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Abstract: Alzheimer’s disease (AD) is a global health issue that predominantly affects older people.
It affects one’s daily activities by modifying neural networks in the brain. AD is categorized by the
death of neurons, the creation of amyloid plaques, and the development of neurofibrillary tangles. In
clinical settings, an early diagnosis of AD is critical to limit the problems associated with it and can
be accomplished using neuroimaging modalities, such as magnetic resonance imaging (MRI) and
positron emission tomography (PET). Deep learning (DL) techniques are widely used in computer
vision and related disciplines for various tasks such as classification, segmentation, detection, etc.
CNN is a sort of DL architecture, which is normally useful to categorize and extract data in the
spatial and frequency domains for image-based applications. Batch normalization and dropout
are commonly deployed elements of modern CNN architectures. Due to the internal covariance
shift between batch normalization and dropout, the models perform sub-optimally under diverse
scenarios. This study looks at the influence of disharmony between batch normalization and dropout
techniques on the early diagnosis of AD. We looked at three different scenarios: (1) no dropout but
batch normalization, (2) a single dropout layer in the network right before the softmax layer, and (3) a
convolutional layer between a dropout layer and a batch normalization layer. We investigated three
binaries: mild cognitive impairment (MCI) vs. normal control (NC), AD vs. NC, AD vs. MCI, one
multiclass AD vs. NC vs. MCI classification problem using PET modality, as well as one binary AD
vs. NC classification problem using MRI modality. In comparison to using a large value of dropout,
our findings suggest that using little or none at all leads to better-performing designs.

Keywords: neuroimaging; classification; augmentation; statistical comparison; batch normalization; dropout

1. Introduction

Alzheimer’s disease (AD) is a brain illness that is believed to be a continuum; it
is preferable to detect it in the preclinical stage so that treatment may begin as soon as
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possible. Changes are introduced at three levels of hierarchy in AD: neuronal, regional, and
clinical, all of which have substantial influences on the daily routines of AD patients [1].
The formation and development of tangles, the deregulation and degradation of protein
pathways, inflammation of neurons, and other factors, play roles in the evolution of AD [2].
Subjective cognitive decline, which may be the first indication of preclinical AD, can occur
before AD affects people in clinical settings and communities [3–7]. In fact, AD is so
closely linked to age that some researchers believe it may be a natural component of the
aging process [8]. Late-onset AD varies significantly from early-onset AD with diversity
in phenotypic presentation and involves more distinct brain pathways than usual AD [9],
making it difficult to divide participants into coherent groupings. Furthermore, several
alleles related to AD, such as APOE e4 and APOE e2, have been linked to increased
or decreased risks of AD [10]. Furthermore, sex and genetic factors, such as T2D, are
modifiable risk factors in the evolution of AD, which may contribute to the prevention
of this neurodegenerative disorder [11]. Plasma metabolites, lipokines, and amino acids
have been linked to AD and are helpful in providing information about changes in the
structure of the brain [12], particularly the link between brain arterial dilation and the
pathophysiology of AD [13], regardless of demographics, education, or other related factors.

Mild cognitive impairment (MCI), both amnestic and non-amnestic, is a type of
cognitive impairment marked by a reduction in gray matter volume, particularly in the
angular gyrus region, and is hypothesized to precede AD. MCI patients may not meet
the clinical criteria for AD. Positron emission tomography (PET) and magnetic resonance
imaging (MRI) biomarkers can detect discriminating hypometabolism as well as other
functional alterations linked to AD [14], such as vascular, lipid-metabolic, and immune-
related abnormalities [15].

In medical imaging, computer-assisted diagnosis (CAD) is commonly used to diag-
nose a variety of disorders. Deep learning (DL) is a sort of CAD in which features are
extracted automatically without the intervention of a user. Throughout the training, it
develops effective representations of the underlying data distribution using information
gathered from the input data. CNNs are DL methods that are well-known for handling
image-based problems.

