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Abstract: Identification and monitoring of diverse resources or wastes on the ground is important
for integrated resource management. The unmanned aerial vehicle (UAV), with its high resolution
and facility, is the optimal tool for monitoring ground objects accurately and efficiently. However,
previous studies have focused on applying classification methodology on land use and agronomy,
and few studies have compared different classification methods using UAV imagery. It is necessary
to fully utilize the high resolution of UAV by applying the classification methodology to ground
object identification. This study compared three classification methods: A. NDVI threshold, B. RGB
image-based machine learning, and C. object-based image analysis (OBIA). Method A was the least
time-consuming and could identify vegetation and soil with high accuracy (user’s accuracy > 0.80),
but had poor performance at classifying dead vegetation, plastic, and metal (user’s accuracy < 0.50).
Both Methods B and C were time- and labor-consuming, but had very high accuracy in separating
vegetation, soil, plastic, and metal (user’s accuracy ≥ 0.70 for all classes). Method B showed a good
performance in identifying objects with bright colors, whereas Method C showed a high ability in
separating objects with similar visual appearances. Scientifically, this study has verified the possibility
of using the existing classification methods on identifying small ground objects with a size of less
than 1 m, and has discussed the reasons for the different accuracy of the three methods. Practically,
these results help users from different fields to choose an appropriate method that suits their target, so
that different wastes or multiple resources can be monitored at the same time by combining different
methods, which contributes to an improved integrated resource management system.

Keywords: UAV; NDVI; orthomosaic; classification; OBIA; machine learning; threshold

1. Introduction

Despite recent advances and development in Earth-observing satellites, temporal
resolution and cloud cover are some of the obstacles present for many quantitative remote
sensing applications, such as monitoring and detecting the dynamics of environmental
systems. Since the 2010s, unmanned aerial vehicles (UAV) have been popular for various
purposes, such as disaster relief, civil engineering surveys, pesticide spraying, and infras-
tructure inspections [1]. Compared to earth observation satellites such as Landsat, Terr,
and SPOT, UAVs have advantages such as high mobility, high resolution, and low-altitude
flight (unaffected by clouds), which enable them to achieve highly accurate and precise
observation of ground objects.
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Ground object identification using UAV imagery is helpful for an improved environ-
mental and resource management system. For example, the occurrence of waste items all
over villages, farmland, and natural parks have resulted in garbage management becoming
a serious local environmental issue. Additionally, plastic pollution due to agricultural
activities is an important source of pollution as plastics are difficult to quantify [2]. Fur-
thermore, uncontrolled open dumping and burning pollutes water and soil, affects plants,
increases vectors of disease, emits odors and greenhouse gasses into the atmosphere, and
poses serious health risks to people working at open dumping sites [3,4]. Micro-plastics,
formed when waste plastics are fragmented by photochemical, mechanical, and biological
processes, contaminate aquatic ecosystems through passive or active ingestion by a wide
range of organisms [5]. Environmental degradation, because of poor waste management,
decreases the quality and quantity of forest, fisheries, and tourism resources. Such degra-
dation has negative impacts on local industries, which in turn indirectly affects people’s
well-being [6–9]. To sustainably mitigate and monitor drivers of environmental degradation,
including ground objects such as agricultural wastes, vegetation, soil, weak vegetation,
plastic sheets and metals, requires transdisciplinary collaboration in identification and
monitoring amongst societal stakeholders and researchers.

Vegetation canopy cover monitoring is another topic that can be benefited from precise
ground object identification, providing important information for forestry management
and ecosystem service surveys. Canopy cover (CC) is an easily measured characteristic
that is an indicator of crop growth and an important parameter in crop simulation models,
such as the Aqua Crop model [10]. Accurate and efficient CC estimation would allow
improved scheduling and allocation of irrigation water [11]. Furthermore, identifying
dead or weakened plants can help farmers to make better field management decisions.
Therefore, identifying crop cover and weakened vegetation precisely and efficiently using
UAV imagery is thought to be helpful to rural environmental management, agriculture
development, and integrated resource management.

Ground object classification has been studied worldwide and can be achieved through
different approaches. Vegetation indices have been extensively used to trace and monitor
vegetation conditions such as health, growth levels, and water or nutrient stress [12]. Previ-
ous studies have shown that various spectral calculations based on visible and near-infrared
reflectance data can reflect the growth status of vegetation [13]. Not only can the health
condition of plants be monitored using NDVI, but discovery of the weakened vegetation,
soil, and plastic and metal items is also possible, which have significantly different re-
flectance rates in the band ranges of red and near-infrared light [14]. Furthermore, PVC and
metal items have lower NDVIs than that of soil because of a relatively higher reflectance
in the red range and a lower reflectance of near-infrared range than soil [15]. Therefore,
the NDVI threshold method has been used as one of the standards to classify the land
cover on the fields of national parks, rural sociology, urban environmental engineering
and ecology [15–19]. This research shows that the NDVI threshold method is a practical
classifier for land use classification.

