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Abstract: Understanding occupants’ behaviours (OBs) of heating and cooling use in dwellings is
essential for effectively promoting occupants’ behavioural change for energy saving and achieving
efficient demand response operation. Thus, intensive research has been conducted on data collec-
tion, statistical analysis, and modelling of OBs. However, the majority of smart metres currently
deployed worldwide monitor only the total household consumption rather than appliance-level
load. Therefore, estimating the turn-on/off state of specific home appliances from the measured
household total electricity referred to as non-intrusive load monitoring (NILM), has gained research
attention. However, the current NILM methods overlook the specific features of inverter-controlled
heat pumps (IHPs) used for space heating/cooling; thus, they are unsuitable for detecting OBs. This
study presents a rule-based method for identifying the occupants’ intended operation states of IHPs
based on a statistical analysis of load data monitored at 423 dwellings. This method detects the state
of IHPs by subtracting the power of sequential-operation appliances other than IHPs from the total
household power. Three time-series characteristics, including the durations of power-on/off states
and power differences between power-off/on states, were used for this purpose. The performance of
the proposed method was validated, indicating an F-score of 0.834.

Keywords: occupants’ behaviour; residential buildings; HVAC system; rule-based method

1. Introduction

With growing concerns about global climate change in recent years, reducing green-
house gas emissions has become an urgent issue. The building sector accounted for
approximately 36% of the global energy demand and 37% of energy-related CO2 emissions
in 2020 [1]; thus, reducing energy demand through behavioural change and improving
energy efficiency, as well as increasing renewable energy penetration, are crucial. Further-
more, increasing demand flexibility has gained importance to ensure a supply–demand
balance for stable power supply operations, consistent with the increase in renewable
energy sources.

Heating, ventilation, and air conditioning (HVAC) play a crucial role in reducing
the building energy demand because of their extensive contribution to the total demand.
Gonzalez-Torres et al. [2] reported that HVAC systems are the most consumed service
worldwide (38%) in both residential (32%) and tertiary (47%) sectors. Since the primary
function of HVAC is to establish healthy and thermally comfortable indoor spaces, the
demand for HVAC largely depends on the building envelope performance, energy efficiency
of HVAC, and occupants’ behaviours (OBs), such as set-point temperature and duration
of use [3,4]. The roadmap toward net zero (NZE) presented by the International Energy
Agency emphasised the importance of behavioural changes for emission reduction in
buildings in the NZE scenario [5].

Demand response (DR) is a novel approach to demand flexibility that refers to method-
ologies to encourage consumer response to take energy-saving actions or shift the time of
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energy use through various schemes, such as time-of-use electricity pricing [6–8], incentive
payments designed to induce lower electricity use at peak hours [9], and smart metering
systems of electricity consumption, including customer feedback functions [10]. Home-
energy management systems are widely used for providing feedback and smart metering
through in-home displays [11,12]. Ehnhardt-Martinez et al. [13] summarised the results of
36 past studies on DR and established that electricity use was reduced by 8.0% to 12.0%
through the behavioural changes triggered by metering-based advice.

Understanding the OBs on heating and cooling use in dwellings is crucial for designing
effective schemes to promote behavioural change and achieve appropriate performance in
the actual DR operation. In particular, the energy consumption of space heating/cooling in
the residential sector highly depends on the occupants’ various behavioural patterns, such
as their living schedules, thermal preferences, and personal habits. Therefore, intensive
research has been conducted on the data collection, statistical analysis, and modelling of
OBs in relation to stochastic building energy simulations.

To monitor the usage status of home appliances, for example, when appliances are
running (hereinafter called the ‘turn-on-state’) or out-of-operation with no electricity use
(hereinafter called the ‘turn-off-state’), installing sensors to target appliances is a straightfor-
ward method. However, the majority of smart metres currently deployed in the residential
sector can monitor only the total household consumption. Multiple-appliance metering is
generally expensive and may cause privacy concerns for customers. Therefore, technologies
for estimating the turn-on/off state of each or specific home appliance from the time-series
patterns of measured household total electricity demand data, called non-intrusive load
monitoring (NILM), have gained popularity among researchers for decades [14]. Past
studies on NILM can be classified into two types—high sampling frequency from several
tens of kHz to 1 Hz and low sampling frequency from 1 Hz to 1/60 Hz—Based on the
frequency of the monitored load data used [15].