In the literature, various methods have been proposed for AD vs. normal control (NC)
using discrete volume estimation CNNs deploying structural MRI scans, achieving normal
weighted classification accuracies of 94.82 and 94.02% [16–18]; AD vs. NC and MCI-static
vs. MCI-converter (MCI-S/MCI-C) classification tasks achieved balanced accuracies of
79.1 and 70.4% on these tasks, respectively, using autoencoder-based networks [19]; NC vs.
very mild-demented vs. mild-demented vs. moderate-demented multiclass classification
tasks achieved an accuracy of 95.23% using a deep CNN model [20]; a combination of
random search, transfer learning and snapshot ensembles for AD vs. NC and MCI vs. AD
tasks attained precisions of 99.05 and 98.71%, respectively [21–25].

Similarly, authors proposed a deep recurrent neural network for binary classification
between AD and NC classes [26]; a deep CNN model comprising multiple layers, such as a
pooling layer, feature mapping, and other layers for diverse classification tasks (binary and
multiclass) using NC, AD, MCI-S, and MCI-C classes has been used to attain state-of-the-art
performances on these tasks [27]; transfer learning based Inception-ResNet-V2 architecture
for classification of AD [28]; as well as an ensemble of logistic regression and linear support
vector machine for NC/MCI classification [29].

Correspondingly, authors provide a survey of latest techniques for AD diagnosis
using deep learning methods [30]; MCI-S vs. MCI-C classification achieved an accuracy
of 85.5% utilizing MRI and genotype data using the random forest algorithm and other
methods [31]; AD vs. NC binary classification, via a mixture of discrete wavelet transform
(DWT)-based features, color moments, and a feedforward artificial neural network (ANN)
classifier achieved an accuracy of 97.14% [32]; 2D slice level CNN model for AD/NC and
pMCI/sMCI classification tasks achieving an accuracy of 93% on AD/NC and 83% on
pMCI/sMCI classification tasks [33]; an autoencoder-based architecture for classification
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and prediction of AD using resting-state functional MRI data achieved an accuracy of
approximately 95% using correlation coefficient data and approximately 90% using resting-
state functional MRI data [34].

Batch normalization and dropout are widely adopted elements of modern deep CNN
architectures. Dropout overcomes overfitting by dropping units and their connections
randomly and stochastically, performing regularization in the process by providing an
uncertainty estimate for a prediction that is dependent on its probabilities. Disharmony
among batch normalization and dropout methods leads to deteriorating performances on
discrimination tasks and is due to an internal covariance shift resulting in unstable numerical
behaviors in inference due to their distinct test policies, causing an improper neural variance
with a shift in information flow in inference, leading to erroneous predictions. Furthermore,
batch normalization tries to reach a stable distribution of activation values throughout
training by subtracting the batch mean and dividing by the batch standard deviation. To
mitigate the variance shift phenomenon, the population variance needs to be recomputed to
compensate for the variance shift caused by the inference mode of dropout [35–43].

In this study, the disharmony effects in dropout and batch normalization methods
on the presentations of deep CNNs for the early detection of AD were examined. We
used 3D scans from the MRI and PET neuroimaging modalities and sorted them into
MCI, NC, and AD classes using 3D-CNN architectures. Four problems were considered:
multiclass classifications of MCI, NC, and AD classes, as well as binary classifications of
MCI and NC, MCI and AD, and NC and AD classes. For the AD vs. NC classification task,
we used random zoomed-in/out data augmentation for the MRI modality, but no data
augmentation for the PET modality (for the binary and multiclass classification tasks was
deployed). We considered three distinct scenarios: (1) no dropout but batch normalization,
(2) just a single layer of dropout before the softmax layer, and (3) a convolutional layer
between the dropout and batch normalization layers.

The remainder of the paper is laid out below. Section 2 explains the datasets, whereas
Section 3 describes the approach. Experiments and results are presented in Section 4, while
Section 5 presents the discussion. Lastly, Section 6 concludes this work, giving pointers for
further research in this field.

2. Datasets Description

Scans from the AD Neuroimaging Initiative (ADNI) database were considered in this
study [44]. Tables 1 and 2 reflect the demographics of the participants considered in this
study. For the experiments, we used entire brain scans in the 3D domain. We picked a
volume size of 121 × 145 × 41 for the T1-weighted MRI modality in the sagittal plane and
a volume size of 79 × 95 × 69 for the PET modality.

