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Abstract: The usage of Electric Vehicles (EVs) for transportation is expected to continue growing,
which opens up new possibilities for creating new smart grids. It offers a large-scale penetration of
Fast Charging Stations (FCE) in a local utility network. A severe voltage fluctuation and increased
active power loss might result from the inappropriate placement of the FCE as it penetrates the
Distribution System (DST). This paper proposes a multi-objective optimisation for the simultaneous
optimal allocation of FCEs, Distributed Generators (DGs), and Shunted Capacitors (SCs). The
proposed Pareto dominance-based hybrid methodology incorporates the advantages of the Grey
Wolf Optimiser and Particle Swarm Optimisation algorithm to minimise the objectives on 118 bus
radial distribution systems. The proposed method outperforms some other existing algorithms in
terms of minimising (a) active power loss costs of the distribution system, (b) voltage deviations,
(c) FCE development costs, (d) EV energy consumption costs, and (e) DG costs, as well as satisfying
the number of FCEs and EVs in all zones based on transportation and the electrical network. The
simulation results demonstrate that the simultaneous deployment technique yields better outcomes,
such as the active power loss costs of the distribution system being reduced to 53.21%, voltage
deviations being reduced to 68.99%, FCE development costs being reduced to 22.56%, EV energy
consumption costs being reduced to 19.8%, and DG costs being reduced to 5.1%.

Keywords: electric vehicles; distribution system; distributed generators; shunted capacitor; fast
charging station

1. Introduction

Climate change is one of the major concerns due to the enormous discharge of green-
house gas because of the burning of fossil fuels. Carbon dioxide is one of the leading
greenhouse gases responsible for a rising global temperature. Many countries are taking
serious steps to curb the carbon footprint, such as renewable energy [1]. Renewable energy
is essential to a power system’s environment and energy economy. Replacing conventional
combustion fuel with Electric Vehicles (EVs) is an economical and viable way to change [2,3].
Many nations have fixed the goal of 100% EV penetration in the future [4]. Due to this
trend, the demand for FCEs and DGs in the DST is rising. The utility operators use SCs
to improve the voltage profile in the distributed system. The improper allocation of FCE,
DGs, and SCs negatively impacts the performance of DST. The proper distribution of FCEs
and renewable energy sources could reduce barriers to EV adoption on a large scale and
make sure that users of EVs can quickly obtain FCE [5].

Many researchers have stressed the impact and complexities of EVs on the distribution
system [6–8]. Different models are developed [9–12] to reduce the uncertainties caused by
EV mobility and to enhance environmental and economic benefits. By promoting this FCE
infrastructure, with less worry about running out of power, EVs might travel more consider-
able distances. Existing studies consider power supply and transportation while preparing
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for the rising penetration of FCE. The operating and capital costs should be considered when
planning FCEs on the power supply side [13]. Additional complexities could be introduced by
EV’s rapid loading traits [14,15] and battery health [16,17]. Fahmy et al. [18] developed electric
grid generic topologies where charging stations are connected to solve the challenges of EV
aggregators. Yufei Wang et al. [19] suggested a setup strategy for flywheel energy storage
systems for FCE. Regarding transportation, FCE’s location must allow for an extensive and
efficient travel service because it is a capital-intensive part of the transportation network [20].
Aside from that, the planning paradigm has also considered individual PEV drivers’ mo-
bility when using an acceptable spatial and temporal resolution [21]. L Bitencour et al. [22]
developed a methodology where the semi-fast charging station is placed optimally in the
neighbourhood. Dong et al. [23] developed a strategy for pricing FCEs to control voltage.
Wang et al. [24] investigated the problem of FCEs in a highway with constraints such as
budget and service capacities using a Bat Algorithm (BA).

Even while the power supply and transportation were addressed independently
in previous works, FCE placement design necessitates the simultaneous consideration
of these issues. Ignoring one or the other could result in poor economic choices, and
even issues with the operation of the Transportation System (TN) or the electrical grid.
For instance, placing an FCE near the feeder’s head may be beneficial for reducing power
delivery losses. However, due to geographical limitations, EV drivers might find it harder
to reach this area. Xiang et al. [25] considered FCE’s operational and investment costs,
taking traffic restrictions into their planning models. In order to ensure that the entire
road network’s route is serviced by at least one FCE, the research by Miljanic et al. [26]
sought to determine the least amount of strategically placed charging stations using an
Integer Linear Programming Technique (ILP). For the best positioning and sizing of the
FCE, Sadeghi et al. [27] introduced a Mixed-Integer Non-Linear (MINLP) optimisation
approach. The proposed approach considers various factors, including the cost of station
development, EV-specific energy, power grid loss, the placement of electric substations,
and urban roadways.

The planning model used in the above articles has merely assigned the FCE, a frequent
trait. At the same time, introducing EVs into the power grid may increase the energy
loss, voltage drop, and peak load. In the literature, DGs are used as a planning tool to
reduce the voltage drop and energy loss caused by the addition of the EV charging demand
to the grid. Placing the FCE and DGs in the distribution system is covered by several
research methods. Ajit et al. [28] proposed a model to place the FCE and DGs to reduce
the distribution system’s power loss and the cost of installing FCE. Battapothula et al. [29]
suggested a model that minimises the network power loss and FCE installation cost as multi-
objective optimisation problems to assign the FCE and DGs. Injeti et.al. [30] explained how
optimally DGs could be integrated into EVs in the distribution system with an enhanced
voltage profile system and decreased losses with a Butterfly Optimisation (BF) technique.
Kumar et al. [31] developed a two-level framework. Regarding the first level of DST, DGs
have been positioned optimally to reduce active power loss. The second level’s optimal
energy usage was carried out for the first level’s location. Chang et al. [32] proposed a
microgrid model that includes EVs. A renewable source powers charging stations. M.
Ghofrani et al. [33] developed a framework where EVs and DGs are integrated into the
DST based on operation and market aspects. Ahmad et al. [34] designed a framework
for EMS for public EVs charging stations, integrating the microgrid depending on the
market scenario. Rahmani-Andebili et al. [35] investigated the problems of DISCOs, i.e., the
allocation of grid-based parking and management of an EV fleet.