Most studies on NILM from the 1990s and the 2000s are based on high-frequency
sampled data. The advantage of using high-frequency data is that they can capture electrical
characteristics, such as distortions and harmonics of current and voltage waveforms, when
switching home appliances. For example, Leeb et al. [16] proposed a method for estimating
the switching of each home appliance based on the spectral envelope created by the Fourier
transform. Murata et al. [17] presented a method for utilising the harmonic current and
phase data to estimate the electricity consumption of each device at each time step.

In the 2010s, with the spread of smart metering, open datasets of the electricity demand
of dwellings measured at low sampling frequencies, such as REDD [18] and UK-DALE [19],
were released. This accelerated NILM research using low sampling frequency data. Such
NILM studies use sparse coding [20], hidden Markov models [21,22], and methods based
on feature extraction of time-series patterns [23]. In addition, modern machine learning
technologies, such as deep neural networks [24,25], Boltzmann machines [26], and Bayesian
classifiers [27], have been applied to NILM.

Unlike usual home appliances, the usage trends of air conditioners (ACs) for space
cooling or heat pumps (HPs) for both heating and cooling have distinct seasonal charac-
teristics, and they significantly contribute to the annual peak demand. Therefore, NILM
algorithms, specifically for ACs or HPs, are being developed to improve accuracy. For
example, Perez et al. [28] proposed an estimation method using k-means and validated
their model using an open dataset measured at Pecan Street Inc. in the U.S. [29]. Su
et al. [30] applied a support vector machine and confirmed the estimation performance
using the Pecan Street dataset. Inoue et al. [27] adopted averaged one-dependence esti-
mation (AODE), which is a type of Bayesian classifier, and tested the performance of the
model based on the experimental data of electricity consumption of fixed-frequency HPs.
In general, compressors of fixed-frequency HPs mostly operate at a predetermined speed;
thus, electricity consumption tends to be high [29]. The basic ideas of these studies have
some similarities; when high-power consumption continues for a certain duration, ACs
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or HPs are likely to be in the turn-on state. The assumption adopted in these studies was
validated using the demand data of dwellings equipped with fixed-frequency HPs.

Residential ACs or HPs that assist in controlling the speed of the compressor for
optimum operation have recently improved energy efficiency significantly compared to
conventional fixed-frequency ones, and they are rapidly replacing conventional fixed-
frequency ACs and HPs worldwide [30]. For example, inverter-controlled HPs (IHP) had a
100% share in the Japanese residential market by 2020, and the same is expected to increase
continuously worldwide. The characteristics of the load patterns of IHPs are different from
those of the aforementioned conventional methods [31–33]. First, there are periods with no
electricity consumed despite HPs being in operation, as their compressors repeatedly rotate
and stop when the thermal load is small. Second, even during the HP-running periods, the
electricity consumption is typically low based on the thermal load by reducing the com-
pressor rotation speed. Such characteristics of IHPs mean that NILM is more challenging
than conventional fixed-frequency HPs. Moreover, the characteristics of IHPs, in which
the power-on/off state determined by electricity consumption does not necessarily corre-
spond to the occupants’ intended turning-on/off behaviours, cause problems in studies
aimed at detecting occupants’ heating and cooling use behaviour [34,35]. Ono et al. [36]
proposed an algorithm for identifying the time of occupants’ switching-on/off behaviour
taken from the time-series electricity data of IHPs, based on OB monitoring and metered
electricity data of HPs. However, to the best of our knowledge, no studies on NILM have
considered the discrepancy between the occupant’s intended IHP switching behaviour and
the power-on/off status by monitoring household electricity demand.

This study proposes a rule-based method for estimating the intended behaviour of
occupants to turn on/off HPs applicable to current IHPs. First, we conducted a statistical
analysis of the appliance-level electricity consumption dataset of 586 dwellings using IHPs
to identify the time-series characteristics of the electricity consumed by various home ap-
pliances. Subsequently, we proposed a rule-based algorithm for estimating the turn-on/off
states of the HPs. Modern machine learning methods can be considered another option;
however, they have the disadvantage of having numerous parameters and a large compu-
tational load during both training and inference procedures. However, the computational
load of rule-based methods is generally low. This facilitates the transmission of energy-
saving information to occupants using limited computing resources. The proposed method
can be applied to a large amount of existing total household electricity consumption data to
generate a substantial pool of data on the operating states of HPs. The method is expected
to be of considerable use to researchers in elucidating the OB characteristics as well as
in appropriate OB modelling. Furthermore, the proposed method can be used to issue
power-saving reminders based on the operational status of the HPs to implement a DR
programme for households.

