation with

Fragmentation)
Description Symbol Formula Value Range Units

Fractal dimension
index (+)

“It reflects shape complexity across
range of patch sizes.” FRAC FRAC =

2 ln(0/25pij)
ln aij

1 ≤ FRAC ≤ 2 -

Related
circumscribing circle

(−)

“Index to compare the area of the
patch to the area of the smallest circle

that can circumscribe the patch.”
CIRCLE CIRCLE = 1−

[
aij
as

ij

]
0 < CIRCLE < 1 -

xij: value of a patch metric for patch ij; ni: number of patches of the corresponding patch type (class) II; N: number
of patches in the landscape; pij: perimeter (m) of patch ij; hijr: distance (m) between cell ijr (located within patch ij)
and the centroid of patch ij (the average location), based on cell center-to-cell center distance; z: number of cells in
patch ij; aij: area (m2) of patch ij; and aij

s: area (m2) of the smallest circumscribing circle around patch ij (derived
from [22,24–26].

Table A2. Selected metrics at class level for fragmentation analysis of the KoozehTopraghi Watershed,
Ardabil Province, Iran.

Metrics Name (Its
+/− Relation with

Fragmentation)
Description Symbol Formula Value Range Units

Edge density (+) “It standardizes edge to a per
unit area basis.” EDC ED =

∑m
k=1 eik

A (10, 000)
ED ≥ 0, without

limit m ha−1

Largest patch index
(−)

“The percentage of the land-
scape comprised by the largest

patch of the corresponding
patch type (class level).”

LPIC

n

max

j = 1

aij

A (100)

0 < LPI 5 100 %

Mean patch area (−) “Average area of a patch for a
particular class of land cover.” AREA_MNC AREA−MN = aij

1
10,000 AREA > 0 ha

Total edge (−)
“Total edge is an absolute

measure of total edge length of
a particular patch type.”

TEC
m
∑

k=1
eik

TE ≥ 0, without
limit. m

Mean patch shape
index (+)

“Patch perimeter divided by the
minimum perimeter possi-
ble for a maximally com-

pact patch.”

SHAPE_MNC SHAPE =
Pij

minPij
SHAPE ≥ 1 -

Landscape shape
index (+)

“A standardized measure of the
total edge or edge density that

adjusts for the size of
the landscape.”

LSIC LSI =
0/25 ∑m

k=1 e∗ik√
A

LSI ≥ 1, without
limit -

Patch cohesion index
(−)

“It Indicates the physical
connectedness of the

corresponding patch type”
COHESIONC

COHESION =[
1−

∑n
j=1 p∗ij

∑n
j=1 p∗ij

√
p∗ij

][
1− 1√

z

]−1
. (100)

0 < COHESION
< 100 -

Splitting index (+)

“Number of patches one gets
when dividing the region into

parts of equal size in such a way
that the new configuration
leads to the same degree of

landscape division.”

SPLITC SPLIT = A2

∑n
j=1 a2

ij

1 ≤ SPLIT ≤
number of cells
in the landscape

area squared

-

Landscape division
index (+)

“Probability that two randomly
chosen places in a landscape are

not situated in the same
un-dissected area.”

DIVISIONC DIVISION =

[
1−

n
∑

j=1

( aij
A

)2
]

0 ≤ DIVISION ≤
1 ha

Patch density (+) “Number of patches per
unit area.” PDC PD = ni

A (10, 000)(100)
PD > 0,

constrained by
cell size

Number
per 100 ha

eik: total length (m) of edge in landscape involving patch type (class) i, includes landscape boundary and
background segments involving patch type i; A: total landscape area (m2); aij: area (m2) of patch ij; pij

*: perimeter
of patch ij in terms of number of cell surfaces; aij

*: area of patch ij in terms of number of cells; Z: total number of
cells in the landscape; and ni: number of patches in the landscape of patch type (class) i (derived from [22,24–26]).
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Table A3. Selected metrics at landscape level for fragmentation analysis of the KoozehTopraghi
Watershed, Ardabil Province, Iran.

Metrics Name (Its
+/− Relation with

Fragmentation)
Description Symbol Formula Value Range Units

Edge density (+)
“It equals the sum of the lengths of all

edge segments in the landscape, divided
by the total landscape area.”