In the literature cited above, DGs, which include solar panels, fuel cells, and micro-
turbines, are described as an electrical source of energy that produces electricity at a unity
power factor. SCs are utilised in distribution systems to meet reactive power requirements,
where the power factor is improved. P Rajesh et al. [36] developed a methodology for
the optimal allocation of the EV charging station in the presence of a capacitor, which
enhances the DST’s voltage profile and reduces power loss. Biswas et al. [37] discussed the
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advantages of metaheuristic methods for determining the size and location of DGs and
SCs in the DST to reduce the active power loss. Bilal et al. [38] presented that the optimal
placement of the FCE and the capacitor reduces power loss and enhances the voltage profile
of the DST.

Due to the relevance of FCE placement, significant literature on the subject has been
published recently. Much of this research aims to minimise investment costs, transportation
costs, energy loss, and voltage deviations, which can be accomplished using evolution-
ary algorithms such as Particle Swarm Optimisation (PSO) [39], Grey Wolf Optimisation
(GWO) [40], JAYA algorithm [41] and Non-dominated sorting genetic algorithm-II (NSGA-
2) [42]. Akanksha et al. [43] used the multi-objective GWO technique to identify non-
dominated solutions and fuzzy satisfaction-based decisions to get at the final planning of
FCE. Singh et al. [44] suggested a novel hybrid form that uses the advantages of both GWO
and PSO. The primary goal of development is to increase the effectiveness for both types
by strengthening the exploratory and exploitative capabilities of GWO and PSO.

Most authors cover the optimum placement of the FCE [6–27] or FCE and DGs [28–35]
together. Few researchers consider the best placement of FCE, DGs, and SCs [36–38].
Voltage deviations (DVT), the development cost of the FCE (DFC), the cost of DGs (DGC),
and the energy consumption of EV users are not discussed in those studies. In this study,
the road network was integrated with a DST and placed optimally for FCE, DGs, and SCs
simultaneously to minimise the active power loss costs of the distribution system (CPDN),
DVT, FCE development costs (DFC), EUC, and DGC. Table 1 summarises the research gap
analysis and the authors’ contributions.

Table 1. An overview of the authors’ work and the research gap analyses.

Ref. DST TN FCE DGs SCs Optimisation Strategies DFC EUC CPDN DVT DGC

[20] X X MILP X
[21] X X X X X
[24] X X X BA X
[26] X X ILP X X
[27] X X X MILP X X X
[28] X X X X GWO X X X X X
[29] X X X X NSGA-2 X X X X
[30] X X X BF X X X

In this work X X X X X GWO-PSO X X X X X

The following list outlines the paper’s contribution step by step:

1. The optimal placement of the FCE and number of EVs considering active power loss,
EV user behaviour, and DST voltage profile.

2. DGs’ optimal sizing and location consider the FCE load to minimise real power loss
and enhance DST’s voltage profile.

3. Optimal placement of SCs considers the FCE load and DGs to improve the voltage
profile of DST.

4. Simultaneous optimum placement of FCE, DGs, and SCs, considering EV user be-
haviour, real power loss, and DST voltage profile.

The remainder of this paper is structured as follows: Section 2 explains the formulation
of the multi-objective issue and associated limitations. Section 3 presents the suggested
hybrid GWO-PSO algorithm for the system under consideration. In Section 4, the results
and analysis are covered. Section 5 discusses conclusions.

2. Problem Formulation

This section includes objective operations, such as DFC, EUC, CPDN, DVT and DGC
being minimised.

In order to determine the optimal allocation of FCE, the proposed approach uses
an arbitrary area, as depicted in Figure 1. Zones [45,46] are created inside the research
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area, such as zn1, zn2, zn3, and zn4, where the number of EVs is available in each zone [29].
The assumption is that the number of EVs in each zone is located in the geographical centre.
On a particular day, it was assumed that the FCE charges the Total Number of EVs (NTEV)
in the considered area. NTEV is calculated as:

NTEV =
zn

∑
z=1

EVn,zn (1)

The number of committed EVs in the zone (zn) is represented by the value EVn,zn.

Figure 1. Illustrative zones with area.

2.1. Development Cost of FCEs (DFC)

DFC includes the cost of the charging station equipment and land cost. The equipment
and land cost of charging station is a function of the number of charging connectors and
capacity of charging stations [27].

DFC = C f ixed + 24 × Cland × NC(i)× ny + Ccond × (NC(i)− 1)× Pcg (2)

FCE’s fixed cost is denoted by C f ixed (USD). Since it deals with the equipment, the cost
is almost similar among the different countries. Cland (in USD per meter) is the land rental
cost yearly. The study time for the FCE consists of ny years. The charger development cost
is Ccond, NC(i) is the number of connectors in charging stations in the ith FCE, and Pcg is
the charging connector rated power (kW).

NC(i) =
zn

∑
z=1

(max(PREV)× EVn,zn × DFE(z, i)) (3)

The probability that EVs will be charged in an hour (h) during a day is PREV . DFE(z, i)
is a decision binary variable, and if EVs in the zn are charged in the ith FCE, then
DFE(z, i) = 1; otherwise, it is zero. The choice of EVs in the zn to the ith FCE is cal-
culated by the minimal distance between the ith FCE to zn compared to the other FCE.