Table 1. The mean (min–max) from PET scans.

Demographics NC MCI AD

Subjects 102 97 94
Age 76.01 (62.21–86.62) 74.54 (55.32–87.23) 75.82 (55.32–881)

Weight 75.72 (49–130.3) 77.13 (45.1–120.2) 74.12 (42.62–127.54)
Functional Activities Questionnaire Total Score 0.1863 (0–6) 3.163 (0–15) 13.672 (0–27)

Neuropsychiatric Inventory Questionnaire Total Score 0.4023 (0–5) 1.973 (0–17) 4.0741 (0–15)

Table 2. The mean (min–max) from MRI scans.

Demographics NC AD

Subjects Number 228 187
Age 75.97 (60.02–89.74) 75.4 (55.18–90.99)

Weight 75.91 (45.81–137.44) 72.03 (37.65–127.46)
Mini-Mental State Examination Score 29.11 (25–30) 23.26 (18–27)
Clinical Dementia Rating Global Score 0 (0–0) 0.75 (0.5–1)
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3. Methodology

This research looks at four problems: a multiclass (three-class) classification problem
between MCI, NC, and AD classes, and three binary classification problems that include
MCI and NC, MCI and AD, and NC and AD classes. With the PET dataset, we looked at all
four classification problems, whereas with the MRI dataset, we only looked at the AD vs.
NC binary classification problem.

The designs for processing MRI and PET scans are shown in Figures 1 and 2 under
scenario-1. After performing a zero-centered normalization procedure that subtracts the
mean and divides it by the standard deviation, one input layer takes a volume size of
121 × 145 × 41 or 79 × 95 × 69, as illustrated in these diagrams. The input is subsequently
sent via block-A, which is repeated five times. The block is composed of a 3D-convolutional
layer for feature extraction, a batch normalization layer, and an exponential linear unit
(ELU) non-linear activation layer, which works by gradually reducing the bias shift effect
while reducing the cost to zero. Mathematically,

ELU =

{
z, z > 0
α(ez − 1), z ≤ 0

(1)
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Figure 2. Architecture of 3D-CNN PET scan processing for binary and multiclass classifications
under scenario-1.

The max pooling 3D layer reduces the dimensionality of feature maps by using
larger stride widths, making the entire process more computationally efficient. To reduce
overfitting, the convolutional layers use small weights and bias L2 parameters. After
repeating block-A five times, there is a single block named block-B that has three fully
connected (FC), one softmax, and one classification layer. Each activation unit of one layer
is connected to each activation unit of the next layer, which then compiles the data received
by previous levels to produce the final output. In terms of temporal efficiency, these layers
are only second to convolutional layers. Finally, a softmax layer operates by squashing the
inputs in this range to normalize neural units between zero and one, allowing outputs to
be interpreted as probabilities. Mathematically,

so f tmax
(→

z
)
=

ezi

∑K
j=1 ezj

(2)

The classification architectures in Figures 3 and 4 are nearly identical to those in
Figures 1 and 2, except for a single dropout with a 0.1 probability right before the softmax
layer in the entire design, which randomly removes neurons acting as the regularizer to
minimize overfitting. Figures 5 and 6 depict structures that correspond to scenario-3. An
input layer in these designs uses the zero-center normalization technique to center volume
sizes of 121 × 145 × 41 or 79 × 95 × 69 toward the origin. Following this input, there is a
single block labeled “block-A”, four blocks labeled “block-B”, and a single block labeled
“block-C”. These blocks are made up of convolutional, batch normalization, dropout layers,
max-pooling layers, FC, ELU activation, and softmax layers, as shown in Figures 5 and 6.
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As given in Figure 6, for the AD vs. NC vs. MCI tasks, under scenario-3, the fea-
ture maps in the 3D convolutional layer in block-A and block-B are 8, and there are 300,
100, and 3 neurons in FC layer 1, FC layer 2, and FC layer 3, respectively. The feature
mappings in the 3D convolutional layer in block-A and block-B for the NC vs. MCI and
MCI vs. AD binary classification tasks are 6, followed by 100, 30, and 2 neurons in FC
layers 1, 2, and 3, respectively.