Other methods for land cover classification include machine learning approaches,
which classify the image depending on appropriate training samples. The machine learning
algorithm allows image diagnosis to be conducted in an automatic and efficient manner.
One of the most common methods of machine learning classification based on red, green
and blue (RGB) images, such as the orthomosaic constructed from aerial images, is to
classify the pixels depending on their RGB values according to the training samples.
Hassan et al. (2011) generated land use/land cover maps with UAV-obtained RGB images
using the supervised classification algorithm (maximum likelihood) and achieved a 90%
overall classification accuracy [20]. Hamylton et al. (2020) compared the classification
results with UAV GCB images using the pixel classification, visual interpretation, and
machine learning approaches, and the machine learning method showed the highest
overall accuracy of 85% [21]. Shin et al. (2019) conducted classification of forest burn
severity with UAV-obtained multispectral imagery using the maximum likelihood and
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threshold methods and achieved overall accuracies of 89% and 71%, respectively [22].
These results showed that the pixel-based machine learning method could achieve very
high accuracy in land cover classification.

Differing from traditional pixel-based classification methods, the object-based image
analysis (OBIA) method first separates the image into segments which are small polygons
constructed of several neighboring and similar-valued pixels [23]. Then, with appropriate
training samples, the classification is performed by dividing the segments into different
classes according to their shape, size, and spectral content [24]. Compared to traditional
pixel-based classification methods, OBIA is thought to be accurate for hydrologic modeling
and vegetation detection owing to its ability to detect the health status as well as the factors
influencing the biological habitats in a rapid, accurate, and cost-effective manner [25].
The OBIA is one of the most popular classifiers for land cover classification and has been
applied and verified worldwide in the fields of forestry, agriculture and oceanology [26–30].
However, no study has yet compared the classification accuracy of methods using the
NDVI threshold, RGB image-based machine learning, and OBIA in rural areas

The automated identification methods have been applied in agriculture for batter field
monitoring and management. Lanthier et al. (2008) conducted a comparative study between
supervised pixel-oriented and OBIA classifications in a precision agriculture context using
hyperspectral images to identify three different crop species (corn, peas and beans), and
found out that the OBIA method achieved better performance, with a Kappa of 0.8268 [31].
Lebourgeois et al. (2017) analyzed and optimized the performance of a combined Random
Forest classifier/OBIA approach and applied it to multisource satellite data to produce land
use maps of a smallholder agricultural zone at five different nomenclature levels of the crops,
achieving an overall accuracy of 91.7% and 64.4% for the cropland and crop subclass levels,
respectively [32]. Zheng et al. (2019) presented the crop vision dataset for deep-learning-based
classification and detection method for over 30 categories of crops and achieved an overall
accuracy of over 99% [33]. However, these studies were only focused on vegetation monitoring
and classification, instead of the overall environment including the non-vegetation objects,
which also have an influence on better field management.

Unlike satellite remote sensing methods, UAV surveys can perform identification
accurately with high resolution, and are also suited for small-scale research applications.
These methods could provide societal stakeholders and researchers with a transdisciplinary
approach to ground object identification, monitoring and decision-making abilities, con-
tributing to sustainable community development. However, for this approach to be used
by stakeholders involved in integrated resource management, the following should be
made clear (1) What are the characteristics of the three methods in terms of the accuracy
of identification of ground objects? (2) What are the advantages and disadvantages of
the three methods for different ground objects? (3) what are the recommendations for
the choice of different methods toward integrated resource management? Therefore, this
study aimed at performing ground matter identification with three different methods
(NDVI threshold, RGB image-based machine learning, and Object-based image analysis
(OBIA) method), comparing the total overall accuracy, and discussing the characteristics
and optimal classification for each method.

2. Materials and Methods
2.1. Study Site

The aerial surveys were conducted within the experimental field (total area: 3.2 ha) of
Obihiro University of Agriculture and Veterinary Medicine located at 42.8688◦ N, 143.1725◦ E,
at an altitude of 75 m. The area used for classification verification is shown surrounded by the
red dotted line in Figure 1. The ground objects at the study site were vegetation, dead/weakened
vegetation, soil, plastic multi-sheet, plastic blue-sheet, and metal pipes (Figure 2). The vegetation
included crops such as wheat, pasture grass, pumpkin, and peanut. The dead/weakened
vegetation in this study site was barley, which was near the harvest stage. If the methods
discussed in this study could identify the weakened vegetation accurately, it would provide a



Sustainability 2022, 14, 14603 4 of 19

useful tool for precision agriculture by helping farmers detect growth problems among the crops.
A multi-sheet is a thin, smooth, and translucent film used in agriculture fields to maintain the
temperature and moisture of soil and is made of polyethylene, which is the same material as that
from which plastic bags are manufactured, is barely biodegradable, and can cause problems not
only for the natural environment, but also for the health of livestock and humans. The blue-sheet
is made of the same material as the multi-sheet, but has a thick, rough, and blue-colored surface,
which results in a difference in the spectrophotometry reflection characteristics of these two
kinds of polyethylene products. Multi-sheet, blue-sheet, and metal pipes are materials that
are often found in most open waste dumping sites, which means they have similar visual
appearance and spectrophotometry reflection characteristics.
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2.2. UAV Settings and Data Collection

Aerial surveys were conducted twice on August 1st, 2019. The lightweight UAVs
and camera parameters used for both surveys are shown in Figure 3 and Table 1. The
Phantom 4 Pro (DJI) was used to obtain the RGB images of the study site, and the Inspire
2 (DJI) equipped with a multispectral sensor and a sunlight sensor Sequoia (Parrot) was
used to obtain the multispectral images (green band, 510–590 nm; red band, 620–700 nm;
red-edge band, 715–775 nm; near-infrared band, 750–830 nm). A 10,000 mA mobile battery
(Anker Power Core) was also attached to the Inspire 1 to power the multispectral sensor.
Considering that the agriculture field had relatively simple ground objects and lacked the
characteristic points that help to match images, the flight route used for both aerial surveys
was a double grid to ensure successful image processing.
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Table 1. Unmanned aerial vehicle (UAV) and camera specifics.