The capacity of the charging station’s connectors differs between 50–250 kW. The rating
of the ith FCE is calculated as:

PFCE = NC(i)× Pcg (4)

2.2. Energy Consumption of EVs User Cost (EUC)

The EV user takes a particular route to reach the FCE. While driving, the EV consumes
energy, and the cost related to energy consumption is represented by the EUC. In order to
charge the batteries of EVs, which are situated at location zone zn to the nearest ith FCE,
EUC(zn, i) is calculated as [27]:

EUC(zn, i) = L(zn, i)× CSE×
24

∑
hr=1

PREV(h)× EV(zn)× EPh (5)

The distance between the ith FCE and zone (zn) on a trajectory length is denoted as
L(zn, i). The electricity price in USD is represented by EPh, and CSE is the specific energy
consumption of EVs. EVs’ CSE stands for their specific energy consumption.
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2.3. Active Power Loss of Distribution Network Cost (CPDN)

Since the EV demand is increasing, the load in the distribution network increases and
distribution network power losses also increase. A non-linear relationship exists between
the loading and the distribution network loss. The load varies from hour to hour on
a particular day and during the year. A correct estimation of the distribution network
power loss due to EV charging is required, i.e., the load variation must be considered.
The Active power loss of the Distribution Network Cost (CPDN ) [27] of all seasons in a
year is calculated as:

CPDN =
ns

∑
s=1

24

∑
hr=1

TPL(hr, s)× Nhr(s)× EPh (6)

The number of seasons is denoted as ns, and TPL is the active power loss of the DST,
including EV loads. The total number of hours throughout all seasons in a year is Nhr.

2.4. Cost of DGs (DGC)

The cost of DGs includes the cost of investment CINV , the cost of operation COPR,
and the cost of maintenance CMAT of DGs [29].

1. Cost of Investment: this includes various initial costs, such as money invested on unit
construction, essential equipment, and installation for each generation unit. This cost
can be expressed as:

CINV =
ndg

∑
d=1

(Pdg,d × CostINV) (7)

2. Cost of operation: the generation cost, fuel cost, and other similar costs are considered
in the cost of operation COPR. It can be formulated as

COPR =
nyr

∑
yr=1

ndg

∑
d=1

(
Pdg,d × TLh × COd ×

(
1 + RI NF
1 + RI NT

)yr)
(8)

3. Cost of Maintenance: This includes the cost required for restoring the unit equipment,
renewal, and repairing.

CMAT =
nyr

∑
yr=1

ndg

∑
d=1

(
Pdg,d × TLh × CMd ×

(
1 + RI NF
1 + RI NT

)yr)
(9)

Hours in a year are denoted by TLh. The number of DGs considered for this study is
ndg, with nyr being the total years for DG planning. Lastly, the DGC can be determined as:

DGC = CINV + COPR + CMAT (10)

2.5. DVT

The improper placement of the FCE and DGs in the DST leads to voltage instability.
This work calculates voltage deviations for 24 h of all seasons. Calculating the DVT of DST
is as follows:

DVT = max{1−V(j)} j = 1, 2 . . . nb (11)

The voltage of the jth bus is V(j), and the DST bus number is nb.

2.6. Objective Problems

The optimum number of FCEs obtained using the proposed optimisation procedure is
denoted by the symbol NFCE. The primary purpose of the objective problem is to minimise
the DFC, EUC, CPDN, DVT, and DGC by satisfying the constraints.

Min

{
NFCE

∑
k=1

DFC(k) +
NTEV

∑
l=1

EUC(l) + CPDN + DGC + DVT

}
(12)
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Constraints

To recharge the EVs from the research area, one FCE must be installed.

NPFCE

∑
k=1

B(k) > 0 k = 1, 2, 3 . . . , NPFCE (13)

B(k) is a binary decision variable; if the kth FCE is chosen, B(k) = 1; otherwise,
B(k) = 0. NPFCE is the number of feasible FCEs. At least one connector should be taken
into account from the chosen FCE.

NC(k) ≥ 0 k = 1, 2, 3 . . . , NPFCE (14)

One optimal FCE is chosen by EVs from each zn depending on the displacement
between zn to the kth FCE.

zn

∑
z=1

DFC(z, k)× B(k) = 1 (15)

3. Overview of Hybrid GWO-PSO Algorithm

In the real world, the power system has multiple objective functions that should be
optimised simultaneously. The objective function suggested in this work is optimised using
a hybrid GWO-PSO technique [44]. The best features of GWO and PSO are combined to
solve the problems. PSO [39] is a population-based metaheuristic optimisation algorithm.
The greatest advantages of PSO is that it is simple to perform and has fewer controlling
parameters.

Zitr
p+1 = Zitr

p + vitr
p+1 (16)

vitr
p+1 = vitr

p + c1 × ran1×
(

Pitr
best − Zitr

p

)
+ c2 × ran2×

(
Gitr

best − Zitr
p

)
(17)

Here, Zp is the position vector, vp is the velocity vector, itr is the iteration, p is the
particle in the population, w is the inertia of the weight parameter, Pitr

best is the best position
in the pth particle and Gitr

best is the best position in the available population. In the PSO
algorithm, the main disadvantage is that the updated position and velocity of a particle
cannot jump into another space with a global optimum and has a low convergence rate in
the iterative process.

Grey Wolf Optimisation (GWO) [40] is an intelligent swarm technique. GWO follows
the hierarchy of leadership. Grey wolves are well coordinated and always live in packs.
They always follow the social hierarchy, and, based on this hierarchy, they can be classified
into four types of wolves, i.e., Alpha (α), Beta (β), Delta (δ), and Omega (ω). This social
hierarchy is based on their fitness value. α is the top leader and makes the decisions
(hunting, staying in one place, sleeping, etc.), and other members follow the order. β is
subordinate to α, where β helps give suggestions to α for decision making and always
ensures that other members follow the order given by α. δ is subordinate to β but superior
to ω. ω is the follower and occupies the minuscule level in the hierarchy.