The remainder of the paper is organised as follows (Figure 1). Section 2 presents an
overview of the electricity demand dataset used in the analysis. Section 3 discusses the
extracted time-series characteristics of the electricity consumption of the IHPs based on the
dataset. Section 4 proposes a rule-based method for estimating the turn-on/off states of the
IHPs. Section 5 discusses the accuracy of the proposed method. Finally, Section 6 presents
the conclusions.
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2. Summary of Dataset
2.1. Target Dwellings

We used a one-year dataset of the electricity demand measured at 586 dwellings
from 1 January to 31 December 2013. All of the surveyed dwellings were located in the
same residential building of a 20-story, large-scale housing complex in Settsu City, Osaka
Prefecture, Japan. A summary of the target residential building is provided in Table 1.

Table 1. Measurement target housing complex.

Location Settsu City, Osaka, Japan

Number of stories 20
Completion date January 2011

Structure Reinforced concrete structure

Building envelopes
External walls: internal insulation with air layer,

U-value 0.411 W/(m2 K)
Windows: Low-E double-glazing

Number of dwellings by layout
(average floor area)

Total 586 dwellings
38 dwellings: 2 bedrooms + LDK a (55.1 m2)

391 dwellings: 3 bedrooms + LDK a (71.2 m2)
157 dwellings: 4 bedrooms + LDK a (83.6 m2)

a LDK refers to a unified space used for living rooms, dining rooms, and kitchens.

The electricity consumption of the total household and appliance level, including HPs,
refrigerators, washing machines, lighting, and outlet of each room, was measured for each
dwelling. Moreover, the accumulation of electricity consumption (Wh) was measured at an
interval of 1 min. The measurement accuracy was ±5%.

IHPs were installed in the living rooms of all dwellings when the construction was
completed in 2011. The specifications of the IHPs in the living rooms are summarised in
Table 2. Five types of IHPs with different outputs manufactured by the same company
were installed according to the room area. The annual performance factor of the installed
IHPs, which indicates energy efficiency, ranged from 4.7–6.7. Conversely, the HPs in other
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rooms (e.g., bedrooms) were installed by the residents themselves; thus, the models are
unknown. In addition, the same dishwasher models were installed in all dwellings.

Table 2. Specification of inverter-type heat pumps in living rooms.

Room Floor Area [m2] Cooling Capacity [kW] Heating Capacity [kW] Annual Performance Factor

18 2.8 (0.6–4.2) 3.2 (0.6–7.9) * 6.7

26 4.0 (0.6–5.4) 5.0 (0.6–10.4) * 6.3

33 5.0 (0.6–5.9) 6.0 (0.6–10.4) * 5.7

36 6.3 (0.6–6.5) 7.1 (0.6–10.4) * 5.1

42 7.1 (0.6–7.3) 7.5 (0.6–10.4) * 4.7

* () in cooling/heating capacities indicates mean, minimum, and maximum values.

2.2. Breakdown of Electricity Demand by Use

Figure 2 shows the seasonal variations in the average electricity demand per dwelling.
The error bars indicate the standard deviation of the variations in total electricity demand
among the dwellings. The electricity demand of the HPs for living rooms and other
rooms is shown separately. Although the electricity demand for the outlets and lights
was separately measured in living rooms, the total electricity demand for the outlets and
lights was measured in other rooms (e.g., bedrooms). The electricity consumption of
outlets in living rooms, refrigerators, and HPs in living rooms was high, accounting for
25.0%, 18.3%, and 9.5% of the total annual demand, respectively (Figure 2). The electricity
consumption of HPs in bedrooms was considerably lower than that in living rooms. This
can be attributed to the smaller floor area and shorter time of HP use for bedrooms than for
living rooms. Considering time variations, as expected, HPs exhibited an evident seasonal
trend with large winter and summer consumption. For example, the total electricity
consumptions in August and February were approximately 1.6 and 1.4 times that in May,
respectively. Although the values of summer were larger than those of winter, the heating
degree days of the target year were larger than the cooling ones. This is caused by the
combined usage of the gas floor heating system and HPs in the living rooms [4]. In addition
to HPs, the electricity consumption by refrigerators shows a weak annual cycle, with
summer consumption being 77% greater than in winter. The variations in total electricity
consumption among households are large, with standard deviations ranging from 0.66 to
0.83 times the sample mean.
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Figure 3 shows the daily variations in electricity consumption during winter
(December–March), mid-season (April, May, October, and November), and summer
(June–September). The total electricity demand was minimum at approximately 4:00 h,
increased at 7:00 h, slightly decreased during the daytime (10:00–16:00 h), and reached
its maximum at approximately 19:00 h during all three seasons. This diurnal variation
is attributed to most of the items, except for refrigerators, such as lights, HPs, and dish-
washers. Comparing the trends in HPs’ electricity between summer and winter, it is noted
that the values in winter are larger at around 6:00–7:00 h in the morning when the outside
temperatures are lower, resulting in sharper peak demand in total household summers. In
contrast, summers show larger values than winters during the daytime when the cooling
load is higher owing to solar radiation and high outdoor temperatures. The variation in
total household electricity among households was the most significant in winter. This is
partly because the dwellings had both gas-driven underfloor heating and electricity-driven
HPs for heating living rooms, and there were differences in terms of which of the two
heating systems was used more frequently in each dwelling.
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2.3. Electricity Demand Patterns of IHPs