RGB Imagery Multispectral Imagery

UAV model Phantom 4 Pro (DJI) Inspire 1 (DJI)
Total weight 1375 g 3400 g
Diagonal size 350 mm 581 mm

Maximum flight time Approximately 30 min Approximately 18 min
Camera type 1 inch CMOS Multispectral Sensor
Image size 3840 × 2160 pixels 1280 × 960 pixels

Angle of view 84◦ 74◦

Top overlap rate 80% 80%
Side overlap rate 80% 80%

Camera angle 75◦ from horizon 90◦ degrees from horizon
Flight height 50 m 40 m

Ground resolution 1.6 cm/pixel 6.2 cm/pixel

As shown in Figure 1, seven ground control points (GCPs) were selected within the
experimental field. The position information of the seven GCPs was obtained by a Global
Navigation Satellite System (GNSS) device Hiper V (TOPCON).

2.3. Structure from Motion Workflow

The Structure from Motion (SfM) technology can reconstruct the 3D structure of
the object surface based on multiple, overlapping images taken by a moving camera.
In the present study, the SfM process of the UAV images was conducted using Agisoft
Metashape Professional Edition (ver. 1.8.0, Agisoft). The image processing workflow is
illustrated in Figure 4. After obtaining the aerial images using UAVs and importing them
into the software, a tie point cloud was generated by aligning the images and finding
the characteristic points existing in the overlapping areas between the images. Then, the
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position information of the GCPs obtained from the GNSS measurements was imported
into the software and matched with the anti-aircraft signals in the images, which corrected
the tie point cloud to the accurate geographic location. Based on the initial process results,
a dense point cloud was generated based on depth maps calculated using dense stereo
matching. Because generating the dense cloud was the most time-consuming step of
the SfM process and the higher the density of the point cloud, the more complicated the
subsequent calculations would be, in the present study, a medium-quality dense cloud was
generated. Based on the dense cloud information, a 3D polygonal mesh was constructed by
connecting the points with polygonal surfaces. After the surface model was constructed, a
texture model was created by extracting the RGB color value and calibrating the brightness
and white balance, giving the 3D model the same visual appearance as that of the actual
object. Finally, based on the texture model, the RGB and multispectral (red and near-
infrared) orthomosaics were exported. The ground resolution of the final products of the
SfM procedures was 1.6 cm for panchromatic and 4.2 cm for multispectral products. The
NDVI raster was then calculated using the Raster Calculator geo-processing tool in ArcGIS
Pro (ver. 2.4.1, Esri).
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2.4. Classification Procedures

As mentioned in the introduction, the NDVI is an index mostly used to evaluate the
health condition of plants. The higher the NDVI value, the healthier the vegetation. Some
objects other than plants also have specific NDVI values. The reflectance characteristics
and the ranges of the NDVI values of these objects have been discussed by many previous
studies [34–39]. Although the NDVI values and spectral characteristic of the same object
are varied because of the differences in the used sensor or the ground resolution of the
remote sensing data, there is an agreement that the dense and healthy vegetation has the
NDVI value of more than 0.2 due to the extremely high reflectance of the near infrared band
of light and the relatively low reflectance of the red light [40], and the NDVI value of the
bare dry soil is around 0 due to the similar reflectance of the red light and the near infrared
band of light [41]. Although the weakened vegetation has fewer chloroplasts, which
leads to a lower reflectance of near infrared wave of light, the leaves are still conducting
photosynthetic reaction. Therefore, the NDVI of the weakened or dead vegetation used in
this study is lower than the normal vegetation, but slightly higher than the bare soil. The
plastic materials have different reflectance features due to the coating color or transmittance
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of light. However, the mean reflectance of red light (0.0375) from multiple plastic material is
higher than the near infrared band of light (0.299), leading to a negative value of NDVI [35].
Same spectral features have been found on commonly used metals, such as Aluminum, iron
and their alloys [42,43]. Based on this characteristic of NDVI, the NDVI thresholds were
used to classify the study area. The optimal significant figures of the NDVI threshold for
the classification of ground objects have been shown to be to the first decimal place, which
was used in the NDVI threshold method in the present study (Table 2). The classification
using this method was conducted within ArcGIS Pro (ver. 2.4.1, Esri). First, the NDVI
raster was imported into the software. Then, the classes between the NDVI thresholds were
extracted as independent raster layers using the Extract by Attributes geo-processing tool.
To assign the attribute value for each class raster, the layers were processed using the Int
tool, after which the vegetation layer was assigned the class number one, the soil layer as
two, the dead/weakened vegetation layer as three, the multi-sheet and metal layer as four,
and the blue-sheet layer as five. Additionally, the NDVI threshold of the blue-sheet class
could not be defined since the NDVI value of the blue-sheet ranges from −0.1 to 0.1, which
was included in both the soil class and the weakened vegetation class. Finally, the five
layers were processed using the Mosaic to New Raster geo-processing tool, and a raster
including the five classes of the entire study area was generated.