3.1. Encircling the Victim

During hunting, they encircle the prey. Encircling mathematical behaviour is mod-
elled as

~L =
∣∣∣~S. ~Zp − ~Z(itr)

∣∣∣ (18)

~Z(itr) = ~Zp(itr)− ~R.~Lt (19)

itr denotes the current iteration, Zp depicts the location of the prey, and Z represents
the positioning of the grey wolf. It is possible to determine the vector coefficients ~S and ~R
as

~R = 2.~r.rad1 −~r (20)
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~S = 2.rad2 (21)

[0, 1] are the boundaries of the random vectors rad1, rad2. Through iterations, the co-
efficient~r linearly declines from 2 to 0.

3.2. Hunting Procedure

α provides direction for the hunting process. A deeper understanding of the prey
(optimal solution) is held by α, β, and δ. As alpha, beta, and delta change positions,
other wolves in the back update the positions. Attacking can be expressed mathematically
as follows:

~Lα =
∣∣∣~S. ~Zα − ~Z

∣∣∣ (22)

~Lβ =
∣∣∣~S. ~Zβ − ~Z

∣∣∣ (23)

~Lδ =
∣∣∣~S.~Zδ − ~Z

∣∣∣ (24)

~Z1 = ~Zα − ~R1.(~Lα) (25)

~Z2 = ~Zβ − ~R2.(~Lβ) (26)

~Z3 = ~Zδ − ~R3.(~Lδ) (27)

~Z(itr + 1) =
~Z1 + ~Z2 + ~Z3

3
(28)

3.3. Exploring and Attacking a Victim

When wolves attack their prey, and |R| < 1, the R-value should fall between [−2r, 2r].
Exploitation is the act of attacking prey. Exploration is the process through which they
separate to look for the target. If |R| > 1, wolves are compelled to look for prey.

3.4. Hybrid GWO-PSO

Singh et al. [44] used low-level co-evolution mix hybrids for hybridising GWO with
the PSO method. This algorithm’s design philosophy integrates the GWO algorithm’s
exploration capability with the PSO algorithm’s exploitation capability to maximise both
types’ strengths. The exploration and exploitation of the grey wolves in the search area are
controlled by the inertia constant (w) rather than conventional mathematical calculations.
The suggested equations update the positions of the first three agents in the search space.

~Lα =
∣∣∣~S. ~Zα − w× ~Z

∣∣∣ (29)

~Lβ =
∣∣∣~S. ~Zβ − w× ~Z

∣∣∣ (30)

~Lδ =
∣∣∣~S.~Zδ − w× ~Z

∣∣∣ (31)

By revising the velocity and locations’ equations as below, the GWO and PSO variants
are combined.

s = (vitr
p + c1 × ran1×

(
~Z1 − Zitr

p

)
+ c2 × ran2×

(
~Z2 − Zitr

p

)
+ c3 × ran2×

(
~Z3 − Zitr

p

)
(32)

vitr
p+1 = w×

(
vitr

p + s
)

(33)

Zitr
p+1 = Zitr

p + vitr
p+1 (34)

Figure 2 depicts the hybrid GWO-PSO algorithm’s flowchart. The hybrid GWO-PSO
process’ basic steps are as follows:
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1. Initialise the parameters of GWO and PSO ~R, ~S,~r and w; // w = 0.5 + rand()/2 and
set maximum iteration.

2. Calculate an agent’s fitness using Equations (29)–(31).
3. Update the velocity and location of the current search’s grey wolf for each search

using Equations (33) and (34).
4. ~R, ~S, and~r, are updated, Fitness of all wolves are computed.
5. Positions of α, β, and δ are updated
6. Until the terminating requirements are met, repeat this process.

Figure 2. Hybrid GWO-PSO flowchart.

The multiple objective functions are constructed as a single goal function by selecting
appropriate weights for each objective in all traditional approaches, such as the weighted
objective approach. There are primarily two issues with determining the single objective’s
optimal value. The first is that while optimising a single objective function might ensure
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the existence of a single optimal solution, in all practical uses, the judgement still wants
access to other solutions. The second examines how each goal in a single objection function
responds to its weights. Additionally, the classical approaches are ineffective when the
objective function is much noisier, and the factors in the search area are discontinuous.

Multi-objective Pareto front optimisation techniques are required to address multi-
objective scenarios to get around the abovementioned issues. The hybrid methods are also
quite effective at locating the best solution. In this work, hybrid GWO-PSO was utilised to
meet the desired objectives. Mirjalili et al. [47] proposed a set of non-dominated solutions,
and one of these solutions must be chosen by the decision maker. Due to the subjectively
inaccurate nature of the decision maker’s assessment and the fact that it is straightforward
to employ and has similarities to human thinking, the fuzzy satisfaction-based method [43]
was employed in this case for ultimate decision-making.

4. Results and Discussion

In this study, four scenarios with various cases were explored using the suggested
test system to determine the optimum distribution of FCE, DGs, and SCs in a connected
transportation network.

4.1. Proposed Methodology

This study used a 720 km2 test area to apply the suggested strategy [29]. The popula-
tion of EVs in each research area zone is shown in Figure 3. There are 180 zones in the test
area, each with a 4 km2 (2 km× 2 km). As seen in Figure 4, a test area was connected to
the 118 bus radial distribution system [29].

Figure 3. Zone EV population.