Figure 4 shows two examples of the observed time-series electricity demand patterns
of HPs made by the same manufacturer with the same specifications installed in living
rooms. Since the measurement dates of patterns 1 and 2 were August and September
2013, respectively, the HPs were supposed to be used for cooling. Both plots indicate
that periods with no electricity consumption appeared intermittently. Furthermore, the
timing and frequency of such intermittent zero-consumption periods differed between the
two patterns. This regular intermittency was caused by the inverter control of the HPs
and not by the occupants’ switching-on action. The difference between the plots can be
attributed to the difference in the thermal load that the HPs have to tackle for establishing
the set-point temperature in each room. This tendency suggests the diversity of the demand
patterns of HPs.
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Notably, the HP switch was likely to remain on for occupants during the 240 min pe-
riod, as shown in Figure 4. Hence, the on/off states of HPs determined by zero-consumption
periods are not necessarily consistent with the actions of occupants to turn on/off HPs.
Hereafter, the on/off state of an HP determined by an occupant’s behaviour is referred to
as the turn-on/off state, and the state with an HP power consumption of zero or non-zero
is referred to as the power-on/off state.

3. Characteristics of Electricity Consumption Pattern
3.1. Variables to Characterise the Load Patterns

To quantify the time-series characteristics of the electricity consumption patterns of
various uses, the following variables were defined:

First, ∆P, change in electricity consumption (W) can be defined as follows:

∆P(t) = P(t+1) − P(t − 1) (1)

∆P is ∆ typically defined as the difference of one time step (e.g., t and t − 1); however,
in this study, we defined it as the lag between two time steps (i.e., t + 1 and t − 1) to avoid
the over-detection of the start of appliance operation caused by the cumulative power
consumption measured for events initiated in the middle of a 1 min measurement interval.
Using ∆P(t) and threshold α, the time of ith event with a large lag of consumption is
determined as follows:

ton,i = t; if ∆P(t) > α (2)

toff,i = t; if ∆P(t) < −α (3)

In a time sequence, ton,i and toff,i are expected to alternate. When the same signal of
either ton,i or toff,i is detected consecutively, only the signal that appears last is adopted.
Based on ton,i and toff,i defined above, the time intervals between the two are defined
as follows:

∆ton,i = ton,i − toff,i (4)

∆toff,I = toff,i − ton,i+1 (5)

As the equations indicate, ∆ton,i and ∆toff,i are the time intervals between the time
when the measured power consumption significantly increased/decreased and the next
time when it decreased/increased, respectively.

In addition, ∆ONi and ∆OFFi can be defined as follows:

∆ONi = ∆P(ton,i) (6)

∆OFFi = ∆P(toff,i) (7)

∆ONi and ∆OFFi are the differences in electricity consumption when the transition
from a power-off state to a power-on state or vice versa occurs.

Figure 5 shows the definitions of the above variables, turn-on/off state, and power-
on/off state. The turn-on/off state was changed at the time of the occupant’s action.
Meanwhile, the power-on/off states were determined by the threshold of the HP electricity.
The period of ∆ton,i corresponded to a power-on state where power is consumed at some
level, and the period of ∆toff,i corresponded to the power-off state with approximately zero
power consumption lower than the threshold.
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3.2. Time-Series Characteristics of Electricity Consumption of Appliances

We calculated the variables determined in the previous section using the electricity
consumption data of HPs and other major appliances. Figure 6 shows the joint probability
(JP) distribution of ∆ON and ∆ton of eight major appliances. Notably, (g) indicates the
total electricity demand of outlets and lights in all bedrooms, and (h) includes all the HPs
installed in both living rooms and bedrooms.
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The JP distribution of (h) HPs showed high probability when ∆ON was between
150 W and 400 W and ∆ton was less than 6 min. This result is consistent with the frequent
repetition of power-on/off states dominated by the inverter control shown in Figure 4.