Table 2. Normalized difference vegetation index (NDVI) threshold values for the different classes.

Class Multi-Sheet and Metal Soil Weakened Vegetation Vegetation

NDVI threshold −0.3 to −0.2 −0.2 to 0.0 0.0 to 0.2 0.2 to 1.0

The RGB image-based machine learning method uses the interactive Supervised
Classification function of ArcGIS Pro. First, the RGB orthomosaic was input to the soft-
ware, and a pyramid of the orthomosaic was built to achieve the optimal interactive
performance. Next, five empty shape-file (polygon) layers for the classes (vegetation,
soil, dead/weakened vegetation, multi-sheet and metal, and blue-sheet) were created and
approximately 10–20 training samples for each class were manually distributed within
the polygons. The number of training samples varied because the areas occupied by the
different classes in the study area were not equal. To achieve the optimal classification
result, all the training samples were determined at the pixel level, which means the error
range was less than 2 cm. Therefore, although the required input data and operation steps
for this method were simpler than those required for the NDVI threshold method, manual
determination of the training samples was quite time-consuming. Finally, the maximum
likelihood classification was performed on the orthomosaic layer of the study area based
on the RGB values of the training samples.

The OBIA can classify image objects by dividing the entire image into small segments
according to their shape, size, and spectral content. The software used for this method
was eCognition Developer (ver. 9.0, Trimble). First, a new project including the RGB
orthomosaic, red band reflectance orthomosaic, near-infrared reflectance orthomosaic, and
NDVI raster was created in the software, and was displayed as one RGB-mixed layer in the
workspace, where the near-infrared was displayed as green and NDVI as red. Next, the
mixed image was separated into multiple segments using the Multiresolution Segmentation
tool. The scale factor, which decides the average size of the segments and is commonly set
between 100 and 150 for high resolution UAV images [25], was set to 100 in the present
study to obtain the classification result as precisely as possible. The result of segmentation
is shown in Figure 5. Then, five classes were created inside the Class Hierarchy window
and 80 to 200 segments for each class were selected as training samples using the Select
Samples tool. Finally, the classification was conducted according to the mean RGB value,
mean brightness, standard deviation RGB, position, and shape of the mixed layer.
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2.5. Accuracy Assessment

The accuracy assessments for the classification results of the three methods were
performed with ArcGIS Pro. First, the orthomosaic and classification raster from the classi-
fication methods were input into the software. Next, a point shapefile with 1000 assessment
points was created using the Creating Accuracy Assessment Point geo-processing tool
(Figure 6). The attribute table of the created point shapefile included both the Ground Truth
field, which is the reference value, and the Classification Field, which is the test value. The
reference value was determined by visual judgement, by zooming into the point position
and deciding manually to what class the point belonged. The visual judgement was also
conducted at the pixel level, which means the tolerance of error was less than 2 cm. The
test value was extracted from the classification raster using the Extract Values to Points
geo-processing tool. Finally, the accuracy assessment for each classification result was
conducted using the Compute Confuse Matrix geo-processing tool, by calculating the
user’s accuracy, the producer’s accuracy, and the Kappa coefficient.
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3. Results
3.1. UAV Mapping Products

Figure 7 shows the RGB orthomosaic, red band orthomosaic, near-infrared ortho-
mosaic, and NDVI raster generated from the UAV image, and the mixed RGB image in
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eCognition Developer, which were the photogrammetry products used for the subsequent
classification. The characteristic of each product was the basis for the different performances
of the three methods.

1 
 

 

 

 

 

 
 

(b) 

(c)

(d) 

(e) 

(a) 

Figure 7. Mapping products generated from the unmanned aerial vehicle (UAV) images: (a) red-green-blue
(RGB) orthomosaic; (b) red band orthomosaic; (c) near-infrared orthomosaic; (d) normalized difference
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vegetation index (NDVI) raster; (e) mixed image in eCognition Developer.

As shown in Figure 7a, in the RGB orthomosaic, the vegetation, multi-sheet and
metal, and blue sheet had characteristic RGB values that could be expressed clearly and
distinctly. However, the RGB values of soil and weakened vegetation were close to each
other, resulting in a similar visual appearance. Specifically, the average RGB values of soil
were 223, 209, and 190, respectively, whereas those of the weakened vegetation were 217,
204, and 174, respectively, for ten randomly selected sample pixels. This fact suggested that
the RGB orthomosaic had a disadvantage in distinguishing soil and weakened vegetation.

In contrast, as shown in Figure 7b, the red band orthomosaic could distinguish soil
and weakened vegetation, but distinguishing between the weakened vegetation and the
multi-sheet and metal was difficult because they all had a high reflectance rate of red
light, as was distinguishing between the blue-sheet and soil because they both had an
intermediate reflectance rate of red light.