In this paper, the total EV population was considered as 1632. With the requirement
that each FCE is roughly equally spaced apart, it has been assumed that 16 FCE might be
put along the test area’s major roadways. Figure 4 depicts 16 possible FCEs represented
in the DST by the rhombus symbol. The simulation of the proposed problem was carried
out in MATLAB 2017a software installed on a computer with a processor intel core i5
8th Gen and 8 GB RAM. A 118 distribution bus system was considered to carry out the
analysis. The distributed system’s base values were as follows: 22.71 MW of real power,
11 kV, 100 MW, and 1.7041 MVAr [29]. The load curve [27] for different seasons is shown in
Figure 5. For the optimum location and sizing of DGs and SCs in the distribution system,
this paper considered five bus nodes of DGs units and three bus nodes of SCs units. From 5
a.m. to 9 p.m. every day, it is presumable that EVs are charged at the FCE. Figure 6 indicates
the probability of daily EV charging. The DST and FCE parameters are represented in
Table 2. Four different scenarios were analysed with the help of a hybrid GWO-PSO
algorithm with a maximum of 500 iterations for appraising the proposed problem.
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Figure 4. 118 bus distribution system in the proposed testing area.

Table 2. Study parameters.

Parameter Values

NTEV 1632

ny 5

NPFCE 16

CSE 0.142 kWh/km

EPh USD 87.7/MWh

Cland USD 240/M2 per year

C f ixed USD 70,000

Ccond USD 208.33/kW

Pcg 96 kW



Sustainability 2022, 14, 14731 11 of 23

Figure 5. Load curve on an hourly basis for various seasons.

Figure 6. EVs’ probability of being charged.

Due to its simple and independent structure from the problem, an optimisation method
utilised in planning FCE, DGs, and SCs can be applied to any test system. Additionally,
the fuzzy satisfaction-based choice approach [43] allows decision makers to select the
ultimate organising strategy under their preferences by selecting preferred values.

4.2. Scenario 1: Optimum Placement of FCE in DST Conjunction with Transportation Network

The optimal allocation of an FCE is achieved by minimising the EUC, CPDN, and
DVT of the DST. DGs are not considered; therefore, DGC in Equation (12) is zero. Since the
total number of connectors in FCEs is almost constant, the DFC variation has an almost
negligible effect on the objective function. Thus, the DFC is not considered to minimise the
objective function in this scenario. In this scenario, three cases are taken:

(a) Case 1: Minimisation of EUC and CPDN.
(b) Case 2: Minimisation of DVT and CPDN.
(c) Case 3: Minimisation of DVT, CPDN, and EUC.
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The optimal Pareto font for various cases in scenario 1 shows figures from Figure 7a–c.
The best location and size of the FCE are obtained from the fuzzy satisfaction-based choice
approach [43]. Table 3 displays the optimum FCE position and EV values, whereas Table 4
displays the optimal objective parameters.

Figure 7. Optimal Pareto-front.
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Table 3. The optimum FCE location and the optimum number of EVs.

Cases
NSGA -2 PSO GWO GWO-PSO

FCE Location Number
of EVs FCE Location Number

of EVs FCE Location Number
of EVs FCE Location Number

of EVs

Case-1

80 559 22 291 40 291 22 239

103 83 35 413 11 170 11 170

40 395 13 122 80 413 80 413

13 112 80 397 13 137 13 122

22 329 11 170 22 224 40 291

11 154 40 239 35 397 35 397

Case-2

11 370 11 114 40 344 11 408

22 253 28 170 61 173 28 114

35 408 40 253 22 177 84 253

28 114 22 285 11 150 35 370

40 210 80 397 35 383 22 277

84 277 35 413 80 405 28 114

Case-3

40 383 13 137 11 170 13 137

61 177 11 170 28 114 11 170

22 173 22 291 40 285 22 224

11 150 80 397 22 253 80 413

35 344 40 224 80 413 40 291

80 405 35 413 35 397 35 397

Table 4. Objectives of scenario 1 that are optimal.

Algorithms Cases DFC (USD M) EUC (USD M/year) CPDN (USD M/year) DVT (p.u.)

NSGA -2

1 4.2235 0.09233 0.6823 0.1325

2 4.2225 0.09422 0.67730 0.1309

3 4.2614 0.09078 0.68153 0.1308

PSO

1 4.2312 0.103231 0.69853 0.1345

2 4.2309 0.105019 0.68730 0.1319

3 4.3301 0.103618 0.69853 0.13173

GWO

1 4.2152 0.085878 0.68243 0.1308

2 4.2140 0.086632 0.66840 0.1301

3 4.224 0.084653 0.68129 0.1300

GWO-PSO

1 4.2053 0.084778 0. 67464 0.1301

2 4.2052 0.08532 0.66730 0.1300

3 4.15 0.083618 0.67129 0.1295

4.3. Scenario 2: Optimal Positioning of DGs in DST with Previous Optimum FCE Load

DGs enhance the voltage profile and lower power losses in the DST. For the optimal
DGs positioning, the optimal FCE load from case 3 is taken into account. This scenario
takes into account three cases.

(a) Case 4: Minimisation of DGC and DVT.
(b) Case 5: Minimisation of CPDN and DGC.
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(c) Case 6: Minimisation of DGC, DVT, and CPDN.

Figure 7d–f are displayed using the best pareto-front for various scenarios in scenario
2. The optimal location and size of DGs are obtained from the fuzzy satisfaction-based
choice approach. For various cases in scenario 2, the optimum location and sizing of DGs
are displayed in Table 5, and objective parameters are depicted in Table 6.

Table 5. Scenario 2: Optimal location and sizing of DGs.