4. Experiments and Results

In this research, a five-fold cross-validation (CV) method was applied in the experi-
ments for hyperparameter selections. A separate test set was also generated, and it was never
used during the training process for the performance assessment. In the test set, there were
12 NC class cases, 7 MCI class cases, and 4 AD instances from the PET data set, as well as 8
NC and 8 AD instances from the MRI data set. Since we utilized both balanced and unbal-
anced classes, we established a different set of performance criteria to investigate binary and
multiclass classification tasks. For balanced multiclass and unbalanced binary classification
tasks, confusion entropy (CEN), relative classifier information (RCI), Matthew’s correlation
coefficient (MCC), and geometric mean (GM) were used as performance measures. For bal-
anced binary classification tasks, sensitivity (SEN), specificity (SPEC), F-measure, precision,
and balanced accuracy were employed as performance metrics.

We did our best to avoid the data leakage problem mentioned by Junhao Wen et al. [45]
by avoiding an incorrect data split, biased transfer learning, late split, and the lack of an
autonomous test set. In addition, we followed the experimental design of Simeon Spasov
et al. [46] and our previous work [47] for the experiments. Simeon Spasov et al. [46]
reported only the validation results for the AD vs. NC classification tasks. We followed their
procedure and that of [47] by including results from mutually validated and independent test
sets by simply summing the results from these two sets, resulting in a total of six results for a
task, and we used categorical cross-entropy as the loss function. For experimental purposes,
regarding the independent test set, we considered models in the validation and training
splits as training sets and samples in the independent test set as validation sets; we report
the results on the last epoch. In fact, for all of the experiments, we report the results obtained
in the last epoch. We ensured that our independent test set was never used for choosing the
training hyperparameters since the validation set provides this functionality and, hence, was
used for this purpose. In fact, the validation set provides dual functionality by providing the
evaluation results as well as tuning the hyperparameters for the experiments. One reason for
adopting this strategy is that we wanted to ensure that more samples were employed in the
assessment of results and, secondly, we observed that the performance on the independent
test sets was even better than the performance on validation splits.

For all classification problems employing the PET modality, there were a total of
72 subjects in the training split and 18 in the validation split for each class, such as AD,
MCI, and NC. There were 44 NC class instances (as well as 35 or 36 AD class instances) in
the validation split, and 176 NC class instances (and 144 or 143 AD class instances) in the
training split, respectively, for trials employing the MRI modality. We used Adam as an
optimizer and categorical cross-entropy as a loss function throughout the experiments.

RCI distinguishes among classes while taking class predictions into account. RCI is
built using the predictability offered by the predicted classes and enables the comparison
of classifiers in the same domain. CEN calculates the rate of misclassification between
a single class and all other classes by using the off-diagonal components in a confusion
matrix to utilize the class distribution information. It is highly dependent on the number
of samples since a larger number of samples yields a better result for CEN. By integrating
individual accuracy rates with total accuracy, IBA is intended to offer information about
the dominating class. GM measures the amount to which a class recollection is aggregated
by concentrating on the recall of a single class. Finally, MCC may be used to determine
the Pearson coefficient of correlation between products and moments by correlating the
difference between observed and actual readings.
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The ratio of individuals who are expected to test positive for an illness compared to
those who really have the ailment is known as sensitivity or recall. The ratio of individuals
who are expected to test negative for an illness compared to those who do not really have
the ailment is known as specificity. By balancing precision and recall, the F-measure gives
information on a test’s accuracy. The precision determines which forecasts in the positive
class are correct. Finally, balanced accuracy is a desirable statistic for classification tasks in
which sensitivity and specificity are equally important.