As shown in Figure 7c, the vegetation area was clearly visible at the near-infrared or-
thomosaic, because the chlorophyll in healthy vegetation strongly reflects the near-infrared
wavelength and appears as fluorescence in the near-infrared image. Even for the weakened
vegetation, a small amount of chlorophyll still produced a visible fluorescence. This fact
makes the near-infrared band an important indicator for vegetation in the remote sensing
field. However, objects other than vegetation have no significant reflectance characteristic
at the near-infrared, which resulted in the similar appearance of soil, multi-sheet, metal,
and blue-sheet in the near-infrared orthomosaic. Because NDVI is a normalized value of
the difference between the reflectance of the red and near-infrared bands, the NDVI raster
shows more features of different objects that have specific characteristics in terms of red or
near-infrared band reflectance.

As shown in Figure 7d, the NDVI raster clearly distinguished between soil, vegetation,
and multi-sheet and metal. However, the weakened vegetation and blue-sheet had similar
intermediate NDVI values as that of soil because the former had a high reflectance at
both the red and near-infrared bands, and the latter had a low reflectance at both bands.
Based on these findings, the RGB and multispectral orthomosaics had both advantages
and disadvantages for identifying different ground objects. Therefore, a mixed layer was
prepared in eCognition Developer to maximize the strength of each kind of data. As
shown in Figure 7e, different from the orthomosaic, the mixed layer clearly displayed the
weakened vegetation, and different from the multispectral orthomosaics and NDVI, it also
clearly displayed objects with specific RGB values, such as the blue sheet.

3.2. Comparison of Classification Results

The classification results of the three methods are shown in Figure 8, and the Pixel
percentage of the classes for each classification method is shown in Figure 9. Due to
these results, the NDVI Threshold Method failed to identify the blue sheets, and tended
to classify the vegetation and soil as the weakened vegetation. Contrastingly, the RGB
Machine Learning Method classification result had the highest pixel percentage for the
vegetation and the lowest pixel percentage for the weakened vegetation, showing its
strength in identifying healthy vegetation and a weakness in identifying the weakened
vegetation. On the other hand, as shown by the red square in Figure 8c, the OBIA method
was able to identify the weakened vegetation which the RGB Machine Learning Method
failed to recognize.
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3.3. Accuracy Evaluation of the Classification Methods

The accuracies of the three methods were evaluated using the confusion matrix calcu-
lated with ArcGIS Pro. The confusion matrix (also known as error matrix) is a commonly
used evaluation tool for classification verification. In the confusion matrix tables used in the
present study, each row represents the classified results, whereas each column represents
the reference results (the true value). For example, the first row of “Vegetation” in Table 3
lists the values 279, 33, 6, 5, 5, and 328, which means that among all the 328 points that were
classified as “Vegetation” by this method, 279 points were within the vegetation area of the
study site, whereas 33 points were in the soil area, indicating that they were misclassified.
Similarly, the first column of “Vegetation” in Table 3 lists the values 279, 6, 32, 0, 0, 317,
meaning that among the 317 points that should have been classified as vegetation, only
279 points were correctly classified by this method, whereas six points were misclassified as
soil. Three indicators were calculated based on the confusion matrix and are presented in
Table 3a–c: the user’s accuracy, the producer’s accuracy, and the overall Kappa index. The
user’s accuracy shows a false positive, meaning that the classification result was positive,
whereas it should have been negative. For example, the user’s accuracy for “Vegetation” in
Table 3 was 0.851, meaning that among all the points that had been classified as vegetation
by this method, only 85.1% were correct. Similarly, the producer’s accuracy shows the false
negative, meaning that the classification result was negative, but the correct answer should
have been positive. For example, the producer’s accuracy for “Vegetation” in Table 3 was
0.880, which means that among all the points that should have been classified as vegetation,
only 88.0% were classified correctly by this method. The Kappa index, also known as
Cohen’s Kappa coefficient, is a statistical indicator used for conformance testing. The value
of the Kappa index ranges between −1 and 1. The higher the Kappa index, the higher the
classification accuracy.

Table 3a presents the confusion matrix of the NDVI threshold method. The overall
Kappa index of this method was 0.576, which is considered “fair to good” [31]. The
confusion matrix of the RGB image-based machine learning method is presented in Table 3b.
The overall Kappa index of this method was 0.798, which is considered as “excellent”.
Table 3c presents the confusion matrix of the OBIA method. The overall Kappa index of
this method was 0.793, which was close to that of the RGB image-based machine learning
method and was also considered “excellent”.
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Table 3. Confusion matrix for the three classification methods.

(a) Confusion matrix for the normalized difference vegetation index (NDVI) threshold method

Class Name Vegetation Soil Weakened
Vegetation

Multi-
Sheet

Blue-
Sheet Total User_

Accuracy Kappa

Vegetation 279 33 6 5 5 328 0.851
Soil 6 426 58 18 6 514 0.829

Weakened vegetation 32 59 29 2 23 145 0.200
Multisheet and Metal 0 6 1 6 0 13 0.462

Bluesheet 0 0 0 0 0 0 0.000
Total 317 524 94 31 34 1000 0.000

Producer_accuracy 0.880 0.813 0.309 0.194 0.000 0.000 0.740
Kappa 0.576

(b) Confusion matrix for the red-green-blue (RGB) mage-based machine learning method

Class Name Vegetation Soil Weakened
Vegetation

Multi-
Sheet

Blue-
Sheet Total User_

Accuracy Kappa

Vegetation 300 27 5 0 0 332 0.904
Soil 11 486 50 7 0 554 0.877

Weakened vegetation 4 10 36 0 0 50 0.720
Multisheet and Metal 1 1 3 24 1 30 0.800

