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Abstract: The ongoing pandemic due to novel coronavirus disease-2019 (COVID-19) has rapidly
unsettled the health sector with a considerable fatality rate. The main factors that help minimize
the spread of this deadly virus are the proper use of masks, social distancing and antibody growth
rate in a person. Based on these factors, we propose a new nature-inspired meta-heuristic algorithm
named COVID-19 Based Optimization Algorithm (C-19BOA). The proposed C-19BOA mimics the
spread and control behavior of coronavirus disease centered on three containment factors: (1) social
distancing, (2) use of masks, and (3) antibody rate. Initially, the mathematical models of containment
factors are presented, and further, the proposed C-19BOA is developed. To ascertain the effectiveness
of the developed C-19BOA, its performance is verified on standard IEEE mathematical benchmark
functions for the minimization of these benchmark functions and convergence to the optimal values.
These performances are compared with established bio-inspired optimization algorithms available
in the literature. Finally, the developed C-19BOA is applied on an electrical power system load–
frequency–control model to test its effectiveness in optimizing the power system parameters and to
check its applicability in solving modern engineering problems. A performance comparison of the
proposed C-19BOA and other optimization algorithms is validated based on optimizing the controller
gains for reducing the steady-state errors by comparing the effective frequency and tie-line power
regulation ability of an industrially applied Proportional–Integral–Derivative controller (PID) and
Active Disturbance Rejection controller (ADRC). Moreover, the robustness of C-19BOA optimized
PID and ADRC gains is tested by varying the system parameters from their nominal values.

Keywords: nature-inspired algorithms; population-based methods; coronavirus disease-2019 (COVID-19);
standard benchmark functions; power system control and optimization; Active Disturbance Rejection
controller (ADRC)

1. Introduction

The maiden instance of the ongoing coronavirus disease-2019 (COVID-19) pandemic
was diagnosed at China’s Wuhan city, the epicenter of the COVID-19 epidemic, during
December 2019. The disease has globally infected around 600 million people and taken
the life of more than 6 million so far [1]. The virus responsible for COVID-19 spreads
primarily from one infected person to another person in contact with each other. Minute
drops and aerosols comprising the virus spread from an infected person to another person
through the nose and mouth during breathing, coughing, sneezing or speaking. Another
factor of transmission, although not the main mode, is through contaminated surfaces.
The exact mode of virus transmission is recognized convincingly, but the primary factor
for virus spread is when people are in close contact for long enough. While efforts are
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ongoing to make available the developed drugs and vaccines in order to inhibit the virus,
the primary management is symptomatic. Preventive methods involve social distancing,
covering coughs and sneezes, use of masks, hand washing etc. Additionally, if a person
is infected, the antibody rate formation against the virus proliferation plays an important
factor in inhibiting the virus.

Owing to the recent trends in developing optimization algorithms for various opti-
mization processes, nature-inspired phenomenon are modified to form such algorithms.
Bio-inspired models are nature-inspired replicas that aimed for successful application in hy-
brid methodologies. These are designed to evaluate the parameters in artificial-intelligence
based machine learning optimizations. Meta-heuristics deal through vast search spaces and
discover sub-optimal solutions in fairly desired execution times [2]. Numerous such meta-
heuristic algorithms based on natural genetics [3], biogeography [4], particle swarms [5],
bee colony [6], cuckoo [7], magnetotactic bacteria [8], gray wolf [9], arithmetic optimiza-
tion [10], and archimedes optimization [11] are available in the literature.

One of the main throwbacks of an optimization technique is its application in real-
world problems. Almost every optimization technique finds its application in power system
applications such as the load–frequency (LFC) applications of power systems. The main
aim of LFC operation is to keep the system frequency within defined limits. Here, the
controller gains are optimized using any optimization approach. Hence, the application of
the proposed technique in real-world power system problems needs to be studied.

Related Works

One of the most protracted meta-heuristic algorithms implemented to advance deep
learning problems is genetic algorithm (GA) [3]. GA is constructed on the perception of
Darwin’s well-known evolution and natural selection theories, which are expressed in
terms of mathematical operators for biological features. Inspired by the mathematics of GA
and biological neurons, the author in [4] has formulated biogeography-based optimization
(BBO). Another substantial advancement in this field is the particle swarm optimization
(PSO) by [5]. The PSO algorithm is inspired by fish and bird swarm intelligence. The
authors in [6] proposed an artificial bee colony (ABC) algorithm built on the smart behavior
of honey-bee swarm. The cuckoo search algorithm (CSA), which is motivated based on
the coercive brood-parasitic conduct of cuckoo breeds, is reported in [7]. Magnetotactic
bacteria optimization (MBO) reported in [8] is inspired by the bending of a magnetic
field by certain organisms for survival. The authors in [9] have proposed an interesting
algorithm called gray wolf optimizer, the concept of which is driven by the supervision
capabilities for hunting behavior of gray wolves persistent in a wildlife. Likewise, other
bio-inspired algorithms available in the literature are the Salp Swarm Algorithm (SSA) [12],
Whale Optimization Algorithm (WOA) [13], Laying Chicken Algorithm [14], Big Bang
Algorithm [15] and Swine Influenza-Inspired Optimization (SIIO) [16].

