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Abstract: This paper proposes a method of energy storage capacity planning for improving offshore
wind power consumption. Firstly, an optimization model of offshore wind power storage capacity
planning is established, which takes into account the annual load development demand, the uncer-
tainty of offshore wind power, various types of power sources and line structure. The model aims
at the lowest cost of investment, operation and maintenance of the system, and takes lower than a
certain abandoned wind level as the strict constraint to obtain two parameters of power capacity
and energy capacity of energy storage on the source side. Secondly, taking a coastal power grid as a
typical case, the energy storage capacity planning method is verified. Finally, the key factors affecting
offshore wind power consumption are summarized, and the sensitivity analysis is carried out from
the point of view of the transmission protocol of the transmission lines outside the province and the
capacity allocation of the tie lines in the province. This study will be helpful for the planning and
operation of the high-proportion of offshore wind energy power systems.

Keywords: offshore wind power; energy storage system; wind power consumption; planning
optimization model

1. Introduction

With the development of the economy, fossil energy is decreasing and environmental
pollution is increasing day by day. In order to alleviate the pressure of energy shortages
and environmental deterioration, various countries are committed to the development and
utilization of clean energy. The proposal of the carbon peaking and carbon neutrality goals
demonstrates China’s determination to actively respond to climate change and achieve
high-quality economic development. To further accelerate the development and utilization
of non-fossil energy, especially new energy represented by wind and solar energy, is
an important measure to achieve the arduous task of the carbon peaking and carbon
neutrality goals.

Compared with other clean energy sources, wind power has greater development
advantages and competitive potential. In the last 10 years, global onshore wind power has
achieved rapid development, and the development of onshore wind power in some coun-
tries has become saturated. At present, there is an urgent demand for offshore wind power
development and application all over the world [1]. China’s offshore wind power has
great development potential and good development prospects. To develop a high-quality
offshore wind power industry and accelerate the development of offshore wind power
from near-sea to deep-sea to far-sea, promoting the large-scale, intensive and sustainable
development of offshore wind power is an important support to promote the adjustment
of China’s energy structure and achieve the carbon peaking and carbon neutrality goals [2].
Compared with onshore wind power, offshore wind power has three outstanding charac-
teristics: (1) The offshore wind energy resources in the southeast coastal areas of China are
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abundant and close to the power load center, which is convenient for the consumption and
utilization of the power grid. However, transmission cables need to be configured; (2) The
overall output level of offshore wind farms is higher, with higher annual power generation
utilization hours; (3) The transmission mode of offshore wind power is more flexible and
does not need to occupy land resources.

The cost of transmission cable is high, and it is often difficult to send it complete.
On the one hand, offshore wind power connected to the grid for operation will cause
abandoned wind due to transmission congestion in part of the overall output. On the other
hand, it will bring severe challenges to the peak regulation of the power grid. The lack of
peak regulation capacity of the power grid leads to abandoned wind. The installation of an
energy storage system is flexible, and the configuration of energy storage for an offshore
wind power station can promote it to become a high-quality power supply. The source-side
energy storage mainly works out a charge and discharge scheme to stabilize the fluctuation
of its output power to achieve a higher proportion of offshore wind power consumption.
However, there are some problems, such as the high cost of the energy storage configuration,
the mismatch between energy storage technology and offshore applications, and so on.
The improper use of energy storage equipment limits the appropriate absorption of wind
power and increases the cost. The optimal allocation of energy storage capacity has always
attracted much attention, and domestic and foreign researchers have carried out a lot of
research on this issue.

The current research is mainly focused on energy storage capacity planning [3–6]
and wind–storage operation optimization [7–10], and there is little research in [11,12]
considering the interaction between the energy storage system planning and operation at
the same time; a two-layer collaborative optimization model for energy storage capacity
planning and operation is proposed. Starting from the wind power delivery channel, based
on multi-stage stochastic programming and sequential Monte Carlo simulation, an optimal
energy storage allocation method for wind farm stations considering energy storage life
loss and delivery channels is proposed in [13]. Based on the characteristics of the wind
farm, references [14–16] determined the energy storage allocation method based on a wind
power prediction error, wind farm generation curve deviation correction, and wind farm
output smoothing, respectively, but the work done in these references does not take into
account the influence of the power grid peak regulation capacity. References [17–19] put
forward the optimal allocation method of energy storage from the point of view of the
influence of insufficient peak regulation capacity of grid-connected wind power, so that
the power grid has a more downward regulation capacity to accept wind power, but only
the performance of thermal power peak regulation is considered. The work done in these
references does not consider the comprehensive effects of many types of power sources.