EDL ED = E
A (10, 000) ED ≥ 0, without limit m ha−1

Largest patch index
(−)

“It equals the sum of the lengths of all
edge segments involving the

corresponding patch type, divided by
the total landscape area.”

LPIL LPI =
max(aij)

A (100) 0 < LPI 5 100 %

Mean patch area (−)
“This metric calculates the shortest

distance between a patch and another
patch of a similar type.”

AREA
_MNL

AREA−MN

=
n
∑

j=1
aij

1
10,000

AREA >0 ha

Total edge (+)
“It is an absolute measure of the total

edge length of all patch types.” TEL TE = E TE ≥ 0, without limit m

Mean patch shape
index (+)

“Patch perimeter is divided by the
minimum perimeter possible for a

maximally compact patch.”

SHAPE
_MNL

SHAPE =
m
∑

j=1

Pij
minPij SHAPE ≥ 1 -

Landscape shape
index (+)

“It is a standardized measure of the total
edges or the total edge density that

adjusts to the size of the landscape.”
LSIL LSI = 0/25E∗√

A LSI ≥ 1, without limit -

Patch cohesion
index (−)

“It Indicates the physical connectedness
of the corresponding patch type. It

standardizes richness to a per-area basis
that facilitates comparison among

landscapes, although it does not correct
for this interaction with scale.”

COHE
SIONL

COHESION =[
1−

∑m
i=1 ∑m

j=1 pij

∑m
i=1 ∑m

j=1 pij
√

aij

]
[
1− 1√

z

]−1
. (100)

The behavior of this
metric at the landscape
level has not yet been

evaluated.

-

Splitting index (+)

“It is defined as the number of patches
one gets when dividing the entire

landscape into patches of equal size in
such a way that this new configuration
leads to the same degree of landscape
division as obtained for the observed

cumulative area distribution.”

SPLITL SPLIT = A2

∑m
j=1 ∑n

j=1 a2
ij

1 5 SPLIT 5 number of
cells in the landscape

area squared
-

Landscape division
index (+)

“This metric is based on the cumulative
patch area distribution and is

interpreted as the probability that two
randomly chosen pixels in the landscape

are not situated in the same patch”

DIVISI
ONL

DIVISION =[
1−

m
∑

i=1

n
∑

j=1

( aij
A

)2
]

0 5 DIVISION 5 1 ha

Patch density (+)
“This metric is used to evaluate the
degree and dynamics of landscape

fragmentation.”
PDL PD = N

A (10, 000)(100) PD > 0, constrained by
cell size

Number
per

100 ha

Patch richness
density (−)

“It measures the number of patch types
present.” PRD PD = m

A (10, 000)(100) PRD > 0, without limit
Number

per
100 ha

Shannon’s diversity
index (+)

“Based on information theory, indicates
the patch diversity in a landscape.” SHDI SHDI = −

m
∑

i=1

(
p∗i ln pi

) SHDI ≥ 0,
without limit -

Modified Simpson’s
diversity index (+)

“MSIDI eliminates the intuitive
interpretation of Simpson’s diversity

index (SIDI). Diversity measure, which
equals minus the ln of the sum of the

squared proportional abundance of each
patch type.”

MSIDI MSIDI = − ln
m
∑

i=1
p2

i
MSIDI ≥ 0,

without limit -

E: total length (m) of edge in the landscape; E*: total length (m) of edge in the landscape, includes the entire
landscape boundary and some or all background edge segments; N: total number of patches in the landscape;
m: number of patch types (classes) present in the landscape, excluding the landscape border if present; and Pi:
proportion of the landscape occupied by patch type (class) i. Other variables are similar to Tables A1 and A2
descriptions (derived from [22,24–26]).
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2. Kubacka, M.; Żywica, P.; Subirós, J.V.; Bródka, S.; Macias, A. How do the surrounding areas of national parks work in the context

of landscape fragmentation? A case study of 159 protected areas selected in 11 EU countries. Land Use Policy 2022, 113, 105910.
[CrossRef]

3. Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A quantitative framework for analysing long term spatial clustering and vegetation
fragmentation in an urban landscape using multi-temporal landsat data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 10257. [CrossRef]

4. Karami, A.; Feghhi, J. Investigating the of landscape metrics in preserving land use patterns (Case study: Kohgiluyeh and
Boyerahmad Province). Ecology 2011, 60, 79–88. (In Persian)
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