The results of the tests, as shown in Tables 3–6, will now be discussed. Table 3 shows
that the structures used in scenarios-1 and 2 significantly reduce the disharmony between
batch normalization and dropout methods for multiclass classification between AD, MCI,
and NC classes using PET modalities, whereas scenario-3 significantly increases it. The best
architecture, according to RCI and average CEN metrics, is 3D-CNN in scenario-1, while
the worst performing architecture is 3D-CNN in scenario-3 using PET modality. Based on
average IBA, GM, and MCC measures, the 3D-CNN trained under scenario-2 has the better
performance, whereas the 3D-CNN trained under scenario-3 using the PET modality has
the worst performance. Generally, the best-performing architecture is the 3D-CNN trained
under scenario-2, whereas the worst-performing architecture is the 3D-CNN trained under
scenario-3 using the PET modality. Because of the better performance of the 3D-CNN
trained under scenario-2, which employs the PET modality, we can observe that dropout
and batch normalization together may yield higher performance outcomes. It is also worth
noting that the architecture trained under scenario-3 had the worst results, which could
be explained by the disharmony in the dropout and batch normalization methods, which
have lowered performances in this case due to the internal covariance shift phenomenon,
which caused these methods to behave differently during the training and test phases of
the neuronal units [43]. The results and rankings of the architectures trained under the
three scenarios for the multiclass classification task are given in Figures 7 and 8.

Table 3. Multiclass classification among AD, MCI, and NC classes using PET modality.

Architecture Used Metrics of Performance

3D-CNN applying PET data to study
scenario-1

RCI = 0.2261,
CEN = {‘AD’: 0.5054, ‘MCI’: 0.8572, ‘NC’: 0.4996},
Average CEN = 0.6207,
IBA = {‘AD’: 0.4539, ‘MCI’: 0.1316, ‘NC’: 0.4969},
Average IBA = 0.3608,
GM = {‘AD’: 0.7484, ‘MCI’: 0.4683, ‘NC’: 0.7344},
Average GM = 0.6503,
MCC = {‘AD’: 0.5118, ‘MCI’: 0.019, ‘NC’: 0.4601},
Average MCC = 0.3303

3D-CNN applying PET data to study
scenario-2

RCI = 0.1923,
CEN = {‘AD’: 0.5448, ‘MCI’: 0.8405, ‘NC’: 0.5407},
Average CEN = 0.642,
IBA = {‘AD’: 0.4674, ‘MCI’: 0.1516, ‘NC’: 0.4734},
Average IBA = 0.3641,
GM = {‘AD’: 0.7454, ‘MCI’: 0.4982, ‘NC’: 0.7289},
Average GM = 0.6575,
MCC = {‘AD’: 0.4953, ‘MCI’: 0.0721, ‘NC’: 0.4543},
Average MCC = 0.3405

3D-CNN applying PET data to study
scenario-3

RCI = 0.1628,
CEN = {‘AD’: 0.5692, ‘MCI’: 0.8398, ‘NC’: 0.5501},
Average CEN = 0.653,
IBA = {‘AD’: 0.4407, ‘MCI’: 0.0411, ‘NC’: 0.5748},
Average IBA = 0.3522,
GM = {‘AD’: 0.7424, ‘MCI’: 0.3597, ‘NC’: 0.6975},
Average GM = 0.5998,
MCC = {‘AD’: 0.5026, ‘MCI’: −0.011, ‘NC’: 0.3881},
Average MCC = 0.2932
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Table 4. Binary classifications among AD and MCI classes using PET modality.

Architecture Used Metrics of Performance

3D-CNN applying PET data to study scenario-1

SEN = 0.6383,
SPEC = 0.6907,
F-measure = 0.6522,
Precision = 0.6667,
Balanced Accuracy = 0.6645

3D-CNN applying PET data to study scenario-2

SEN = 0.6702,
SPEC = 0.7113,
F-measure = 0.6811,
Precision = 0.6923,
Balanced Accuracy = 0.6908

3D-CNN applying PET data to study scenario-3

SEN = 0.7234,
SPEC = 0.4845,
F-measure = 0.6415,
Precision = 0.5763,
Balanced Accuracy = 0.6040

Table 5. Binary classifications among AD and NC classes using PET and MRI modalities.