It can be inferred from the above literature that meta-heuristic models are rising areas
of interest in research. However, very few studies based on virus proliferation models are
available in the literature. The Virus Optimization Algorithm (VOA) was suggested [17]
in 2016 and further enhanced for continuous optimization problems in [18]. The authors
in [19] suggested a bio-inspired meta-heuristic mimicking the coronavirus spread pattern
and its infection nature. The authors in [20] have proposed COVID-19 models based on
infection spreads. Similarly, the authors in [21–24] have modeled the disease propagation
of COVID-19-natured processes. This motivates the authors of the present paper to propose
an optimization algorithm based on COVID-19 behavior. It needs further testing for its
applicability in various standard benchmark functions and modern engineering problems.
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From the studies above, it can be inferred that there has been increasing attention for
the development of meta-heuristic algorithms. However, very few studies in the literature
are based on the application of the COVID-19 phenomenon in artificial intelligence appli-
cations. Moreover, the parameters used for the development of the present algorithm are
incorporated based on the research carried out keeping in consideration the rates described
by the World Health Organization (WHO). Furthermore, the evolutionary algorithms men-
tioned above are based on the traits of certain species. However, most of the algorithms
deal with the characteristics of species that are alien to common man. Thus, the basic
understanding of such algorithms is not clear, which makes it very confusing for a common
man to understand the application in real-world problems. Hence, a novel algorithm is to
be developed such that the basic process of the algorithm is already known to everyone.

Owing to the advances in artificial intelligence methods in practical scenarios, the
optimization techniques discussed in [3–16] have been successfully employed in real-world
applications. The main aim of employing such techniques in practical applications is to
tune the system parameters for effective system performance results. GA-based LFC for
frequency regulation of a multi-area power system is studied in [25]. Similarly, GA is
employed in [26–28]. BBO base optimization studies are reported in [29–31]. The authors in
in [32–35] have employed the PSO technique for controller gain tuning. The authors
in [36,37] have used the ABC. Likewise, the CSA technique for LFC of a multi-area power
system is used in [38]. Firefly (FA) based optimization is studied in [39,40]. GWO technique-
based LFC is reported in [41]. A magnetotactic-based optimization technique (MBO)
is applied for controller gain tuning in [42–47]. New optimization techniques such as
flower pollination algorithm [48], satin bowerbird optimization [49], butterfly optimization
algorithm [50], artificial gorilla troops [51],honey badger algorithm [52] are also used in the
literature.

Any optimization technique is said to be effective enough if it tunes the controller
gain parameters within its limited constraints. The main purpose of LFC operation is to
adjust the controller gains for the desired frequency operation. An industrially applied
proportional–integral–derivative (PID) controller has been the best choice for control sys-
tem engineers for a long time. A PID controller for performance analysis of a multi-area
power system is reported in [53]. Similarly, the authors in [54] have employed a PID
controller for a coexisting system voltage/frequency control. Likewise, there have been
ample advancements in PID controllers for LFC studies as reported in [55–57]. Nonetheless,
the generalized operation of PID controller in practical applications is challenged by a new
ADRC control strategy introduced by authors in [58]. In [59], the author established the
superiority of ADRC against PID in problem-solving procedures such as time-delay, non-
linear control and parallel system control. The authors in [60] have explored a simulated
study of ADRC as a control tool. In [61], the linear ADRC is assessed, demonstrating the lin-
ear ADRC’s greater applicability range. In [62], researchers investigated a two-layer ADRC
for frequency regulation. The authors of the present work have explored fractional-order
ADRC for the frequency and voltage regulation of a hybrid power system [44]. It is impor-
tant to mention that fractional-order designs increase the controller complexity. Hence, the
preceding explanation motivates the authors to further develop and test a less complex yet
effective ADRC scheme for analyzing the performance of a hybrid power system.

The major contributions and objectives defining the presented work are discussed in
the next sections.

2. Contributions/Novelty of the Present Study

The major contributions pertaining to the present studies are:

1. A population-based, nature-inspired COVID-19 Based Optimization Algorithm
(C-19BOA) is introduced based on the behavior of present day coronavirus disease
propagation. The proposed algorithm mimics the virus infection propagation and dec-
imation phenomenon in nature. The algorithm is modeled based on some already
known containment factors such as social distancing, use of masks and antibody rate.
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2. A 2nd order Active Disturbance Rejection controller (ADRC) with a state estimation-
based observer is developed. The performance of ADRC is compared with an in-
dustrial applied PID controller on a hybrid power system. The dominance of the
proposed controller is verified with respect to an industrially applied PID controller
based on system dynamic performance analysis.

3. Application of the proposed C-19BOA for optimizing the gains of 2nd order ADRC
and PID controllers for effective frequency and tie-line power regulation capability of
a power system. The power system is subjected to some practical case scenarios in
order to check the applicability of the proposed optimization algorithm.

3. Objectives of the Present Study

The objectives defined for application of the proposed C-19BOA are:

1. To develop a population-based, nature-inspired COVID-19 Based Optimization Algo-
rithm (C-19BOA) based on the behavior of present-day coronavirus disease propagation.

2. To compare and authenticate the performance of C-19BOA with established optimiza-
tion algorithms available in the literature, based on the convergence for IEE standard
mathematical benchmark functions.

3. To validate the performance of C-19BOA on optimizing the 2nd order ADRC and PID
controller gains in order to improve the performance of a practical power system.

4. To check the robustness of C-19BOA optimized ADRC and PID controllers for alter-
ations in power system parameters with respect to nominal conditions.