Reference [20] studies the feasibility and rationality of wind–storage combined power
generation under current market conditions from the point of view of a technical and
economic evaluation, which provides a reference for an optimal allocation in a wind–
storage combined power generation system. References [21,22] fully consider the operation
characteristics of the energy storage system and determine the energy storage allocation
method based on the dynamic adjustment of charge state and a variable life model. The
joint planning model of energy storage and the transmission network for improving the
receptive capacity of wind power is established in [23], but the focus is on the power
capacity of the energy storage, and the energy capacity is not mentioned. Based on the
characteristics of offshore wind power, an optimal scheduling method for the joint operation
of offshore wind power and seawater-pumped storage power stations is proposed in [24],
but the work done in the reference only mentions optimization and does not involve the
optimal allocation of offshore energy storage units. There is little research on offshore wind
power and energy storage. A physical model combining offshore wind power generation
with an underwater compressed air energy storage system was established in [25]. In [26],
an optimal energy storage allocation model was constructed based on the improved scene
clustering algorithm under the application scenario of smoothing the offshore wind power
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output fluctuation. A new multi-objective programming framework is proposed in [27]
to determine the optimal capacity of battery energy storage systems in the cooperative
operation of large offshore wind farms and battery energy storage systems. The cited
references present the different technologies of energy storage. Their characteristics are
shown in Table 1.

Table 1. The characteristics of common energy storage types.

Types Advantages Drawbacks Efficiency Application

pumped hydro
storage

Mature
technology, large

capacity, low
cost and long

life.

The installation position
has special

requirements, and the
conveying loss is large.

65−75%

improve the
capacity of new

energy
consumption;

smooth the
short-term

fluctuations of
new energy

output;
provide capacity

reserve and
power grid peak

and frequency
modulation

services.

lithium battery

High energy
density and fast

charge and
discharge.

High production cost
and a special charging
circuit is required to
avoid overheating.

85−98%

lead–acid
battery

Mature
technology, easy

availability of
raw materials
and low cost.

Low energy density and
short life during deep
charge and discharge.

80−90%

sodium-sulfur
battery

High energy
density and fast
response time.

Electrode materials are
flammable and there are

risks in
high-temperature

operation.

75−90%

liquid flow
battery

Large capacity,
good safety and
long cycle life.

High maintenance cost
and low energy density. 75−85%

Pumped hydro storage is the most reliable, economical, large capacity and most
mature energy storage device in the power system. It has the advantages of flexible start-
up, fast climbing speed, peak cutting and valley filling, and it is an important part of
the development of new energy. However, it depends on geographical conditions and
needs high hydropower stations. It has a great impact on geography and terrain, and
the construction cost is high. Large-scale battery energy storage systems can be used
for power grid energy management and peak regulation, and the technology is quite
mature. Moreover, it has a fast load response and daily regulation ability, so it is suitable
for large-scale wind power generation.

This paper presents two innovative points: based on the idea of combining planning
and operation through operation simulation, an optimization model of offshore wind
energy storage capacity planning is established, which aims to minimize the total national
economic expenditure of the system. It considers the offshore wind power transmission
channel constraint and uses the abandoned wind rate below a certain level as a strict
constraint. Further, based on 24 scenarios for the optimization model and the contour line
of annual cost and the contour line of abandoned wind rate, an energy storage capacity
planning method for improving offshore wind power consumption is proposed, which can
obtain a reasonable economic and optimal energy storage configuration scheme quickly.

The rest of the paper is organized as follows. The optimization model of offshore wind
energy storage capacity planning is established and the principal block diagram of the
planning and optimization process is shown in Section 2. The case study and data analysis
for the optimization model for offshore wind energy storage capacity planning are carried
out and an energy storage capacity planning method for improving offshore wind power
consumption is proposed in Section 3. Finally, Section 4 concludes the paper.
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2. Model and Methods

At present, electrochemical energy storage systems are the most widely used tech-
nology on the source side of offshore wind farms. Small-scale battery storage systems are
generally used in ships and offshore platforms, while large-scale battery storage systems are
mainly used in islands and coastal areas. This paper takes electrochemical energy storage
systems as an example to conduct relevant research on the energy storage technology of
offshore wind farms [28–33].