Bluesheet 1 0 0 0 33 34 0.971
Total 317 524 94 31 34 1000 0.000

Producer_accuracy 0.946 0.927 0.383 0.774 0.971 0.000 0.879
Kappa 0.798

(c) Confusion matrix for the object-based image analysis (OBIA) method

Class Name Vegetation Soil Weakened
Vegetation

Multi-
Sheet

Blue-
Sheet Total User_

Accuracy Kappa

Vegetation 311 43 21 6 0 381 0.816
Soil 3 468 31 3 0 505 0.927

Weakened vegetation 0 6 41 0 0 47 0.872
Multisheet and Metal 2 5 1 21 1 30 0.700

Bluesheet 1 2 0 1 33 37 0.892
Total 317 524 94 31 34 1000 0.000

Producer_accuracy 0.981 0.893 0.436 0.677 0.971 0.000 0.874
Kappa 0.793

4. Discussion
4.1. Difference on the Performances of Mapping Products by the Three Methods

As shown in Figures 8a and 9, the NDVI threshold method could not detect the blue-
sheet because it had the same NDVI value range as that of soil (−0.2 to 0.0). In addition,
only a part of the multi-sheet in the field was successfully classified, whereas the remaining
area was classified as soil. This was because the multi-sheet had been installed in the field
for more than two months by the time the aerial surveys were conducted, and the surface
was covered by some soil or dust, which resulted in an NDVI close to that of soil.

This result can also be observed in Figure 8. In the area surrounded by the red dotted
line, soil was mistakenly determined as multi-sheet or metal. This was because the soil
in that area had been stepped on by the surveyors, leaving behind footprints. The water
content of the soil compacted by human weight was higher than that of the normal topsoil
in the field, which decreased the NDVI value of the compacted area to a level lower
than that of the threshold for multi-sheet and metal. This fact indicated that the NDVI
value of various soils depends on the soil water content, and misclassification is possible
when distinguishing soil from plastic or metal materials simply according to the NDVI
threshold. Furthermore, the NDVI threshold method determined the vegetation edges
to be weakened vegetation, although these parts were actually green leaves with good
health, which can also be observed in Figure 8. This was because the ground resolution of
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the multispectral image was more than 6 cm, and the pixels at the edge of the vegetation
had average NDVI values of both the vegetation and soil, which made them appear like
weakened vegetation. This suggested that despite the UAV multispectral image having a
better ground resolution than the traditional aerial photos, there were still error values at
the edge of the plant community.

In contrast, as shown in Figure 7b, the RGB image-based machine learning method
had a better performance than the former method. This method clearly detected the areas
with blue-sheet, multi-sheet, and metal, and classified the compacted soil in the correct
class despite the difference in soil water content. However, it still showed a disadvantage
in detecting the weakened vegetation, because these areas had similar RGB values to those
of soil, and the only standard for classification of this method was the RGB value.

In contrast, as shown by the red dotted line in Figure 7c, the OBIA method successfully
detected the area of weakened vegetation which was misclassified by the former method.
However, it still showed one disadvantage, which is the misclassification of some weakened
vegetation as the normal vegetation class. Figure 6 also reflects this trend of the OBIA
method. This was because even though the plants belonged to the weakened vegetation
class, the NDVI value might still be similar to that of the healthy vegetation when plant
density is extremely high.

4.2. Mechanism of the Difference on the Accuracies by the Three Methods

The NDVI Threshold Method achieved high accuracy in classifying vegetation and
soil. The user’s and producer’s accuracies were above 0.80 for both classes. This suggested
that the NDVI threshold was appropriate for identifying vegetation and soil. In contrast,
the user’s (0.200) and producer’s (0.309) accuracies of the weakened vegetation class
were both low. Furthermore, the user’s accuracy was lower than the producer’s accuracy,
meaning that this method had a tendency to falsely recognize other objects as weakened
vegetation. Similarly, both the user’s (0.462) and producer’s (0.194) accuracies were low for
the multi-sheet and metal class, and the user’s accuracy was higher than the producer’s
accuracy. This means that the NDVI threshold method had a tendency to ignore the
objects that should have been classified as multi-sheet or metal. Finally, both the user’s
and producer’s accuracies were 0.000 for the blue-sheet class, meaning that the NDVI
threshold method did not have the ability to identify plastic material with a rough surface.
Considering practicality, the NDVI threshold method demands the least amount of input
data, consisting only of the NDVI raster of the field, while it was also the least time-
consuming method and could provide an acceptable accuracy in determining the vegetation,
soil, plastic with smooth surfaces and the metal material, which made it a practical tool
for land cover classification when moderate accuracy was required. As a direction for
future research, a more precise threshold value for the classification can lead to a more
accurate classification result. In this study and many previous studies, the threshold values
were accurate to one decimal place and the threshold value was often defined based on
experience. Putra et al. (2015) detected the areas of cloud/water/snow, rocks/bare land,
grassland/shrubs and tropical forests/mangrove forest using the Landsat-derived NDVI
thresholds of <0, 0–0.1, 0.2–0.3, and 0.4–0.8 [16]. Gross (2005) classified the barren areas
of rock/sand/snow, shrub/grassland, and rainforest with the NDVI thresholds of <=0.1,
0.2–0.3, and 0.6–0.8. The NDVI threshold of the non-vegetation was slightly lower than the
previous studies, while the NDVI thresholds of vegetation classes were similar. The reason
for this difference was that the definition of the non-vegetation areas, such as the bare land,
was different between satellite imagery and UAV imagery. The ground resolution of the
Landsat imagery was 30 m, which means the pixels that were defined as bare land also
contained vegetation; while the ground resolution of the UAV imagery used in this study
was less than 0.02 m, which means the pixels that were classified as bare land in this study
were pure soil.