4. Paper Organization

Initially, the methodology to develop the proposed optimization algorithm C-19BOA
is discussed in Section 5. Then, in Section 6, the performance of C-19BOA is evaluated
for some standard benchmark functions. This is compared with a few of the established
optimization techniques available in the literature, such as GA [3], BBO [4], PSO [5], MBO [8]
and AOA [10]. Next, in Section 7, the design and modeling of a modern-day hybrid power
system is demonstrated (Section 7.1). Furthermore, in Section 7.3, the applicability of C-19BOA
on optimizing a PID controller for the LFC operation of a hybrid power system is compared
with the above-mentioned different optimization techniques. The design of 2nd-order ADRC
is illustrated in Section 7.2. In addition to the study reported in Section 7.3, a comparative
analysis between C-19BOA optimized 2nd order ADRC and PID controllers is completed in
Section 7.4 to check the performance improvement with respect to each other. Finally, in
Section 7.5, a sensitivity test is performed to check the robustness of C-19BOA optimized
ADRC and PID controller gains for practical changes in power system parameters.

5. COVID-19 Based Optimization Algorithm (C-19BOA) Methodology

This section describes the methodology of the proposed C-19BOA. Initially, the contain-
ment factors related to the COVID-19 phenomenon are introduced, and their mathematical
modeling is presented. Furthermore, the algorithm C-19BOA is framed based on these
containment factors. The attributes to be estimated for C-19BOA are explained in the
following subsections.

5.1. Initial Population

An initial population with ’n’ number of individuals (row) and ’p’ parameters (column)
is considered. The primary population involves one infected individual, which is referred
to as patient-zero (PZ). It is assumed that PZ infects some of the population. Primarily, a
random initialization is performed to infect certain individuals of the population. An initial
matrix x(n, p) is formed using (1).

x(n, p) = Ll + random(n, p)× {Ul − Ll}. (1)
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where Ll and Ul are the upper and lower limits of the solution. The values of upper and
lower limits vary according to the problem definition. Hence, it becomes necessary to
normalize the initial matrix for further calculations. The normalization of the initial matrix
x(n, p) is completed using (2) and represented as xnorm(n, p) matrix.

xnorm(n, p) =
x(n, p)−min(x)
max(x)−min(x)

. (2)
5.2. Containment Factors

The containment factors are based on the disease-propagating nature of COVID-19.
Containment factors majorly include (a) social distancing, (b) use of mask, and (c) antibody
rate calculation of each individual after initial infection. After patient-zero (PZ) infects some
of the population, the containment factors for each individual are evaluated. Table 1 provides
the description of different elements used for the containment factors’ evaluation as reported
in [63]. The mathematical modeling of each containment factor is discussed below.

Table 1. Description of different elements with their respective values.

Element Description Value

Tin f ection Time taken by PZ to infect new individual 3 (User-defined)

R0
Basic virus reproduction rate (no. of newly infected

individuals produced by an infected individual)
2.4 (Mean value for different states

or provinces reported in [63])
W Virus level proliferation 0.35 (Reported in [63])
K Maximum carrying capacity of virus replication 0.31 (Reported in [63])
c Virus clearance rate 2.4 (Reported in [63])

(a) Social Distancing (SD): As in the case of coronavirus infection, an infected person
(individual) has to be isolated from the rest of the population in order to minimize the
infection rate. A similar approach is dealt in the present study after initial infection. Every
individual is checked for SD factor calculation. An SD matrix is formulated representing
the distance among parameters in a population. In the simplest form, the distance (D)
between any two normalized parameters, i and j, can be calculated as shown in (3).

Distance(D) = i− j; i 6= j. (3)

The normalized matrix xnorm(n, p) represented in (2) is considered for SD factor calcula-
tion. The matrix xnorm(n, p) can be elaborated as shown in (4). An SD matrix is formulated (5)
with the help of xnorm(n, p) by considering the distances among parameters having dimen-
sions equal to n × j × p. The SD matrix formed consists of p sub-matrices each having
dimensions equal to n × j.

xnorm(n, p) =


xnorm11 xnorm12 . . . xnorm1p
xnorm21 xnorm22 . . . xnorm2p
| | | | |

xnormn1 xnormn2 . . . xnormnp.

 (4)

SD(n, j, p) = {xnorm(n, p)− xnorm(j, p)}; j = 1 : n, n 6= j. (5)

If any individual violates SD norms and comes close to an infected one, it has high
chances of getting infected. IR is the infection rate due to violation of the SD factor. So,
the higher the value of SD factor, the less the IR. Let the distance below which infection
can spread due to violation of the SD factor be named as the threshold distance (TD). The
practical value of threshold distance (TD) according to guidelines of the World Health
Organization (WHO) is considered as 6 feet [64]. For the present work, the practical distance
is normalized between a range of 0 and 1 such that 0 indicates the least value of TD, while
1 indicates the maximum value (6 feet). Let ρSD be the social distancing probability in the
present work denoting the normalized value of practical distance; 0 ≤ ρSD ≤ 1. A pictorial
representation of the impact of SD on infection rate (IR) is depicted in Figure 1.
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Figure 1. Schematic showing impact of SD on IR.

(b) Use of Masks: Medical/surgical face masks block the spread of breathing drops, thereby,
they guarantee a higher protection against the disease propagation. As soon as the person is
exposed to the infection on effective contacts (when the SD is less than TD), the individual
develops infection based on rate µR. µR is the rate at which susceptible individuals of a
population are exposed to infection. The value of µR is calculated using R0 (refer Table 1)
and given by (6).

µR =
R0

Tin f ection
. (6)

Thus, the disease propagation rate (DPR) based on mask use for a ‘n × p’ population is
given by (7).