The electrochemical energy storage for offshore wind farms is required to meet the
applicable conditions of environmental temperature; it is not easy to maintain the working
temperature of high-temperature sodium-sulfur batteries and liquid metal batteries in the
sea environment. It is required that the mechanical moving parts of the energy storage
device should be as few as possible, so as not to be damaged by corrosion or wave impact
in the marine environment. The liquid flow battery should not be adopted because of its
electrode characteristics with many such parts. It is required that the leakage of battery
materials has no obvious harm to prevent pollution of the marine environment, so lead–acid
batteries, lithium-ion batteries, seawater batteries and silver–zinc batteries can be used for
offshore wind farms [34]. Offshore energy storage needs to be resistant to wind and wave
impact, seawater immersion, seawater corrosion, and so on. Therefore, developing offshore
energy storage systems tends to be more costly than developing onshore energy storage
systems. It is necessary to configure suitable offshore energy storage capacities for offshore
wind power to avoid excessive costs.

2.1. Optimization Model of Offshore Wind Energy Storage Capacity Planning
2.1.1. Objective Function

On the premise of satisfying the system demand and all kinds of constraint conditions,
the system can minimize the total national economic expenditure in the whole planning
period. The objective function of the model can be expressed as:

MinFΣ =
Nm

∑
t=1

Ct(1 + i)Nm−t +
NT

∑
t=1

(
Fgt + Fkt + Ot − Bt

)
· (1 + i)−NT (1)

where Nm is the construction cycle of the newly invested energy storage power station, Ct
is the investment cost of the newly invested energy storage power station at the beginning
of the year t, and Fgt and Fkt are the fixed operation and maintenance costs and fuel costs of
the system in year t, respectively. Ot is the outage loss cost of the system in year t, and Bt is
the benefit obtained by the system in year t, except for power generation. NT is the number
of planning years and i is the discount rate.

Taking the first year as the base year, when the construction process of the newly
invested energy storage power station is simplified, it can be considered that the power
station generates investment costs at the beginning of the first year of the planning period,
and the loss of power outage and other benefits are ignored. The total calculated cost of the
planning period can be equivalent to the annual cost. It means that the investment cost of
the new power station at the beginning of the first year can be evenly allocated to each year
of the planning period, and then added to the annual operating cost. Then the objective
function can be expressed as:

MinF =
i(1 + i)NT

(1 + i)NT − 1
× Cess +

(
Fg + Fk

)
(2)

Cess, the investment cost of the energy storage power station, can be expressed as:

Cess = λpPess + λeEess (3)

Eess = PessTess (4)
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where Pess and Eess are the rated power capacity and energy capacity of the energy storage,
respectively, Tess is the charging and discharging time of energy storage, and λp and λe are
the cost per unit power capacity and the cost per unit energy capacity, respectively.

The annual fixed operation and maintenance cost Fg consists of a conventional thermal
power station Fg1 and an energy storage station Fg2, which can be expressed as:

Fg1 = αg1 · Cg1 (5)

Fg2 = αg2 · Pess (6)

Fg = Fg1 + Fg2 (7)

where Cg1 is the total investment cost of a conventional thermal power station, αg1 is the
annual fixed operation and maintenance cost rate of the power station, and αg2 is the fixed
operation and maintenance cost of energy storage per unit power.

The thermal power station’s annual operating fuel cost Fk can be expressed as:

Fk = βk · Ek (8)

where Ek is the annual energy yield of a conventional thermal power station, and βk is the
fuel cost of the unit energy yield of the power station.