For the RGB Machine Learning Method, both the user’s (0.904) and producer’s (0.946)
accuracies of the vegetation class were higher than 0.900, and both the user’s (0.877)
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and producer’s (0.927) accuracies were higher than 0.800, suggesting that this method
demonstrated extremely good performance in identifying vegetation and soil in this study
area. The user’s accuracy (0.720) of the weakened vegetation class was much higher than
the producer’s accuracy (0.383), meaning that the RGB image-based machine learning
method had a tendency to ignore the weakened vegetation. Similarly to the observation
and discussion presented in Section 3.2, this result also demonstrated that this method
had a disadvantage: mistakenly classifying the weakened vegetation as soil. In contrast,
both the user’s (0.800) and producer’s (0.774) accuracies of the multi-sheet and metal
class were very high. Furthermore, the user’s (0.971) and producer’s (0.971) accuracies of
the blue-sheet class were extremely high, meaning that this method could detect plastic
and metal materials with very high accuracy. Nowadays, despite the development of
UAV remote sensing which provides very high resolution RGB imagery, the classification
studies using UAV RGB imagery have still been more focused on land-use classification,
instead of ground object classification. Hassan et al. (2011) generated land use/land cover
maps including the classes of trees/vegetation, water, soil, urban, and unprocessed area
with UAV-obtained RGB images using the supervised classification algorithm (maximum
likelihood) and achieved a 90% overall classification accuracy [20]. Shin et al. (2019)
conducted classification of forest burn severity with UAV-obtained multispectral imagery
using the maximum likelihood and threshold methods and achieved overall accuracies of
89% and 71%, respectively [22]. These results showed that the pixel-based machine learning
method could achieve very high accuracy in land cover classification. It is necessary to
extend the utility of this methodology from the land-use level to the ground object level.
Hamylton et al. (2020) compared the classification results at object level with high resolution
UAV GCB images using the pixel classification, visual interpretation, and machine learning
approaches, and the machine learning method showed the highest overall accuracy of
85% [21]. Based on the previous studies, the current study has added weight to the fact that
the RGB imagery machine learning method is one of the optimal classification methods for
ground object classification in rural areas.

For the OBIA Method, similar to the former method, both the vegetation and soil
classes had very high user’s (0.816 and 0.927, respectively) and producer’s (0. 981 and
0.893, respectively) accuracies. The user’s accuracy (0.872) was higher than the producer’s
accuracy (0.436) of the weakened vegetation class. This indicated that although the prob-
lem of ignoring the weakened vegetation also existed in the OBIA method, this method
achieved a high accuracy in detecting the weakened vegetation, with the best performance
among all the three methods. However, regarding the multi-sheet and metal and blue-sheet
classes, the user’s (0.700 and 0.892, respectively) and producer’s (0.677 and 0.971, respec-
tively) accuracies were lower than or equal to those of the former method, suggesting that
although the OBIA could detect the plastic and metal materials with satisfactory accuracy,
its performance was slightly inferior to that of the RGB image-based machine learning
method. The previous studies of this method share the same characteristic with the former
method, which is the limitation of application. Natesan et al. (2018) performed land use
classification using UAV-obtained multispectral images, and achieved overall accuracies
of 78% and 50% for water bodies and mixed-color classification classes, respectively [26].
Ahmed et al. (2017) compared different UAV camera data and platform performance for
classifying forest, shrub, and herbaceous layers; bare soil; and built-up areas using the
OBIA method and achieved overall accuracies of 90% and 80% with the multispectral
camera and RGB sensor, respectively [27]. Sarronet et al. (2018) proposed a method to map
individual mango tree production using geographic object-based image analysis (GEOBIA)
and obtained an RMSE% accuracy ranging from 20% to 29% [28]. Brovkina et al. (2019)
performed forest stand classification with UAV-based NDVI and point dense clouds using
the OBIA method and achieved a Kappa coefficient accuracy of 0.74 [29]. Comparison
of classification performance between UAV and satellite multispectral image aerial data
using the OBIA method by Yang et al. (2019) yielded Kappa coefficients of 0.713 and
0.538, respectively [30]. Ventura et al. (2018) performed mapping and classification of
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marine habitats with UAV-obtained RGB images using the OBIA method and achieved an
overall accuracy of >80% in different study sites [25]. All these studies focused on land-use
classification or vegetation detection. This study has utilized the current methodology for
more, smaller research subjects.