DPR(p, j, n) = µR{1− SD(n, j, p)}. (7)

Consider a proportion of the population correctly and constantly wearing face masks.
Let ηm be the efficiency of each mask to block virus proliferation. The overall infection
spreading rate and recovery rate can be analyzed using Figure 2. Based on the above
assumptions and schematic shown in Figure 2, the DPR model equation given in (7) is
further modified to mask infection rate MIR (8), as stated in [23].

MIR(p, j, n) = µR{1− SD(n, j, p)} − {SD(n, j, p) + ηmxnorm(n, p)}. (8)

where SD(n, j, p) is the SD matrix formed using (5).
Consider ρM being the mask use probability, denoting the normalized value of proper

mask usage; 0 ≤ ρM ≤ 1. It is considered that any individual having SD and MIR more
than social distancing probability (ρSD) and mask use probability (ρM), respectively, is
reinfected. Finally, the individuals are checked for their antibody rates using the following
antibody rate (AR) factor.



Sustainability 2022, 14, 14287 7 of 27

Population

                       µR(1-SD)

Individuals not 

wearing Masks

Infection  ∝  SD

Individuals wearing 

Masks

Infection ∝  ηmSD

(0 ≤ ηm ≤ 1)
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Figure 2. Schematic showing masks’ impact in limiting disease transmission.

(c) Antibody Rate (AR): Previous studies reported in [65,66] have used the response of
T-immune cells to mitigate influenza virus. The present model adopts the ability of T-
immune cells for killing the virus propagation (W) reported in [63]. For the present work,
the antibody rate of population xnorm(n, p) (2) is calculated using (9):

AR(n, j, p) = xnorm(n, p){r(1− xnorm(j, p)
K

)− (c + 1)}. (9)

where

• AR symbolizes the infection killing rate of cells by immune response due to evolved
antibody.

• K is the maximum carrying capacity of virus replication.
• r is the replication rate.
• c is the rate at which virus is cleared.

The overall process of killing infected cells of the human body by T-cells is demon-
strated in Figure 3. On a scale of 0 to 1, let ρAR be the antibody rate probability of an
individual. The minimum infection killing rate of cells by the immune response of an
individual is denoted by 0, whereas 1 denotes the maximum infection killing rate of cells
by immune response. Thus, individuals that have a greater AR value than ρAR value are
considered as recovered and are treated as healthy individuals of the population. The
individual with the highest AR is treated as the healthiest individual out of the recov-
ered population.

Body

cell Cell 

Infected
T-Cell 

formation

T-Cell 

activation

T1

T2

T3

Infected cell 

destruction

Virus

Replication of T-cells

Figure 3. Schematic showing T-cells action on infected cell of human body.
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5.3. Procedure and Flowchart for C-19BOA

The step-by-step procedure of the developed optimization algorithm C-19BOA is
described as mentioned below:

1. Generate initial population with PZ as infected.
2. Normalize population.
3. For (time < iteration limit)
4. Calculate SD and MIR of individuals in the population using (5) and (8), respectively.
5. Check violations for SD and MIR.

Individuals with SD < ρSD and MIR < ρM are reinfected and discarded. Others go
for AR check.

6. Calculate AR of individuals in the population using (9).
7. Individuals having AR > ρAR are treated as recovered. However, individuals with

AR < ρAR are unhealthy and discarded.
8. The recovered population are sorted according to their recovery rate. Store the Best

individual from the sorted population having a maximum recovery rate.
9. Continue until point no. 3 is terminated.
10. The latest Best individual is the final optimum solution.

The flowchart for the developed algorithm C-19BOA is described in Figure 4.

time < Max 
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Check for AR 

violations

Initialize random 

population with patient 

zero (PZ)

Start

Stop

Set initial population size 
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population size

Yes

Yes No

No

a

a

Yes

No

Figure 4. Flowchart for developed algorithm C-19BOA.
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6. Performance Evaluation of Proposed C-19BOA on Standard Benchmark Functions

The performance of C-19BOA is evaluated on some of the standard mathematical
benchmark functions based on the minimization and convergence characteristics. The
performance of C-19BOA is compared with a few of the established population-based
optimization algorithms viz. GA [3], BBO [4], PSO [5], MBO [8] and AOA [10].

6.1. Standard Mathematical Benchmark Functions

In order to discover the diverseness of C-19BOA and depict the nature of problems
upon which the proposed algorithm meets the required characteristics, several standard
mathematical benchmark functions are considered. To inspect the performance of C-19BOA
in contrast to other optimization algorithms reported in [3–5,8,10], the performance compar-
ison on these standard benchmark functions is completed. This set of benchmark functions
used for comparison is sufficient enough to account for all kinds of problems. Some bench-
mark functions are unimodal and some are multimodal. Some of them are differentiable
(regular), while some are irregular in their domains. Similarly, some functions are separable
and some are non-separable. Table 2 shows the different benchmark functions used for
comparison in the present work. Table 3 shows the different benchmark functions used for
comparison in the present work.

Table 2. Benchmark functions used.

Function Formulation

Ackley f (x) = −20× exp{−0.2
√

1
n ∑n

i=1 (xi)2} − exp{ 1
n ∑n

i=1 cos(2πxi)}+ 20.
Quartic f (x) = ∑n

i=0 ix4
i + random(0, 1).

Rastrigin f (x) = ∑n
i=1 (x2

i − 10cos(2πxi) + 100).
Rosenbrock f (x) = ∑dim−1

i=1 [100(xi+1 − x2
i ) + (xi − 1)2].