The JP distribution of (a) washing machines had a high probability when ∆ON was
between 100 W and 350 W and ∆ton was below 6 min. Washing machines are generally
operated according to a specific sequence (e.g., washing→ dehydration); thus, the elec-
tricity demand patterns of such appliances (hereinafter referred to as ‘sequential operation
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appliances’) may have specific features, being less diverse. The JP distribution of another
sequential operation appliance, namely (d) dishwashers, indicates a unique tendency com-
pared to the other appliances, having three major peaks. This may be attributed to the
fact that the same dishwashers made by the same manufacturer were equipped in all
the dwellings.

Conversely, for (b) refrigerators and (e) lighting, the JP of ∆ON was high in the
conditions of less than 250 W but widely scattered against ∆ton. For (c) microwave ovens,
the JP was mostly observed for ∆ton less than 10 min but widely scattered against ∆ON.
Different JP distributions for the appliances shown in Figure 6 imply the effectiveness of
∆ON and ∆ton in identifying the power-on/off state of specific appliances from the total
power consumption patterns.

The conditional probability of HPs for the condition of ∆ON ranging from 150 to 400 W
and ∆ton ranging from 1 to 15 min was the largest at 0.772, followed by washing machines,
outlets in living rooms, and outlets and lights of bedrooms, all of which accounting for
more than 0.4. In contrast, the probabilities of other appliances were lower than 0.3. The
assumption that HPs are turned on when the total household electricity consumption
satisfies the conditions of 150 W < ∆ON < 400 W and ∆ton < 15 min might be acceptable if
we can exclude the influence of other appliances, such as washing machines, with relatively
high conditional probability for the same ranges of ∆ON and ∆ton.

In addition to ∆ON and ∆ton, the presence or absence of a sequence of intermittent
power-on/off states shown in Figure 4 may be a key for identifying the turn-on/off state
of HPs. Accordingly, we considered power-off states of ∆OFF < 15 min as part of a turn-
on-state and computed the number of power-on states connected by power-off states of
∆OFF < 15 min (denoted as NPOS) for each appliance.

Figure 7 shows the cumulative probability density (CPD) of NPOS for the eight major
appliances. The CPD reached 0.95 or higher at NPOS = 3 for all appliances except for HPs
and washing machines. The CPD of washing machines also rapidly increased at NPOS = 3,
and the difference from that of HPs became large, reaching approximately 0.98 at NPOS = 6.
Conversely, the CPD of HPs was considerably lower than that of the others, reaching 0.95
at NPOS = 30 and 0.98 at NPOS = 50. This can be used to differentiate the turn-on/off of
HPs from other appliances, in addition to the abovementioned features of ∆ON and ∆ton.
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4. Proposed Method to Detect Turn-On/Off State of HPs
4.1. Outline of the Proposed Method

Based on the discussion in the previous section, we proposed a rule-based method
for estimating the turn-on/off state of HPs from the monitored household total electricity
consumption. This method involved two steps.

• Pre-process: Based on the pre-acquired total electricity demand data of a dwelling in
the middle season, the time-series characteristics of the power consumption patterns
of sequential operation appliances other than HPs were extracted. In addition, the
power consumption baseline for the dwellings was determined. (Section 4.2).

• Detection: The electricity consumption corresponding to the sequential operation
appliances, except for HPs, was subtracted from the measured total household elec-
tricity consumption (Section 4.3.1). Subsequently, the turn-on/off states of the HPs
were estimated based on the duration of high-power consumption (Section 4.3.2) and
time-series characteristics (Section 4.3.3).

For pre-processing, using the electricity data of the target dwelling would be ideal;
however, if this is unavailable, data from dwellings with similar conditions can be used.
This method can be adapted to dwellings with multiple HPs in which at least one HP is op-
erating. Therefore, this method does not estimate the number of HPs during the operation.