Cases
NSGA -2 PSO GWO GWO-PSO

DGs
Location

DGs Size
(MW) DGs Location DGs Size

(MW) DGs Location DGsSize
(MW) DGs Location DGs Size

(MW)

Case-4

102 0.5020 75 0.5118 43 0.3764 49 0.2138

75 0.7563 73 0.7723 77 0.9332 54 1.1365

42 0.5002 48 0.9579 50 0.2400 72 0.1730

62 0.5039 52 0.6249 53 0.7050 111 0.5406

51 0.6407 108 0.5352 110 0.3217 76 0.9215

Case-5

73 1.3467 49 0.5641 47 0.7505 51 0.2895

35 1.3012 113 0.8880 72 0.7327 84 0.9365

80 1.1789 51 0.8688 75 0.5569 111 0.6758

111 1.0722 83 0.6051 111 1.2189 74 1.0127

51 0.6969 73 1.1742 50 0.8504 48 0.5020

Case-6

111 1.0385 110 1.2682 76 0.9847 54 1.5878

74 1.4989 74 1.4116 111 0.8272 73 1.4037

42 0.7511 82 0.5486 53 0.7631 83 1.0371

54 0.9941 50 1.1380 70 0.7140 111 0.7847

49 0.8780 53 0.7769 49 0.8662 96 1.1010

Table 6. Objectives of scenario 2 that are optimal.

Algorithms Cases CPDN (USD M/year) DGC (USD M) DVT (p.u.)

NSGA -2

4 0.5278 3.5326 0.0677

5 0.4398 6.8091 0.0565

6 0.4081 6.2795 0.0462

PSO

4 0.476 4.1396 0.0592

5 0.4404 4.9892 0.0566

6 0.4042 7.1965 0.0457

GWO

4 0.5132 3.1348 0.0615

5 0.4417 5.0003 0.0579

6 0.4454 6.2583 0.0508

GWO-PSO

4 0.4931 3.6326 0.0564

5 0.4750 4.1572 0.0684

6 0.4051 5.0561 0.0503
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4.4. Scenario 3: Allocation of DGs and SCs in DST Optimally Using the Previous Optimal
FCE Load

The optimal positioning of DGs and SCs is considered in the distributed system to
enhance the voltage profile of the system. Three cases are used in this scenario for the
optimal planning of DGs and SCs with the optimum load of the FCE from case 3.

(a) Case 7: Minimisation of DGC and DVT.
(b) Case 8: Minimisation of CPDN and DGC.
(c) Case 9: Minimisation of DGC, DVT, and CPDN.

The optimal pareto font for various cases in scenario 3 shows figures from Figure 7g–i.
The optimal location and size of DGs and SCs are obtained from the fuzzy satisfaction-
based choice approach. For various cases in scenario 3, the optimal sizing and location of
DGs are shown in Table 7, Table 8 shows the optimal SCs position and sizing, and Table 9
shows the objective parameters.

Table 7. DGs’ optimal location and sizing for scenario 3.

Cases
NSGA -2 PSO GWO GWO-PSO

DGs
Location

DGs Size
(MW) DGs Location DGs Size

(MW) DGs Location DGs Size
(MW) DGs Location DGs Size

(MW)

Case-7

75 0.4000 75 0.7629 17 0.1839 110 0.5540

76 0.6827 71 0.1132 77 1.0291 47 0.3261

26 0.1000 110 0.7330 103 0.1000 75 0.4110

35 0.3800 72 1.3930 74 0.1000 77 0.4041

54 0.2562 107 0.1000 46 0.1000 56 0.1276

Case-8

112 0.2264 72 0.8602 52 0.5007 75 0.5492

51 0.3825 52 0.1674 86 0.4312 112 0.678

110 0.4266 58 0.2686 52 0.2131 58 0.5035

74 0.3401 25 0.1904 51 0.3846 62 0.5402

15 0.1000 52 0.4417 71 0.3146 52 0.4235

Case-9

75 1.1995 118 0.6484 70 0.6849 73 0.2326

47 1.6504 51 1.3910 110 0.8048 32 0.6461

111 1.2904 70 1.6759 50 1.0038 77 1.6407

8 0.3571 113 1.1950 75 0.8921 53 2.0730

60 0.3935 76 0.5228 84 0.6258 108 1.0549

Table 8. Optimal location and sizing of SCs for scenario 3.

Cases
NSGA -2 PSO GWO GWO-PSO

Location of
SCs

Size of SCs
(MVAr)

Location of
SCs

Size of SCs
(MVAr)

Location of
SCs

Size of SCs
(MVAr)

Location of
SCs

Size of SCs
(MVAr)

Case-7

48 0.6744 53 0.9704 38 0.1000 51 0.9504

111 0.7627 61 0.1462 37 1.0000 35 0.3564

21 0.7187 51 0.7401 48 0.3198 71 0.5740

Case-8

50 1.0000 51 0.5544 54 0.7152 111 0.9558

70 1.0000 73 1.0000 11 0.8494 71 0.7703

20 0.4638 109 0.9516 75 0.8960 35 0.7908

Case-9

50 0.6739 52 0.9023 51 0.9796 112 1.0000

53 0.4210 57 0.8283 72 0.5760 75 0.8276

77 0.4206 37 1.0000 95 0.8905 52 0.8558
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Table 9. Scenario 3’s optimal objective parameters.

Algorithms Cases CPDN (USD M/year) DGC (USD M) DVT (p.u.)