Schwefel 2.21 f (x) = ‖xi|
Schwefel 2.22 f (x) = ∑n

i=0 |xi|+ ∏n
i=0 |xi|.

Sphere f (x) = ∑n
i=1 x2

i .
Schubert f (x) = [∑5

i=1 icos((i + 1)x1 + i)][∑5
i=1 icos((i + 1)x2 + i)].

Table 3. Benchmark functions and their characteristics.

Function Multimodal (MM)
or Unimodal (UM)

Separable (S) or
Non-Separable (NS)

Regular (R) or
Irregular (IR)

Dimension
Range

Ackley MM NS R ±30
Quartic UM S R ±1.28

Rastrigin MM S R ±5.12
Rosenbrock UM NS R ±2.048

Schwefel 2.21 MM NS IR ±100
Schwefel 2.22 MM NS IR ±10

Sphere UM S R ±5.12
Schubert MM S R ±10

6.2. Results Analysis of Benchmark Functions

The main goal of this analysis is to check how effectively an optimization algorithm
minimizes the above defined functions to their minimum possible values between the defined
dimension ranges. Thorough testing is carried out for various IEEE benchmark functions
depending on their characteristics. The result comparisons of the proposed C-19BOA with
GA, PSO, MBO, BBO and AOA on different benchmark functions are listed in Table 4. Each
experiment is executed 50 times with diverse random seeds. The best mean and standard
deviation (Std. Dev.) values are noted for comparison in Table 4.



Sustainability 2022, 14, 14287 10 of 27

It can be observed from Table 4 that both C-19BOA and PSO execute the average best on
most of the benchmark functions. PSO is efficient enough in finding the minimum function
value for the majority of the cases. However, C-19BOA is the next best, which is followed by
MBO. For a more clear comparison, values less than 10−8 are set to 0. Critical observation of
the results in Table 4 highlight that except for the Ackley and Rastrigin function, the proposed
C-19BOA performs well ahead of all other optimization algorithms. C-19BOA is the most
dominant for Schubert benchmark function.

It should be noted that no special effort was taken to adjust the algorithm. Some
optimization algorithms may take certain significant alterations for their performance
evaluation, which may affect the following. Firstly, the benchmark functions may or may
not have any relationship with the real-world applications. Secondly, if any alteration is
completed in tuning the algorithms, the benchmark functions can yield different results
altogether. Hence, an effort was made to examine the best possible results by running the
algorithms 50 times in order to reduce the possibility of any error on a certain population
size with large iterations. This may yield the results as to how efficient a particular technique
is by converging from a certain initial random value to optimal value.

Figure 5 depicts the convergence characteristics of the proposed C-19BOA versus GA,
PSO, MBO, BBO and AOA on different benchmark functions. It is clearly seen in Figure 5 that
the convergence characteristics of C-19BOA are on par with the other algorithms. C-19BOA
is thus effective enough in converging the function to its optimal value. Figure 5 shows
that the proposed C-19BOA has converged to a particular optimal value like most of the
other established optimization algorithms. To conclude this section, the benchmark function
results indicate that the proposed C-19BOA has promising outcomes, and in the plethora of
population-based optimization algorithms, this new approach might be able to find a niche.

Table 4. Result of proposed C-19BOA versus GA, PSO, BBO, AOA, MBO on benchmark functions.

Function Study GA [3] BBO [4] PSO [5] AOA [10] MBO [8] C-19BOA

Ackley Mean 7.5498 3.4287 0 2.5609 0.0147 0.2516
Std 5.2027 1.5843 0 1.4702 0.0727 0.2663

Quartic Mean −0.3417 −0.1952 −0.3442 −0.3441 −0.0129 −0.3442
Std 0.0054 0.2148 0 0.0049 0.0636 0

Rastrigin Mean 5.1106 22.1216 1.1569 2.1736 0.1328 5.1795
Std 3.3795 14.1858 1.0676 1.5278 0.6571 2.0060

Rosenbrock Mean 0.0275 0.1275 0 0.0014 0.0024 0
Std 0.1017 0.1506 0 0.0075 0.0121 0

Schwefel 2.21 Mean 0.4267 0.0539 0 0.0107 0.0017 0
Std 0.1044 0.0550 0 0.0109 0.0087 0

Schwefel 2.22 Mean 0.3311 0.2936 0.2926 0.2927 0.0117 0.2926
Std 0.0294 0.0011 0 0.00040 0.0580 0

Sphere Mean 0.7841 3.6441 0 0.0893 0.0020 0
Std 0.7393 4.4599 0 0.1350 0.0099 0

Schubert Mean −242.1090 −157.0483 −271.2091 −222.8429 −8.2987 −299.63
Std 16.2289 52.4311 0 24.7525 41.0681 0
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Figure 5. Convergence characteristics for proposed C-19BOA versus GA, BBO, PSO, MBO on
benchmark functions.
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7. Performance Evaluation of Proposed C-19BOA on Modern Power System
Control Operation

For any optimization algorithm, a desired characteristic is to apply the optimization
algorithm for real-world problems. The optimization algorithm should be effective enough
to be applicable for such problems. In this section, the proposed optimization algorithm
is tested for a practical electrical power system network. The power system is designed
such that it carries a real-time tracking of frequency limits when any load change or
other disturbance occurs. In order to check the applicability of the proposed C-19BOA on
practical systems, a modern-day power system consisting of two areas for a load frequency
control (LFC) model is considered. Due to the ongoing trend of integrating EVs with the
power systems, the present power system under consideration is equipped with EVs in
both areas as well. For an LFC problem of a power system, controllers are installed in
each area in order to maintain the balance between load demand and generations. More
information regrading the modeling is discussed in Section 7.1, which is the next section.
Initially, the performance of C-19BOA is tested on the PID controller, and the results are
compared with other optimization techniques for effective frequency and tie-line power
control. Then, an advanced 2nd order Active Disturbance Rejection controller (ADRC) with
a state estimation-based observer is developed, and the performance of C-19BOA is tested
in optimizing the gains of developed ADRC and PID controlled hybrid power systems.
Finally, the robustness of C-19BOA-optimized ADRC and PID controller gains is analyzed
for alterations in system parameters with respect to nominal conditions.