2.1.2. Constraint

In comprehensively considering a variety of power supply types, including wind
power, photovoltaic, hydropower, thermal power, pumped storage and new energy storage
units, the electricity transmitted by the inter-provincial tie lines and the transmission lines
outside the province can be classified into the load demand, and the constraint conditions
to be met are shown in the following equations.
1© Constraints on system power balance:

Pesst + P0t = LDt(1 + ρ + σ) (9)

where Pesst represents the output of the newly invested energy storage system at time t, P0t
represents the output of the original power station of the system at time t, LDt is the load
value of the system at time t, and ρ and σ are the power consumption rate and system line
loss rate, respectively.
2© Maximum and minimum output constraints of power station:

Pkmin ≤ Pk ≤ Pkmax (10)

where Pkmin and Pkmax are the minimum and maximum technical outputs of unit k.
3© Thermal power fuel consumption constraints:

τ

∑
t=1

Eitβi ≤ Aiτ (11)

where Eit is the generating capacity of the thermal power plant i at time t, Aiτ is the fuel
consumption limit of power plant i in the period τ, and βi is the average fuel consumption
per unit of power plant i.

4© Climbing constraints of thermal power units:

Ui
tDRi ≤ Pi(t)− Pi(t − 1) ≤ Ui

tURi (12)

where URi and DRi are the loading and unloading rate of unit i, respectively, and Ui
t

represents the start-stop state of thermal power unit i at time t, which is 0–1. The start-up is
1, and others are 0.
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5© Constraints on the start and stop of thermal power units:

t+TS−1

∑
k=t

(1 − Ui
k) ≥ TS(Ui

t−1 − Ui
t) (13)

t+TO−1

∑
k=t

Ui
k ≥ TO(Ui

t − Ui
t−1) (14)

where TS and TO are the minimum shutdown and start-up time of the thermal power unit,
respectively.
6© Constraints on the generating capacity of hydropower units:

τ

∑
t=1

Ejtβ j ≤ Wjτ (15)

where Ejt is the generating capacity of the hydropower plant j at time t, Wjτ is the available
water limit of power plant j in the period τ, and βj is the average water consumption per
unit of power plant j.
7© Constraints on pumped storage units:

EjG = ηjEjP (16)

CP.t = mPPS.P.N (17)

where ηj is the pumping-power generation conversion efficiency of pumped storage power
station j, and EjG and EjP are the generating capacity and pumping load capacity of the
pumped storage power station j, respectively, within its dispatching period τ. The pumped
power of a pumped storage power station at a certain period of time must be an integer
multiple of its single capacity. CP.t is the pumping capacity of the pumped storage power
station at time t, and PPS.P.N is the rated pumping capacity of the pumped storage unit.
8© Energy storage operation constraints:

− Pcmax_ESS ≤ Pout_ESS ≤ Pdmax_ESS (18)

Emin ≤ Et ≤ Emax (19)

Eess(0) = Eess(T) (20)

where Pcmax_ESS and Pdmax_ESS are the maximum charge and discharge power, respectively.
Pout_ESS is the real-time output power, and Et is the real-time energy capacity.

9© Standby constraints:
N

∑
i=1

Ui
t(Pi,max − Pi(t)) ≥ urN(t) (21)

N

∑
i=1

Pi,max ≥ αLDmax (22)

where N units are providing a certain reserve capacity, urN(t) represents the spinning
reserve of N units at time t, α is the total reserve rate, and LDmax is the maximum load.
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Offshore wind power transmission channel constraints:

Ppass ≤ ηPWN (23)

where Ppass is the maximum transmission capacity of the offshore wind power transmission
channel. PWN is the rated installed capacity of the offshore wind farm, and η is the
transmission channel ratio.
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2.2. Principal Block Diagram of Planning and Optimization Process

A typical case of a coastal power grid is taken to verify the effectiveness of the energy
storage capacity planning method. First, the methods of cluster analysis and probabilistic
modeling are adopted to consider the uncertainty of offshore wind power, and the annual
output characteristic curves are shown in Figure 1.
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The principal block diagram of offshore wind power storage capacity planning and
optimization is shown in Figure 2. The long-term operation data of the combined wind–
storage system can be obtained through operation simulation, and the consumption index
of offshore wind power can be calculated. After a comprehensive optimization comparison
and sensitivity analysis, the optimal planning results can be outputted.
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3. Results and Discussion
3.1. Description of the Basic Conditions of the Example

It is expected that by 2025, the annual maximum load of the power grid in this coastal
area will be 0.0111 billion kW, with a total power consumption of 59.2 billion kWh, and
the total installed offshore wind power will reach 9176.5 MW. The transmission channel
ratio η = 0.8, and this means that the maximum capacity of the transmission channel will
be 7341.2 MW.