4.2. Pre-Processing Based on Electricity Consumption Data in Middle Season

A flowchart of the pre-processing is shown in Figure 8. First, the average daily pattern
of household electricity demand was calculated for the target dwelling based on the pre-
acquired demand in the middle seasons with no HP use, which can be considered as the
baseline demand. Subsequently, the household total power consumption patterns were
characterised by a set of (∆ONi, ∆ton,i, ∆OFFi) associated with each sequential operation
appliance. In addition, the set of (∆ONi, ∆ton,i, ∆OFFi) was examined to check whether the
following three conditions were satisfied for all combinations of i and j.

(1− b) · ∆ONj ≤ ∆ONi ≤ (1 + b)·∆ONj ∀i, j ∈ Imid (8)

∆ton,j − c ≤ ∆ton,i ≤ ∆ton,j + c ∀i, j ∈ Imid (9)

(1− b)· ∆OFFj ≤ ∆OFFi ≤ (1 + b)·∆OFFj ∀i, j ∈ Imid (10)

where i and j are indices of time step (i 6= j), and Imid indicates the set of time steps for
the electricity data in the middle season. The parameter b was tentatively set to 0.05 in
this study considering the measurement accuracy of the Osaka dataset (±5%), and the
parameter c was set to 1 min. This is because the dataset used in this study was measured
in cumulative electricity consumption (Wh) per minute, and ∆t may deviate by ±1 min
from the actual start time of operation of appliances.

When these three conditions were satisfied, i and j were judged to have almost the
same time-series characteristics and thus were likely to characterise the behaviours of the
same sequential operation appliance. In such a case, (∆ONi, ∆ton,i, ∆OFFi) was renamed
(∆ǑNk, ∆ťon,k, ∆ ˇOFFk) and added to the ‘power-on state pattern table’, which stored the
variables related to the signals of sequential operation appliances.
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4.3. Detection of Turn-On/Off State of HPs
4.3.1. Subtraction of Power Consumption of Sequential Operation Appliances except for HPs

The estimation process is shown in Figure 9. First, the time-series characteristics
of (∆ONi, ∆ton,i, ∆OFFi) were computed from the monitored household electricity P(t),
and we checked whether the following three conditions were satisfied by referring to the
power-on state pattern table created in the pre-process.

(1− b) ·∆ǑNk ≤ ∆ONi ≤ (1 + b)·∆ǑNk ∀i ∈ Itar, k ∈ K (11)

∆ťon,k − c ≤ ∆ton,i ≤ ∆ťon,k + c ∀i ∈ Itar, k ∈ K (12)

(1− b)· ∆ ˇOFFk ≤ ∆OFFi ≤ (1 + b)·∆ ˇOFFk ∀i ∈ Itar, k ∈ K (13)

where Itar indicates the set of time steps for the target demand data for estimating the
turn-on/off state of the HPs, k indicates the identification number of variables stored in
a power-on state pattern table, and K is the set of k. When all conditions (11)–(13) were
satisfied, the total power consumption P(t) was subtracted from ∆ONi for a period from t
to +∆ton,i based on the assumption that a sequential operation appliance operates within
∆ton,i with an electricity consumption of ∆ONi.

P(t) = P(t)− ∆ON (14)
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P(t), hereafter, represents the electricity consumption after removing the power con-
sumption of the sequential operation appliances.

4.3.2. Detection Based on the Duration of High-Power Consumption

Processed electricity P(t) was first assessed in terms of the duration of high-power
consumption using Equation (15), as shown in Figure 10.

P(t) > Pbase
t + γ (15)

where Pbase
t refers to the baseline of the total electricity consumption at time step t calculated

at the pre-processing. The time increment for Pbase
t does not have to be 1 min but can be

larger, that is 1 h. γ is a parameter with unit W. The value of γ is assumed to be larger
than the power consumption of low-power devices (in our dataset, lights in living rooms,
refrigerators, and washing machines) and smaller than the power consumption of HPs. In
this study, γ was set to 150 W because ∆ON of HPs was largely over 150 W, as shown in
Figure 3.
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When P(t) satisfies Equation (15), ∆h is replaced by ∆h + ∆t (∆t is the time step interval
that is 1 min in our dataset); otherwise, ∆h is replaced by zero. We assumed that an HP
is in a turn-on state when ∆h is larger than a threshold. This threshold is set to 10 min in
our study to avoid the misclassification of turn-on events of other appliances requiring
high-power consumption in a very short period, such as microwave ovens.