7.1. State of the Art: Power System Modeling

Figure 6 depicts the LFC configuration in a power system for any area ‘i’. The LFC
system comprises a thermal plant having a governor, turbine and re-heater. In addi-
tion to the thermal plant, the LFC system is incorporated with a solar–thermal plant
and electric vehicles. The controller in the LFC system keeps the frequency within de-
sired limits. The location of controllers is as shown in Figure 6. The main aim of the
present work is to optimize the gains of these controllers using different optimization
algorithms available in the literature as well as the proposed C-19BOA. Load variation
∆PL(i) (p.u. MW) is given to LFC system resulting in a variation in frequency ∆ f (i). ∆PTh(i)
represents thermal unit output (p.u. MW). The power system is equipped with system
non-linearities such as dead-band of governor (GDB) and rate constraint of governor
(GRC). R(i) denotes the regulation value for governor operation (Hz p.u. MW). Note
that this model has been extensively used in the literature [53–57]. To regulate the fre-
quency and tie-line power, two separate controllers are chosen for LFC loops in both areas.
The capacity ratio for area-1 vs. area-2 (a12) is considered as 2:3. The rate constraint for
the thermal plant is considered as 3% per minute, and the dead band reported is 0.06%
(0.036 Hz). In order to implement practicality, the solar–thermal plant is provided with
a variation of solar irradiance of 600 to 800 W/m2 at a time step of 30 s. The partici-
pation factor (pf ) of each unit for both the areas is considered as mentioned, p f11 = 0.3;
p f12 = 0.6; p f13 = 0.1; p f21 = 0.1; p f22 = 0.8; p f23 = 0.1. Area-1 is altered with an upsurge of
∆PL(i) = 0.01 p.u. MW load perturbation. System nominal values are considered from [42].
The simulation of the power system is performed in the MATLABr Simulink platform.

Figure 7 shows the EV model integrated with the power system [67]. Sometimes, EVs
are suddenly unplugged from the network, leading to an inadequate system operation.
To address this problem, frequency is restricted to a range of ±10 mHz. The EV gain is
denoted by KEV(i), whereas the battery’s time constant is denoted by TEV(i). EV charging
and discharging capabilities are restricted to ±5 kW. RAG is the droop coefficient, ∆PEV(i)
denotes the variation in EV regulation power. Pmax

AG is the maximum power output of EV,
whereas Pmin

AG is the minimum power output of EV, as computed by Equation (10). The
values of all the parameters are reported in Appendix A.
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Pmax
AG = +(

1
NEV

)(∆PEV(i)), Pmin
AG = −( 1

NEV
)(∆PEV(i)). (10)

The simulation of a power system is completed in the MATLABr Simulink plat-
form. The Integral Squared Error (ISE), given by (11), is considered as the minimization
objective function.

ISE =
∫ T

0
{∆ fi

2 + ∆Ptie
2}dt. (11)
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Figure 6. Transfer function model representing LFC operation of electrical hybrid power system.
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Figure 7. TEV simulation model.

For the developed power system, the dynamics for area-1 can be governed by
Equations (12) and (13) in differential form as

∆ ḟ1 =
KP1

TP1
(∆PST + ∆PTh1 + ∆PEV1 − ∆Ptie − ∆PL1)− ∆ f1. (12)

∆ ḟ1 =
KP1

TP1
(∆PST + ∆PTh1 + ∆PEV1)− ∆ f1 −

KP1

TP1
(∆Ptie + ∆PL1︸ ︷︷ ︸). (13)
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An LFC problem desires to maintain the frequency at its defined value. This means
that the frequency deviation must be forced to its zero value. For Equations (12) and (13),
in order to force ∆ f1 to zero when there is a change in system load or when the scheduled
tie-line power exchange varies, this requires the output of generators to be regulated for
tracking the variations in load (∆PL1). Hence, the tie-line power deviation and variations in
load of the system are considered as extended disturbance to the system.

Focusing on the LFC model presented in Equations (12) and (13), this study proposes
a novel 2nd order Active Disturbance Rejection controller (ADRC) method that employs an
extended state observer (ESO) and is based on the estimated extended disturbance acquired
from ESO, which is discussed in next section.

7.2. Design and Modeling of 2nd Order Active Disturbance Rejection Controller (ADRC)

Consider a system, P(s), as

P(s) =
c(s)
r(s)

=
K

T2
p S2 + 2DTpS + 1

. (14)

Tp being a time constant, and other factors denote the usual notations.