The multi-type power supply and line structure in this coastal area are shown in
Figure 3. The installed capacity of the multi-type power supply corresponding to Figure 3
is shown in Table 2. The installed capacity of offshore energy storage needs to be planned
and then configured. Load characteristics are described by an annual maximum load curve,
typical weekly maximum load curve and typical daily load curve. Load data are shown in
Figure 4.
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We used the Gurobi solver to solve the model in the MATLAB programming envi-
ronment. The simulation was carried out with the year as the cycle and the day as the
unit. Inputs should be the load curves and offshore wind power output curves of the
coastal area based on historical data, combined with the power installation structure and
the grid structure inside and outside of the province. The monthly statistics of offshore
wind power and abandoned wind power in this coastal area can be obtained without new
energy storage, as shown in Figure 5.
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Figure 5. Annual utilization of offshore wind power in this coastal area.

All of the offshore wind farms in this coastal area can generate 25,441.25 GWh of
electricity in a year. The practical electricity is 24,085.76 GWh, and the abandoned wind
power is 1355.49 GWh. The abandoned wind rate is 5.33%, and the utilization hours of
offshore wind power are 2625 h. Further, the utilization hours of the transmission channels
are 3281 h. It can be seen from Figure 5 that the abandoned wind power of offshore wind
power is mainly concentrated from January to April, with the most serious abandoned
wind in February and a little abandoned wind in November and December.

For lead–acid battery and lithium-ion battery energy storage systems, the cost coeffi-
cients per unit of energy capacity, per unit power capacity, the operation and maintenance
costs and engineering life obtained, are shown in Table 3.

Table 3. Related parameters of energy storage.

Type λp (104 Yuan/MWh) λe (104 Yuan/MW)
αg2

104 Yuan/(MW×Year)
Engineering Life

(Years)

rich liquid lead–acid 150 125 15 20
lithium-ion battery 500 175 20 20

According to relevant parameters, the planning period is selected as 20 years, and the
comprehensive discount rate for the whole society is 10%. According to the offshore wind
energy storage capacity planning optimization model, the next step is to set up the energy
storage configuration. The offshore wind farms are configured with an energy storage
capacity of 10% to 40% of their rated installed capacity. Therefore, the rated power capacity
of the energy storage system is described as 0.1~0.4 in the following. The installed capacity
of energy storage under different configuration schemes is shown in Table 4. With daily
cycle adjustments of energy storage devices, the charging and discharging time is set from
1 to 6 h, respectively, and the 24 energy storage configuration schemes are combined with
different power P and charging and discharging time T.
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Table 4. Storage capacity configuration of offshore wind farms.

Configuration Ratio 10% 20% 30% 40%

Capacity (MW) 917.65 1835.3 2752.95 3670.6

3.2. Example Analysis of Simulation Results

Based on the energy storage configuration scheme, the annual electricity balance
of operation simulation from the planning level is conducted to obtain the operation
simulation results of the coastal area. The relationship between the abandoned wind rate of
the offshore wind power and the energy storage configuration scheme is shown in Table 5.
Thus, with the further increase in new energy storage power capacity and energy capacity,
the abandoned wind rate of offshore wind power gradually decreases.

Table 5. Relationship between the abandoned wind rate of offshore wind power and the energy
storage configuration scheme in this region.

(P/T) Without Storage 0.1 0.2 0.3 0.4

1

5.33%

5.31% 5.08% 4.78% 4.67%
2 5.18% 4.88% 4.67% 4.41%
3 5.10% 4.82% 4.44% 4.04%
4 5.04% 4.62% 4.21% 3.97%
5 5.02% 4.51% 4.15% 4.10%
6 4.90% 4.43% 4.07% 4.11%

Here, when the lithium-ion battery energy storage system with a scale of 917.65 MW/
917.65 MWh is configured in the offshore wind farm of this coastal area, the annual cost is
analyzed, as shown in Table 6.

Table 6. Composition of annual expenses (104 Yuan).