Architecture Performance Metrics

3D-CNN applying PET data to study scenario-1

SEN = 0.8511,
SPEC = 0.8235,
F-measure = 0.8333,
Precision = 0.8163,
Balanced Accuracy = 0.8373

3D-CNN applying PET data to study scenario-2

SEN = 0.8404,
SPEC = 0.8824,
F-measure = 0.8541,
Precision = 0.8681,
Balanced Accuracy = 0.8614

3D-CNN applying PET data to study scenario-3

SEN = 0.8617,
SPEC = 0.6961,
F-measure = 0.7864,
Precision = 0.7232,
Balanced Accuracy = 0.7789

3D-CNN applying MRI data to study scenario-1

RCI = 0.2194,
CEN = {‘AD’: 0.7609, ‘NC’: 0.6752},
Average CEN = 0.71805,
IBA = {‘AD’: 0.5468, ‘NC’: 0.6291},
Average IBA = 0.5879,
GM = {‘AD’: 0.7668, ‘NC’: 0.7668},
Average GM = 0.7668,
MCC = {‘AD’: 0.5367, ‘NC’: 0.5367},
Average MCC = 0.5367

3D-CNN applying MRI data to study scenario-2

RCI = 0.2517,
CEN = {‘AD’: 0.7243, ‘NC’: 0.6525},
Average CEN = 0.6884,
IBA = {‘AD’: 0.5979, ‘NC’: 0.6382},
Average IBA = 0.618,
GM = {‘AD’: 0.7861, ‘NC’: 0.7861},
Average GM = 0.7861,
MCC = {‘AD’: 0.5721, ‘NC’: 0.5721},
Average MCC = 0.5721

3D-CNN applying MRI data to study scenario-3

RCI = 0.238,
CEN = {‘AD’: 0.7384, ‘NC’: 0.6643},
Average CEN = 0.7014,
IBA = {‘AD’: 0.5825, ‘NC’: 0.6297},
Average IBA = 0.6061,
GM = {‘AD’: 0.7785, ‘NC’: 0.7785},
Average GM = 0.7785,
MCC = {‘AD’: 0.5573, ‘NC’: 0.5573},
Average MCC = 0.5573
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Table 6. Binary classification tasks among NC and MCI classes using PET modality.

Architecture Performance Metrics

3D-CNN applying PET data to study
scenario-1

SEN = 0.5670,
SPEC = 0.6471,
F-measure = 0.5851,
Precision = 0.6044,
Balanced Accuracy = 0.6070

3D-CNN applying PET data to study
scenario-2

SEN = 0.5567,
SPEC = 0.6471,
F-measure = 0.5775,
Precision = 0.6000,
Balanced Accuracy = 0.6019

3D-CNN applying PET data to study
scenario-3

SEN = 0.2268,
SPEC = 0.8137,
F-measure = 0.3188,
Precision = 0.5366,
Balanced Accuracy = 0.5203
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Table 4 illustrates the binary classification outcomes between AD and MCI classes,
applying the PET modality for the trained 3D-CNN architectures in each of the three
scenarios. The 3D-CNN architecture trained under scenario-3 performed the best, whereas
the 3D-CNN architecture trained under scenario-1 performed the poorest while considering
only the SEN metric. Overall, the trained 3D-CNN architecture in scenario-2 yielded
the best results, whereas the 3D-CNN architecture trained under scenario-3 yielded the
worst results. These results illustrate the benefits of combining batch normalization and
dropout approaches. A small value of dropout improves the performance; however, large
amount of it reduces the performance. The findings and rankings of the architectures
trained for the AD vs. MCI binary classification task in each of the three scenarios are
shown in Figures 9 and 10.

The statistics for binary classification among AD and NC classes utilizing PET and
MRI modalities are summarized in Table 5. Using PET modality, it can be observed that
the best performing model is the 3D-CNN architecture trained under scenario-2, 3D-CNN
architecture trained under scenario-1 performed the second best while the worst performing
architecture is the one trained under scenario-3. Using MRI modality, it can be observed
that the best performing model is the 3D-CNN architecture trained under scenario-2, 3D-
CNN architecture trained under scenario-3 performed the second best while the worst
performing architecture is the one trained under scenario-1. Here again, we can observe
that a small value of dropout improves the performance. The findings and rankings of
the architectures trained for the AD vs. NC binary classification task in each of the three
scenarios are shown in Figures 11–14.
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under the three scenarios.