4.3.3. Detection Based on Time-Series Characteristics

The processed electricity P(t) was evaluated in terms of time-series characteristics, that
is, the number of power-on states connected by short power-off states, for identifying HP
operations with low and intermittent power consumption. The transition from the power-
on state to the power-off state of an appliance was identified when the difference in the
processed electricity P(t) between the two time steps, namely ∆P(t), satisfied Equation (17).
The transition from the power-off state to the power-on state was also identified when
∆P(t) satisfied Equation (18).

∆P(t)= P(t + 1)−P(t− 1) (16)

150 ≤ ∆P(t) ≤ 400 (17)

− 400 ≤ ∆P(t) ≤ −150 (18)

Using ∆P(t), ∆tON,i and ∆tOFF,i are computed based on Equations (2)–(5). If more than
three consecutive on/off events satisfied Equations (19) and (20), the sequence of these
events was assumed to be HP-related.

∆tON,i ≤ 15 (19)
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∆tOFF,i ≤ 15 (20)

Specifically, an HP is considered to be in the turn-on state from the time when the
first power-on state starts (tON,i−A) to the time when the last power-on state is finished
(tOFF,i). However, when the value of A is less than 2, the HP is considered to be in the
turn-off state, as other appliances may be operated simultaneously. This allows an accurate
turn-on/off-state estimation for HPs, including inverter HPs (Figure 11).
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5. Validation of the Proposed Model
5.1. Data Used for Validation

The accuracy of the proposed method was assessed using measured data from a
housing complex in Osaka, Japan (Section 2.1). From the dataset of the 586 dwellings,
423 dwellings were used that contained data with negligible error. The remaining
163 dwellings were excluded because of a significant error in their data. Additionally,
the total household demand measured from 8 May to 24 May 2013 was used for pre-
processing, and the household demand data measured from 1 June to 30 September 2013
were used to estimate the turn-on/off state of HPs. In addition, the occupants’ intended
turn-on/off states of the HPs were identified using the electricity consumption data of HPs
by adopting the method proposed by Ono et al. [36]. The time increment for the baseline
load Pbase

t was set as 1 h.
For comparison, we also applied the method proposed by Inoue et al. [25], which used

the AODE. This model assumes that when high-power consumption continues for a certain
duration, the HPs are likely to be in the turn-on state.
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5.2. Time Sequence of Estimated On/Off State

Figure 12 shows two contrasting time sequences of the estimated turn-on/off states of
the HPs based on the proposed model. Figure 12a shows the results of the duration with
high HP power consumption, and Figure 12b shows the intermittent power-on/off states
of the HPs. The black line represents ∆P(t) expressed by Equation (16), that is, the baseline
plus 150 W.
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In Figure 12a, the total household demand of all uses recorded approximately 1000 W
twice between 14:20 h and 15:20 h for 15 to 20 min. The proposed model accurately identi-
fied these events as sequential operation appliances other than HPs; thus, the estimated HP
state was turned off. Conversely, the time when the total household demand exceeded the
baseline load between 18:10 h and 20:00 h was identified as the HP turn-on state.

In Figure 12b, the intermittent power-on/off states are marked by the red and blue
hatched areas, respectively. When the time durations of the power-on/off states ∆ton/∆toff
were less than 15 min and the differences in household total electricity demand ∆ON/∆OFF
were between 150 W and 400 W, the proposed model judged the entire period of this
intermittent power fluctuation as a continuous turn-on state operated by the occupants.
The sharp increase in household demand of over 1000 W at approximately 14:32 h was due
to the operation of a microwave oven. Overall, the comparison between the estimated HP
states and the monitored data of these figures showed good correspondence.
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5.3. Performance Metrics of the Proposed Model

The accuracy of the proposed method and AODE method [25] was evaluated using
the precision, recall, and F-score determined by Equations (21)–(23).

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F− score =
2× Precision× Recall

Precision + Recall
(23)

where TP is true positive, in which at least one HP is in the turn-on state, and the estimation
is also in the turn-on state. FP is false positive, in which all HPs are in the turn-off state;
however, the model judged that at least one HP was in the turn-on state. FN is a false
negative in which at least one HP was in the turn-on state; however, the model judged that
no HP was in the turn-on state.

The performance of the AODE method for the current energy data indicated an F-
score of 0.667 and precision and recall of approximately 60–70%. Notably, Inoue et al. [25]
reported an F-score of approximately 0.9 for dwellings with non-IHPs. The discrepancy
in the F-scores between Inoue et al. [25] and Table 3 suggests the limitation of their model
for detecting OBs using IHPs. In contrast, the proposed model outperformed the AODE
method, with higher values for all the metrics.