NSGA -2

7 0.49264 2.2132 0.0602

8 0.5027 1.7956 0.0674

9 0.37133 5.9512 0.0447

PSO

7 0.4853 3.7746 0.0503

8 0.4555 2.3463 0.0600

9 0.3974 6.8717 0.044275

GWO

7 0.55122 2.2180 0.0688

8 0.4714 3.2785 0.0679

9 0.3811 5.0512 0.05014

GWO-PSO

7 0.48759 1.8410 0.0560

8 0.4295 2.2440 0.0621

9 0.3402 4.8811 0.04287

4.5. Scenario 4: Simultaneous Optimum Location and Sizing of FCE, DGs, and SCs in DST

In this scenario, the optimum location and sizing of the FCE, DGs, and SC in a DST is
achieved by coupling a transportation network to reduce the cost of CPDN, EUC, DGC,
and DVT. The following four cases are considered.

(a) Case 10: Minimisation of CPDN and EUC.
(b) Case 11: Minimisation of DGC and DVT.
(c) Case 12: Minimisation of CPDN and DGC.
(d) Case 13: Minimisation of DGC, DVT, and CPDN.

The optimal Pareto font for various cases is scenario 4, which shows figures from
Figure 7j–m. The best location and size of FCE, DGs, and SCs are obtained from the fuzzy
satisfaction-based choice approach. For various cases in scenario 4, the optimal allocation
of the FCE, number of EVs, DGs, and SCs is shown in Tables 10–12. The objective is the
parameters that are shown in Table 13.

Table 10. Optimal FCE location and EVs optimal numbers in scenario 4.

Cases
NSGA -2 PSO GWO GWO-PSO

FCE
Location

Numbers
of EVs FCE Location Numbers

of EVs FCE Location Numbers
of EVs FCE Location Numbers

of EVs

Case-10

28 159 103 192 103 192 57 268

71 387 80 383 57 268 28 159

80 364 71 368 80 310 80 310

92 211 92 207 92 281 92 285

98 220 98 220 71 319 71 319

108 291 108 262 108 262 108 291

Case-11

22 199 57 187 40 301 22 222

61 364 80 375 57 354 13 122

103 123 84 419 22 183 40 216

57 187 61 170 28 98 57 247

80 395 40 308 61 309 84 439

40 364 22 173 35 387 80 386
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Table 10. Cont.

Cases
NSGA -2 PSO GWO GWO-PSO

FCE
Location

Numbers
of EVs FCE Location Numbers

of EVs FCE Location Numbers
of EVs FCE Location Numbers

of EVs

Case-12

22 366 103 242 40 467 40 486

98 60 80 371 22 332 11 193

28 114 35 553 11 104 48 195

57 641 57 233 57 143 28 72

103 25 48 49 80 488 80 444

40 426 13 184 28 98 13 242

Case-13

13 147 103 192 13 242 80 445

71 437 80 383 28 72 48 86

92 229 71 368 11 193 98 105

80 320 92 207 40 486 92 678

40 280 98 220 80 539 57 131

57 219 108 262 48 100 28 187

Table 11. Optimal positioning and sizing of DGs for scenario 4.

Cases
NSGA -2 PSO GWO GWO-PSO

DGs
Location

DGs Size
(MW) DGs Location DGs Size

(MW) DGs Location DGs Size
(MW) DGs Location DGs Size

(MW)

Case-10

51 1.6040 77 0.6379 91 1.9655 108 1.3820

111 2.2000 71 1.8732 73 1.8865 102 1.0985

71 2.2000 22 1.2961 64 2.1657 80 2.2000

98 2.2000 65 1.9889 113 1.8273 50 1.9288

75 0.9668 9 1.1762 109 1.0029 74 1.2749

Case-11

101 0.1000 25 0.9424 70 0.2873 70 0.3393

113 0.4778 7 0.1220 34 0.2730 35 0.1000

33 1.0544 75 0.1566 30 0.4431 118 0.1000

59 0.1294 15 1.0951 81 0.1339 11 0.3617

42 0.1696 74 0.5410 49 0.5244 61 0.5362

Case-12

39 0.1018 23 0.1000 87 0.2801 61 0.3517

21 0.1000 32 0.1832 45 0.6059 77 0.9536

23 0.3469 22 0.3884 56 0.2757 18 0.1517

40 0.1653 21 0.5953 18 0.2410 4 0.1000

35 0.1000 112 0.8418 71 0.6929 47 0.1935

Case-13

27 0.1460 52 1.5916 76 0.6783 92 0.8716

111 0.8800 113 1.2111 51 0.3924 97 1.2141

71 1.4553 74 1.9814 48 0.1516 52 0.7196

74 1.1841 84 1.2716 56 0.2267 76 0.9103

53 0.8764 97 0.1425 52 0.3262 85 0.3911
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Table 12. Optimal positioning and sizing of SCs for scenario 4.

Cases
NSGA -2 PSO GWO GWO-PSO

SCs Location SCs Size
(MVAr) SCs Location SCs Size

(MVAr) SCs Location SCs Size
(MVAr) SCs Location SCs Size

(MVAr)

Case-10

69 0.3683 5 0.6186 45 0.5395 16 0.8859

35 0.7996 111 0.8791 81 0.7605 49 0.6926

75 0.8182 68 0.4768 74 0.7618 28 0.6991

Case-11

7 0.3598 65 0.5128 61 0.5898 9 0.2953

75 0.6733 100 0.4838 71 0.7295 41 0.4587

77 1.0000 56 0.5476 66 0.1924 72 0.9477

Case-12

111 0.9884 73 0.2574 52 0.4971 47 0.4543

4 0.8163 67 0.9924 111 1.0000 74 0.4977

70 0.9816 6 0.9711 50 0.4938 58 0.2046

Case-13

75 0.6120 75 0.2094 34 0.2979 112 0.3724

7 0.6329 23 0.9019 35 0.5958 74 0.6310

78 0.5705 70 0.5205 31 0.2898 106 0.5835

Table 13. Scenario 4’s optimal objective parameters.

Algorithms Cases DFC (USD M) EUC (USD M/year) CPDN (USD M/year) DGC (USD M) DVT (p.u.)