Table 6 shows the data for binary classification among NC and MCI classes using PET
modalities. According to SEN, F-measure, SPEC, and balanced accuracy performance met-
rics, the 3D-CNN model trained under scenario-1 performed the best, while the 3D-CNN
model trained under scenario-3 performed the worst. Overall, the 3D-CNN architecture
trained under scenario-1 is the best-performing architecture, whereas the 3D-CNN model
trained under scenario-3 is the lowest-performing architecture. We notice an interesting
trend here: the design with no dropout performed the best, the one with a small value of
dropout performed the second best, and the one with a substantial amount of dropout
performed the worst. These data show that utilizing dropout sparingly or not at all leads
to better-performing designs than using it excessively. Figures 15 and 16 demonstrate the
results and rankings of the architectures trained under the three scenarios for the NC vs.
MCI binary classification tasks using PET modalities.
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In general, we can observe from Tables 3–6 and Figures 7–16 that the architectures
trained under scenario-2 fared the best, followed by the designs trained under scenario-1,
while the architectures trained under scenario-3 performed the worst. We discovered
that using small amounts of dropout in conjunction with batch normalization resulted in
better-performing designs than using it excessively or not at all. In fact, because of the
internal covariance shifts among batch normalization and dropout approaches, excessive
usage of dropout resulted in bad-performing architectures. As we discovered in our work,
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this shift in the variance of neuronal units over the training and testing phases leads to
inferior performances across a variety of binary and multiclass classification tasks.

5. Discussion

In modern CNN designs, batch normalization and dropout are two of the most popular
elements. They can create highly powerful discriminating or classification structures when
they work together, which can help them obtain superior results across different tasks.
In the later stages of AD, when a person’s cognitive abilities begin to decline, whole
brain-based approaches have significant discrimination capacities. We discovered that our
3D-CNN architecture performed worse on MCI vs. NC binary classification tasks than on
AD vs. NC and MCI vs. AD binary classification tasks, which might be explained by the
usage of whole brain slices. Approaches that use whole brain slices have the benefit of
being able to catch changes in the brain that other methods, such as region-of-interest-based
methods, may miss [48–54].

Despite using a more complex architecture for MCI vs. NC binary classification than
for AD vs. NC binary classification, the comparative scenarios performed worse because
whole brain slices failed to capture relevant discriminating cues for this task. Despite using
the most sophisticated architecture, the performance on the multiclass classification task
was the worst, which could be attributed to the fact that multiclass sorting is a more difficult
problem in general than binary classification tasks. Because there are more observable
changes inside the brain at this stage, the 3D-CNN design performed best on the AD vs.
NC binary classification task. Another noteworthy aspect is that the 3D-CNN architecture
trained under scenario-2 performed better than the other two scenarios, highlighting the
importance of the requirement for a small value of dropout in the designs.

DL techniques [55,56] for the diagnosis of AD (utilizing multimodal neuroimaging
data) are improving and appear to have promise. According to the findings of this study,
these methods increased inter-subject variations and reduced intra-subject variations. The
construction of individual-specific diagnostic models, as accomplished in this work, is a ma-
jor focal point for research in AD diagnosis. We can enhance structural information preser-
vation in the brain during processing. Furthermore, we can discover the sharing of common
information across many aspects to aid prognosis and diagnosis in clinical applications.

In AD, neuropsychological testing can help measure present and prospective func-
tional skills. Overall cognitive test performances and levels of functional impairment in AD
are strongly correlated. Despite the usefulness of scores from neuropsychological batteries,
a solitary summary of the test items may oversimplify complex characteristics. Another
stumbling block to using DL is the requirement for a large-scale dataset. The benefit of
DL algorithms is usually proportional to the sample size. The effectiveness of nonlinear
models, such as CNNs, in employing neuropsychological characteristics to guess the prac-
tical outcome of AD might be explained by a number of factors. The findings in this paper
strongly correlate with neuropsychological factors commonly employed in the assessment
of AD, such as age. Despite using small-scale datasets, the impact of these factors on
the performance of CNN architectures is profound, which highlights their importance.
Furthermore, there is a need to add more factors to AD assessment to increase the chances
of an accurate diagnosis in the early stages of AD.