Table 3. Estimation accuracy of the proposed model and AODE method.

F-Score Precision Recall

Inoue et al. [25] 0.667 0.708 0.708

Proposed method 0.834 0.820 0.847

Figure 13 depicts the relationships between the time ratio of the HP operation and
accuracy indicators, namely precision, recall, and F-score. The time ratio of the HP operation
indicates the total number of hours in which one or more HPs were switched on during the
period divided by the targeted period. Each plot represents the data for each dwelling.
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As shown in Figure 13a, the scattered plot indicates a weak positive relation, and most
dwellings with a time ratio of over 0.4 show a precision of over 0.6. In contrast, dwellings
with a time ratio below 0.2 tend to show low precisions of approximately 0.05. In these
dwellings, occupants rarely used HPs; thus, the frequency of true positives (i.e., the model
correctly judged as the turn-on state) is relatively small. Consequently, even a small number
of false positives (i.e., the model incorrectly judged as the turn-on state when no HPs were
running) resulted in poor ratings. In Figure 13b, most of the dwellings show a recall of over
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0.8, regardless of the time ratio, and the reduction in the performance metrics for dwellings
with a low time ratio is less evident compared to the precision results. In dwellings where
HPs were rarely used, the frequency of true positives–the model correctly determining
that HPs were in use–is lower, as mentioned above. However, the frequency of false
positives–incorrectly assuming that HPs were in use–is not remarkably high. The trend of
the scatter plot for the F-score (Figure 13c) is generally similar to that for the precision.

Figure 14 shows the histogram and CPD of the F-scores calculated for each dwelling.
The F-scores for most dwellings ranged from 0.85 to 0.9, and 86% of the dwellings had
F-scores above 0.7. Contrastingly, F-scores of remaining dwellings (14%) showed a long tail
distribution with relatively low performance.
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Figure 14. Distribution of F-scores computed for 423 dwellings.

Figure 15 shows the variations in estimation accuracy with month and time of the day.
August and July 2013 were the hottest months, and June and September were relatively
cooler at the site where the load data were collected. The F-score for July and August
was approximately 0.9, whereas that for September and June was less than 0.75. Precision
and recall also exhibited a similar tendency; however, it was more evident for recall. This
indicates that during the few months when HPs were not frequently used, the number of
events in which they were mistakenly judged to be in the turn-on state increased.
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With regard to the influence of the time of day on the accuracy, the F-score and
precision exhibited similar trends of highest accuracy at around 3:00 h and lower accuracy
at around 8:00 h. The recall was the maximum from 12:00 to 16:00 h and the minimum at
6:00 h in the morning, which differed from the other two indicators. This is probably due
to the high outdoor temperature from noon to evening, resulting in a large cooling load
and high-power consumption of HPs. On the contrary, the temperature around 6:00 h was
the lowest throughout the day, and the air-conditioning load was small, making it difficult
to detect signals related to HP electricity. In addition, the daily variations in precision were
larger than those of the other two indicators. This is because precision is more sensitive to
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how long the HPs are used compared to recall, as shown in Figure 15. The precision with
high values from 0:00 to 4:00 h and from 14:00 to 16:00 h and low values at approximately
8:00 and 18:00 h. This is consistent with the high usage frequency of home appliances,
except for HPs at night and in the morning, which tends to increase the false detection of
the HP operation state.

6. Conclusions

To effectively promote behavioural changes for energy saving and DR, understanding
the characteristics of OBs related to HPs in the residential sector based on data is crucial.
However, in the large-scale worldwide deployment of smart metres in residences, only the
total household electricity is measured, and data on the power consumption of individual
home appliances are rarely obtained. This study proposed a rule-based method to identify
the OBs related to air conditioning in dwellings with IHPs from the time-series total
household electricity data. The main findings are summarised as follows:

• The power consumption patterns of HPs currently used in many countries are char-
acterised by intermittent power-on/off operation, depending on the intensity of the
room heating and cooling load, owing to the inverter control. To quantify such features
of IHPs different from other home appliances, three indicators (∆ONi, ∆ton,i, ∆OFFi)
are defined.

• The proposed method entails two steps: (1) pre-processing to determine the base-
line demand for the mid-season and extract time-series characteristics of the power
consumption patterns of sequential operation appliances, and (2) a detection process
using the baseline demand and the abovementioned three indicators.

• The performance of the proposed model was validated using data measured from
423 dwellings. The F-scores, precision, and recall showed performance better than
those in the previous study.
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