Annual Value
of Energy
Storage

Investment
Costs

Annual
Operation and
Maintenance

Cost of Energy
Storage

Annual
Operating and
Maintenance

Cost of Thermal
Power

Annual Fuel
Cost for

Thermal Power
Operation

Annual Total
Cost

72,756.1 13,764.8 1,933,090 5,431,380 7,450,990.9

Based on this, the relationship between different energy storage configuration schemes
and the annual costs can be obtained, as shown in Table 7. It can be seen that with the
further increase in new energy storage power capacity and energy capacity, the annual
system costs gradually increase. Therefore, the decrease in the abandoned wind rate of
offshore wind power is accompanied by an increase in the annual system cost. This paper
studies the method to achieve the lowest annual cost while meeting the strict constraints
below a certain curtailment level.

Table 7. Annual total cost under different schemes.

107 Yuan Without Storage 0.1 0.2 0.3 0.4

1

7343.4

7451 7516.9 7597.8 7684.2
2 7496 7634.6 7778.3 7905.5
3 7550.2 7741.5 7924.8 8118.2
4 7602.2 7847.3 8096.9 8330.4
5 7655.8 7953.1 8255.7 8545.5
6 7708.6 8058.5 8416.0 8761.9
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Based on Tables 5 and 7, contour lines of wind curtailment rate and annual cost can be
drawn on a two-dimensional plane, as shown in Figures 6 and 7, respectively. The curve of
wind curtailment rate indicates that different energy storage configurations can bring the
same consumption effect of offshore wind power.
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In order to find the optimal economic scheme combined with the annual cost contour
line, it can be known that when the abandoned wind rate is at a certain standard level,
different annual cost contour lines are used to be tangent to the determined abandoned
wind rate contour line, and the tangent point (power P, charge and discharge time T) is the
best scheme.

In practical application, 5% of new energy is allowed to abandon power, which is sci-
entifically reasonable. Therefore, the alternative energy storage configuration schemes are
(0.3, 1), (0.2, 2), (0.1, 6), etc. According to this method, the best energy storage configuration
scheme is (0.3, 1). It means that the scale of the lithium-ion battery energy storage system
configured for the offshore wind farm with a total installed capacity of 9176.5 MW in the
coastal area is 2752.95 MW/2752.95 MWh.

At this time, the practical electrical output of the offshore wind farm is 24,225.85 GWh.
The abandoned wind power quantity is 1215.4 GWh, and the abandoned wind rate is 4.78%.



Sustainability 2022, 14, 14589 12 of 15

The utilization hours of offshore wind power are 2640 h, and the utilization hours of the
transmission channel are 3300 h. Further, the annual cost is 75.978 billion yuan.

For this study, only 24 scenarios, based on the optimization model to present the
energy storage capacity allocation method, were used. By using fast computer calculation,
the step size of the configuration scheme is further reduced. Based on the energy storage
capacity planning method proposed in this paper, the configuration scheme with the best
economy and applicability can be obtained more quickly and accurately.

3.3. Sensitivity Analysis

According to the above scheme, the configuration of a 2752.95 MW/2752.95 MWh
lithium-ion battery energy storage system is relatively large in terms of the annual cost
from 73.434 billion yuan to 75.978 billion yuan. This section studies the factors influencing
the abandoned wind rate of offshore wind power from other perspectives, exploring
feasible schemes to reduce the abandoned wind rate, and further allocating the source-side
energy storage, paving the way to reduce the power capacity and energy capacity of the
energy storage system configuration, thus reducing the investment costs and operation and
maintenance costs, and improving the economic performance.

As shown in Figure 3, the consumption and utilization of offshore wind power in this
coastal area are not only related to the installed scale of the power structure, including
offshore wind power and energy storage but it is also affected by the transmission agree-
ment signed with other provinces and the exchange of electricity in contact lines with other
regions in the province. Therefore, a sensitivity analysis is carried out from the transmission
agreement of the transmission lines outside of the province and the capacity allocation of
the link line within the province.

3.3.1. Influence of Transmission Line Agreement

Out-of-province transmission line refers to a power transmission line from another
province to the coastal area, with a maximum transmission capacity of 760 MW, which is
sent to the coastal area in accordance with the transmission agreement signed with another
province and given priority to use. Taking the daily transmission curve as an example, the
transmission agreement can be adjusted to 1.1 times the original transmission agreement,
the original transmission agreement, 0.9 times the original transmission agreement, and
0.8 times the original transmission agreement, as shown in Figure 8.
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Figure 8. Schematic diagram of different transmission protocols.