T2
p c̈(t) + 2DTp ċ(t) + c(t) = Kr(t). (15)

Consider a load disturbance (SLP) as input disturbance Stp subjected to the system
so that

Stp =
K
T2

p
. (16)

Consider Stp = Stp0
+∆Stp, where Stp0

represents the measurable disturbance, and
∆Stp represents the immeasurable error given by Equation (17)

c̈(t) = −2D
Tp

ċ(t)− 1
T2

p
c(t) +

1
T2

p
Stp(t) + ∆Stpr(t) + Stp0r(t)

= g(t) + Stp0r(t).
(17)

where g(t) = − 2D
Tp

ċ(t)− 1
T2

p
c(t) + 1

T2
p

Stp(t) + ∆Stpr(t) represents general disturbance. The

residual portion of the modeling procedure encompasses a double integrator. The disturbed
double-integrator is symbolized by state-space depiction as:

ẋ(t) = Ax(t) + Br(t) + Gġ(t)

c(t) = Cx(t).
(18)

where

A =

 0 1 0
0 0 1
0 0 0

, B =

 0
Stp0

0

, G =

 0
0
1

,

C =
(

1 0 0
)
.

(19)

Primarily, ADRC comprises an extended-state observer (ESO) providing an approxi-
mation of ġ(t) so as to account for the consequence of ġ(t) on the system using a disturbance
elimination property [60]. The ESO provides estimation for ADRC such that

x1(t) = c(t), x2(t) = ċ(t), x3(t) = g(t). (20)
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The “virtual” input, ġ(t), is immeasurable, henceforth, the construction of ESO is
accomplished using r(t) input and c(t) output. To model the ESO of ADRC, a new and
effective effective Luenberger observer is engaged given by Equation (21).

ẋ(t) = Ax(t) + Br(t) + L(c(t)− x1(t))

= (A− L)x(t) + Br(t) + Lc(t), L =

 L1
L2
L3

.
(21)

Equation (21) can be simplified as:

ẋ1(t) = L1[(c(t)− x1(t)] + x2. (22)

ẋ2(t) = L2[(c(t)− x1(t)] + Stp0r(t) + x3. (23)

ẋ3(t) = L3[(c(t)− x1(t)]. (24)

The control law for the estimation-based feedback-controller is given as;

r(t) =
r0 − g(t)

Stp0
.

with
r0 = K(Re f − c(t))− D(ċ(t)). (25)

Equations (22)–(24) form the basis for the modeling of ESO in MATLAB/Simulinkr. The
block diagram of ESO modeled in the present work is shown in Figure 8. After designing the
ESO, the execution of disturbance rejection with the above-defined control law is completed
with the help of estimated variables. Figure 9 shows the block diagram of 2nd order ADRC,
which essentially constitutes a second-order-closed-loop ADRC controller and is equipped
with adjustable dynamics.

Figure 8. Extended state observer block diagram for ADRC.

Figure 9. Second order ADRC with state observer.
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7.3. Power System Dynamic Behaviour Using PID Controller

A PID controller is used for power system control processes in [68–70]. Likewise,
the present work tests the application of the proposed algorithm in optimizing the gains
of a PID controller. The simulated dynamic responses for frequency deviation and tie-
line power deviation for both the areas in the form of ∆ f1, ∆ f2 and ∆Ptie are shown for
comparison in Figure 10a–c. A clear analysis of Figure 10a–c reveals that the proposed
C-19BOA optimized PID controller depicts the optimal responses for frequency and tie-
line power deviations. As shown in Figure 10a–c, the variation in frequency is inhibited
significantly using a C-19BOA optimized PID controller. It is evident that ∆ f1, ∆ f2 are
restricted within −0.025 to +0.025 Hz using a C-19BOA optimized PID controller, making
the smallest range among the comparison. All the above authorizes the decent performance
of the proposed C-19BOA over other optimization algorithms applied in the power system.

(a) ∆ f1 (b) ∆ f2

(c) ∆Ptie
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(d) Convergence curves of ISE values

Figure 10. Dynamic response and convergence of ISE values comparison for GA, BBO, PSO, AOA,
MBO and proposed C-19BOA optimized PID controller.

One of the desired characteristics of a dynamic response is its minimum settling-time.
The settling-time for the dynamic responses obtained in Figure 10a–c are reported in Table 5.
The minimum settling-time as evident from Table 5 further validates the effective dynamic
response regulation capability of the proposed algorithm C-19BOA.

Table 6 reports the objective function ISE (Equation (11)) values. The ISE values
corresponding to a C-19BOA optimized PID controller are smaller compared to other opti-
mization algorithms. This also reflects the dominance of C-19BOA over other algorithms
applied to the hybrid power system. The convergence characteristics for minimization of
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the objective function ISE over the iterations, with respect to each optimization algorithm,
is reported in Figure 10d. The minimum objective function (ISE) value corresponds to
C-19BOA and converges considerably quicker than other algorithms.

Thus, the obtained dynamic responses in Figure 10a–c prove that the PID controller
optimized with C-19BOA is effective enough in enhancing the system stability by improving
the performance against disturbances. Moreover, the convergence curves in Figure 10d and
values in Tables 5 and 6 further reflect the better convergence properties of an objective
function with C-19BOA as compared to other algorithms. So, further analyses shall be
carried out with C-19BOA as the optimal optimization algorithm.

Table 5. Settling time for responses in Figure 10a–c.

Technique Settling-Time for
∆ f1 (s)

Settling-Time for
∆ f2 (s)

Settling-Time for
∆Ptie (s)

GA [3]
PSO [5]
MBO [8]
BBO [4]

AOA [10]
Proposed C-19BOA

7.32
14.25
8.12
8.67

15.69
6.62

10.21
18.88
11.65
10.39
12.58
9.75

10.02
18.06
11.73
10.43
10.05
9.69

Table 6. Objective function (ISE) values for PID controller, optimized with proposed C-19BOA and
other algorithms.