NSGA -2

10 3.5 0.06689 0.26418 11.159 0.0402

11 3.45 0.08294 0.59928 2.3499 0.0625

12 3.432 0.11420 0.55862 9.9048 0.0790

13 3.432 0.072511 0.39972 5.5265 0.0492

PSO

10 3.9352 0.067315 0.51552 8.4839 0.0792

11 3.9352 0.069653 0.63463 3.4765 0.0713

12 3.89 0.098993 0.59747 2.5659 0.0873

13 3.89 0.089961 0.51552 8.4839 0.0792

GWO

10 3.3 0.065888 0.34226 10.766 0.0669

11 3.3 0.089744 0.59830 2.0220 0.0732

12 3.425 0.088993 0.47761 2.5499 0.0767

13 3.425 0.076576 0.52962 4.8601 0.0707

GWO-PSO

10 3.4715 0.065773 0.40880 9.5935 0.0810

11 3.48 0.070837 0.51632 1.7488 0.0720

12 3.2135 0.079180 0.42562 2.1300 0.0693

13 3.2135 0.067005 0.31404 4.7970 0.0408

Table 14 compares the outcomes of four scenarios. Hybrid GWO-PSO outperforms
other algorithms in terms of performance. In case 13, the DVT decreased by 68.99%, 18.8%,
and 4.8% in comparison to case 3, case 6, and case 9. In case 13, the CPDN decreased by
53.21%, 22.41%, and 7.68% in comparison to case 3, case 6, and case 9. The DGC is reduced
to 5.1% and 1.7% in case 13 in comparison to cases 6 and 9. Similarly, the DFC and EUC
were reduced to 22.56% and 19.8% in case 13 compared to all cases. Simultaneous optimal
FCE, DGs, and SCs in the coupled DST and road network give the best economical solution
for the proposed method.
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Table 14. Four scenarios’ comparison results.

Scenarios Cases Algorithm DFC (USD M) EUC (USD M/year) CPDN (USD M/year) DGC
(USD M) DVT (p.u.)

4 13

NSGA-2 3.432 0.072511 0.39972 5.5265 0.0492

PSO 3.89 0.089961 0.51552 8.4839 0.0792

GWO 3.425 0.076576 0.52962 4.8601 0.0707

GWO-PSO 3.2135 0.067005 0.31404 4.7970 0.0408

3 9

NSGA-2 4.42101 0.090780 0.37133 5.9512 0.0447

PSO 4.3830 0.1036180 0.3974 6.8717 0.044275

GWO 4.3520 0.0846530 0.381101 5.0512 0.05014

GWO-PSO 4.15 0.083618 0.3402 4.8811 0.04287

2 6

NSGA-2 4.421 0.09078 0.4081 6.2795 0.0462

PSO 4.383 0.103618 0.4042 7.1965 0.0457

GWO 4.352 0.084653 0.4454 6.2583 0.0508

GWO-PSO 4.15 0.083618 0.4051 5.0561 0.0503

5. Conclusions

This paper proposes a multi-objective hybrid GWO-PSO algorithm for the simultane-
ous optimal planning of fast charging stations, distributed generators, and shunt capacitors
in an integrated electric transportation system. The problem was formulated to mini-
mize the objectives, such as the cost of the active power loss of the distribution network,
the development cost of the FCE, EV user energy consumption cost, voltage deviations,
and cost of DGs on an 118 bus distribution system. Various case studies regarding the
individual stage-wise placement and simultaneous placement of fast charging stations,
distributed generators, and shunt capacitors using the proposed method were performed.
They showed that the proposed method outperformed the stage-wise placement of various
components in terms of the reduced active power loss cost and reduced EV user cost,
and maintained a better voltage profile. The hybrid GWO-PSO method yields a better
profit via simultaneous optimal allocation than the stage-wise placement for an equivalent
investment on charging stations and DGs. The amalgam GWO-PSO algorithm proves to be
robust and reliable when compared with conventional algorithms. The present work can
be extended with vehicle-to-grid technology.
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Abbreviations
The following abbreviations are used in this manuscript:

EVs Electrical Vehicles
FCEs Electric Vehicle Fast charging stations
DST Distribution System
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DGs Distributed Generators
SCs Shunt Capacitors
CPDN Active power loss of distribution network cost
DVTs Voltage Deviations
DFC Development Cost of FCE
EUC Energy Consumption of EV user cost
DGC Cost of DGs
GWO Grey Wolf Optimiser
PSO Particle Swarm Optimisation
NTEV Total number of EVs
TLBO Teaching-Learning-Based Optimisation
TPL Total power loss of the distribution network including EV load
TGL Gross power loss of the distribution network without EV load
TNL Transportation network without EV load
EVn,z Total number of committed EVs in zone
zn Number of zones in the assumed study area
C f ixed The fixed cost of charging stations
Cland Land rental cost yearly
Ccond Development cost of chargers
ny Number of years in the study period
NC(i) Number of connectors in charging stations in the ithFCE period
PREV Probability of the charging of EVs in hour (h) in a day
Pcg Charging connector rated power
L(zn, i) Trajectory length between zone zn and the ith FCE
CSE Specific energy consumption of EVs
EPh Electricity price in dollars
ns Number of seasons
Nhr Total number of hours of all seasons in a year
d Index of DG
Pdg,d Active power generated by dth unit
CostINV,d Cost of investment of each dth unit
CINV Cost of investment
COPR Cost of operation
CMAT Cost of maintenance
TLh Number of hours in a year
nyr Total number of years for the planning of DGs
ndg Number of DGs
nb Bus number of the distribution system
V(j) Voltage of jth bus
NFCE Number of FCEs
NPFCE Number of possible FCEs
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