The original transmission agreement refers to the existing transmission agreement
between the grid in the coastal area and another province. Under the existing transmission
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agreement, this paper adjusts it to 1.1 times, 0.9 times and 0.8 times, and then obtains
the utilization of offshore wind power according to the optimization model, and analyzes
the reasons for this situation. After the operation simulation, the changes in the offshore
abandoned wind power rate under different transmission agreements can be compared
and analyzed, and the results are shown in Table 8.

Table 8. Utilization of offshore wind power under different transmission agreements.

Transmission
Scenario

Consumption Power
(GWh)

Abandoned Power
(GWh)

The Abandoned
Wind Rate

1.1 times 24,053.65 1387.61 5.45%
the original
agreement 24,085.76 1355.49 5.33%

0.9 times 24,119.29 1321.96 5.20%
0.8 times 24,362.69 1078.56 4.24%

Therefore, it can be seen that the electricity sent by the out-of-province transmission
lines in this coastal area is too much, which affects the consumption and utilization of
internal offshore wind power. Therefore, the transmission agreement can be optimized in
the direction of reduction without additional cost.

3.3.2. Capacity Allocation of Tie Lines

There is a contact exchange between this coastal area and other areas A and B in the
province. The maximum exchange capacity of the contact line between this coastal area and
area A or area B is 3000 MW. This means that the total capacity of the external contact line
in this coastal area is 6000 MW. This is because the total annual load demand power ratio
of region A and region B is 1:1.2. Without changing the coastal area foreign link under the
premise of a total exchange capacity of 6000 MW, the capacity ratio of the two contact lines
is adjusted, and the changes in the abandoned wind rate of the offshore wind power under
different capacity ratios of the contact line are compared and analyzed after the operation
simulation. The results are shown in Table 9.

Table 9. Utilization of offshore wind power under different capacity ratios of tie lines.

The Total Capacity (MW)
Transmission Ratio The Total

The Coastal Area-Area A The Coastal Area-Area B Abandoned Wind Rate

6000

1 1 5.33%
1 1.2 5.27%
1 1.4 5.23%
1 1.6 5.20%
1 2 5.13%
1 3 5.09%

Therefore, the capacity ratio of the contact line can be optimized according to the load
demand of the contact area. This is to reduce the maximum exchange capacity of the contact
line between the coastal area and area A with low electrical demand, to limit and reduce
the amount of electricity fed back to the coastal area, and promote the absorption and
utilization of internal offshore wind power. Increasing the maximum exchange capacity
of the link line between the coastal area and region B with a high electricity demand can
effectively export the electrical power of the coastal area, and further export and utilize the
offshore wind power that is difficult to be absorbed internally when needed.

On one hand, the abandonment of offshore wind power comes from transmission
congestion in the transmission channel, and on the other hand, it comes from the lack of
peak regulation capacity of the system. When the transmission protocol or tie line capacity
ratio is optimized, the source-side energy storage can be further configured according to
the method described in this paper, which can reduce the energy storage investment costs
and operation and maintenance costs, and improve the economic performance.



Sustainability 2022, 14, 14589 14 of 15

4. Conclusions

This paper studies an energy storage capacity planning method for improving offshore
wind energy consumption, and the conclusions are as follows:

(1) An optimization model for offshore wind power storage capacity planning is estab-
lished to seek an economic and reasonable energy storage power construction and
configuration scheme within the planning period, on the premise of meeting the
system’s annual load development needs and other various constraints;

(2) Based on the power supply and line structure of the power grid in a coastal area, an
example analysis of offshore wind power storage planning was conducted. According
to this method, the best energy storage configuration scheme was (0.3, 1), at an annual
cost of 75.978 billion yuan. In order to fully utilize offshore wind power and further
improve economic performance, the sensitivity analysis of the abandoned wind rate
of offshore wind power in this coastal area was carried out. The result proved that the
reasonable optimization of the transmission agreement and the capacity ratio of tie
lines can improve the acceptance capacity of the power grid to offshore wind power.

The results of this paper can provide some reference value for further research on
capacity planning and the optimal operation of offshore wind energy storage. However,
this paper sets a fixed value for the capacity of the offshore transmission channel, without
joint planning of the offshore energy storage and the offshore transmission channel.
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