4.3. Application Values of This Research

The current study has provided a new point of view for the application of the existing
classification methodology based on UAV high resolution imagery, which is the classifi-
cation of various ground objects instead of land-use classification. As mentioned in 4.2,
although land-use classification is crucial for many major fields, it does not fully utilize
the advantages of UAV remote sensing, which include very high spatial and temporal
resolution. The application of the classification methodology should progress with the
development of the platform. It is not only increasing the classification accuracy that should
be focused on, but also the diversity of subjects. With the suggestions of this study, future
research could be enlightened to discuss the ability of UAV remote sensing on detecting
more ground objects, including the footprints or individuals of livestock, vermin and wild
animals, which contributes greatly not only to the field of agronomy, but also to agriculture,
rural development and national park management.

The results of the current study suggested that within the fields of agriculture and
natural resources, where vegetation and soil are the main objects of classification, it is
recommended to use the NDVI Threshold Method. It demands only multispectral imagery
data and has less of a requirement for the image analysis software and technique. In the
fields of rural or city environment management, where not only vegetation and soil but
also plastic and metal materials are the main objects ofclassification, it is recommended to
use the RGB Imagery Machine Learning Method. It demands only RGB imagery data, and
could achieve high accuracy with precise imagery analysis with the geographic information
system software. Finally, when both the RGB and the multispectral imagery data are
available, it is recommended to use the OBIA Method, which could achieve high accuracy
in identifying different objects with similar visual appearances.

Based on these result, users of ground object classification, such as societal stakehold-
ers or researchers, from different fields of agricultural and land resources, fishery resources,
forests, agroforestry, and ecosystem services would have a clearer standard to decide the
optimal classification methods to suit their requirements. Therefore, this study is thought to
be helpful for sustainable community development based on the transdisciplinary integra-
tion of natural resource management systems. It is also important for communities to work
together in the analysis of common UAV imagery to create transdisciplinary collaboration.

Integrated resource management involves multidisciplinary areas, such as forests, agri-
cultural lands, residential areas, lakes, marshes, and oceans, that cover agricultural, land,
water, forest, fisheries and tourism resources, agro-ecology, protected areas, ecosystem-
based approaches, human well-being, and integrated approaches for the synergistic man-
agement of different resources. Although there has been much research dealing with re-
source management methods focusing on individual resources, there are not many studies
discussing evaluation methods that incorporate these resources representing a transdisci-
plinary approach in a cross-sectional manner. In addition to vegetation such as crops and
trees, there are various objects such as plastics and metal wastes on the ground that are
subject to resource management. Therefore, the methods discussed in this study for ground
object identification are expected to be an important indicator for societal stakeholders and
researchers in employing UAV identification methods for integrated resource management.

4.4. Limitations and Prospects

The limitation of this study is that the categories of ground objects used in this study
were not comprehensive enough to cover every kind of object which can appear in agri-
cultural or rural areas. In discussing the spectral characteristics of other objects, optimal
classification parameters such as the NDVI threshold value and the segmentation parameter
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for the OBIA method for more objects can be determined, which eventually lead to higher
classification accuracy. Furthermore, in this study, the number of training samples for the
OBIA method was limited in order to be consistent on the pixel level with the RGB imagery
machine learning method for a better comparison. Higher classification accuracy can be
achieved by using more training samples for both the RGB method and the OBIA method.
Furthermore, the classification classes were limited to natural objects, such as grass and
vegetation, which are not enough for practical use in rural areas with artificial objects.

As one of the newest platforms of remote sensing, UAV’s advantages are yet to be fully
exploited. While the UAV imagery can never take the place of satellite imagery because
of the spatial coverage, it provides the highest spatial/temporal resolution and has the
highest mobility, which allow the identification of various small objects in local areas.
This study has discussed the performance of the UAV imagery in detecting vegetation,
weakened vegetation, soil, plastic and metal material, which could be used for identifying
crop areas, crop status, waste materials and agricultural tools in a large local area. There
are more kinds of ground objects for which automated classification methods have not
been discussed yet, such as the footprints of or individual living animals, to contribute to
efficient livestock management, injurious animal control and wild animal monitoring in
rural areas or national parks.

5. Conclusions

This study was conducted to see the applicability and accuracy of the NDVI threshold,
RGB Image-based machine learning method and OBIA method using UAV for ground
object identification. For this, vegetation, soil, weakened vegetation, blue sheet, multi-sheet
and metal were classified and the accuracy of each method was determined.

According to the results of the study, the three classification methods discussed in the
present study are based on different technical considerations and exhibited both advantages
and disadvantages from certain perspectives.

1. The RGB image-based machine learning method had the best performance in classi-
fying all types of ground objects in the study area, whereas the OBIA method had
a slightly lower overall accuracy and the NDVI threshold method had the lowest
accuracy among the three methods.

2. The NDVI threshold method demands the least amount of input data, only requiring the
NDVI raster of the field, while it was also the least time-consuming method and could
provide acceptable accuracy in determining the vegetation and the metal material.

3. The RGB image-based machine learning method had better performance at detecting
plastic and metal materials, which had bright RGB colors.

4. The OBIA method had better performance at separating objects with similar RGB
characteristics but different multispectral reflectance characteristics, such as for soil
and weakened vegetation.

5. By verifying and comparing the performance of the existing classification methods
on detecting various objects, this study unraveled the mechanism of the difference
of the classification accuracies by the three methods, and made recommendations
for UAV users from different fields of the optimal method, which is thought to be a
contribution to transdisciplinary integration.
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