Multimodal data, such as neuropsychological and clinical data, as well as other imag-
ing modalities, may aid the designs in performing even better on classification tasks.
Participants in this study may have performed poorly on several binary and multiclass
classification tasks due to a lack of these data. Another limitation is the lack of general-
ization ability, as age is a factor in the order of AD, MCI, and NC subjects. Testing across
many databases, such as OASIS, can help alleviate this problem. Because MCI is a phase in
between NC and AD with a time period spanning from 0 to 36 months, longitudinal data
might improve the classifiers’ discrimination performances even further. Table 7 compares
the projected approaches to other approaches available in the literature.
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Table 7. Comparison with other approaches.

Authors Data Methods Accuracy Classification Task

Oh et al. [57] MRI
Inception

auto-encoder
based CNN

84.51% AD vs. NC Binary

Ekin et al. [58] MRI 3D-CNN 73.4% AD vs. NC Binary

Cosimo Ieracitano et al. [59] MRI Electroencephalographic
signals 85.78% AD vs. NC Binary

Rukesh Prajapati et al. [60] MRI DL model 85.19% AD vs. NC Binary

Selene Tomassini et al. [61] MRI

3D
Convolutional

Long
Short-term

Memory-based
network

86% AD vs. NC Binary

Rejusha T R et al. [62] MRI
Deep

convolutional
GAN

83% AD vs. NC Binary

Ekin et al. [63] MRI 2D-CNN
autoencoder 74.66% AD vs. NC Binary

Ignacio Sarasua et al. [64] Functional MRI Template-based
DL 77.3% AD vs. NC Binary

Alex Fedorov et al. [65] MRI Multimodal 84.1% AD vs. NC Binary

Proposed Model (Scenario-2) PET 3D-CNN
Whole brain 86.22% AD vs. NC Binary

Karim A et al. [66] MRI 2D CNNs
hippocampal region 66.5% AD vs. MCI Binary

Karim A et al. [67] MRI 2D CNNs coronal, sagittal and
axial projections 63.28% AD vs. MCI Binary

Proposed Model (Scenario-2) PET 3D-CNN
Whole brain 69.1% AD vs. MCI Binary

Tae-Eui K et al. [68] Resting-state
functional MRI CNN framework 73.85% NC vs. MCI Binary

Olfa B A et al. [69] MRI Circular Harmonic Functions 69.45% NC vs. MCI Binary

Proposed Model (Scenario-1) PET 3D-CNN
Whole brain 60.8% NC vs. MCI Binary

Bijen K et al. [70] PET, MRI
DL

employing
3D-CNN layers

50.21% AD vs. NC vs. MCI Multiclass

Eva Y P et al. [71] MRI

Deep CNN
having 3

convolutional
layers

55.27% AD vs. NC vs. MCI Multiclass

Proposed Model (Scenario-2) PET 3D-CNN
Whole brain 56.31% AD vs. NC vs. MCI Multiclass

6. Conclusions

In this paper, we used PET and MRI neuroimaging modalities to train multiple 3D-
CNN architectures for binary and multiclass classifications of Alzheimer’s disease to investi-
gate the impact of disharmony between dropout and batch normalization techniques on the
performance of these architectures. We investigated three different scenarios: (1) training
without dropout but with batch normalization, (2) training with a single dropout layer
immediately preceding the softmax layer, and (3) training with a single convolutional layer
between the dropout and the batch normalization layer. The findings show that low or
no dropout in the network leads to higher-performing designs, whereas excessive use
of dropout degrades performance. It was discovered that the architecture trained under
scenario-2 performed the best, while the architecture trained under scenario-3 performed
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the worst. In the future, we plan to investigate this impact in the frequency domain using
other data augmentation strategies. We also plan to integrate MRI and PET datasets to
improve the performances in a variety of binary and multiclass classification tasks for the
initial screening of Alzheimer’s disease.
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