Algorithm ISE Values

GA [3] 0.0003405
PSO [5] 0.0004844
MBO [8] 0.0004359
BBO [4] 0.0004047

AOA [10] 0.0003622
Proposed C-19BOA 0.0002112

7.4. Power System Performance Comparison for C-19BOA Optimized Controller Gains of 2nd
Order ADRC and PID

In this section, the hybrid power system is analyzed for performance improvement
using C-19BOA optimized 2nd order ADRC. Then, the comparison of system dynamic
responses achieved for the C-19BOA optimized ADRC and PID controller is made based
on dynamic response overshoot, undershoot and settling-time characteristics.

The hybrid power system, presented in Section 7.1 and shown in Figure 6, is now
simulated with ADRC controllers in both areas. The obtained responses for a C-19BOA
optimized 2nd order ADRC controlled power system are compared with those of the
PID controlled power system (obtained in Section 7.3) and shown in Figure 11. It can be
seen from Figure 11 that the C-19BOA optimized 2nd order ADRC regulates the system
dynamic responses more dominantly with respect to the C-19BOA optimized PID controller.
Overshoots, undershoots and settling-time for the hybrid power system are very much low
for the 2nd order ADRC as compared to the PID controller. The values of peak-to-peak
responses are also shown in Figure 11, where the 2nd ADRC exhibits a huge reduction in
such values. Hence, it can be inferred that the developed 2nd order ADRC outperforms the
industrially applied PID controller for the presented hybrid power system.



Sustainability 2022, 14, 14287 18 of 27

0 5 10 15 20
-6

-4

-2

0

2

4

10-4

0 20 40 60 80 100
Time (sec)

-15

-10

-5

0

5

f 1 (H
z)

10-3

C19-BOA optimized PID
C19-BOA optimized ADRC

f =0.019 Hz
f =0.000905 Hz

(a) ∆ f1

0 20 40 60 80 100
Time (sec)

-10

-5

0

f 2 (H
z)

10-3

C19-BOA optimized PID
C19-BOA optimized ADRC

0 5 10 15 20
-15

-10

-5

0

5
10-6

f =0.008366 Hz
f =1.60  10-5 Hz

(b) ∆ f2

0 20 40 60 80 100
Time (sec)

-6

-4

-2

0

2

P tie
 (p

.u
. M

W
)

10-3

C19-BOA optimized PID
C19-BOA optimized ADRC

0 5 10 15 20

-6

-4

-2

0

2
10-6

P =0.00596 
  p.u.MW

P =7.63  10-6

    p.u.MW

(c) ∆Ptie

Figure 11. Dynamic response comparison for proposed C-19BOA optimized ADRC and PID controllers.

7.5. Sensitivity Test

Varying load settings and system constraints up to a quantified range guarantees
the robustness of a particular control system. The controller should be robust enough to
withstand any variations or uncertainties that the system is subjected to. In order to test the
robustness of the proposed C-19BOA optimized controller gains, firstly, the solar irradiance
of solar–thermal plant in area-1 is altered through intense variations. Figure 12a shows the
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solar irradiance (SI) variation pattern. Secondly, the nominal system is subjected through
diverse variations in load disturbances in area-1. The pattern of random load perturbation
(RLP) is shown in Figure 12b. Finally, the power system stability for C-19BOA optimized
controllers is tested by varying the number of electric vehicles (EVs) connected to the grid,
as shown in Figure 12c.

Initially, the robustness of C-19BOA optimized gains is tested on a PID-controlled
system. In order to further validate the robustness, a sensitivity test is applied on 2nd order
ADRC gains as well.

(a) SI in area−1

(b) RLP in area−1

(c) Variation of EV numbers in both areas

Figure 12. Altered parameters for sensitivity test.

The PID controller gains optimized for the changed system conditions using C-19BOA
are labeled as real-time optimized values, while the already optimized PID gains using
C-19BOA under nominal system condition are labeled as offline optimized values.
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The system dynamic responses for the PID controller corresponding to variation in
solar irradiance are shown in Figure 13. Similarly, the responses for the PID controller
corresponding to load disturbance variation, RLP, are reported in Figure 14 and that of
EV number variation is shown in Figure 15. Thus, the robustness for the PID controller in
the present power system is explored through Figures 13–15. It can be concluded that a
C-19BOA-optimized PID controller accomplishes an agreeable task in case any uncertainty
is subjected to the power system, and thus, appropriate dynamic stability is attained. As
in the preceding paragraph, the sensitivity test of C-19BOA optimized gains for the devel-
oped 2nd order ADRC is also completed and shown in Figures 16–18. The responses in
Figures 16–18 clearly verify the reliability of C-19BOA optimized controller gains under
nominal system conditions.
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Figure 13. Comparison of C-19BOA offline and real-time optimized PID controller responses for solar
irradiance variation in area-1.
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Figure 14. Comparison of C-19BOA offline and real-time optimized PID controller responses for RLP
in area-1.
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Figure 15. Comparison of C-19BOA offline and real-time optimized PID controller responses for no.
of EVs variation in both areas.
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Figure 16. Comparison of C-19BOA offline and real-time optimized ADRC controller responses for
solar irradiance variation in area-1.
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Figure 17. Comparison of C-19BOA offline and real-time optimized ADRC controller responses for
RLP in area-1.
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Inferences from Section 7.5: The sensitivity test carried out in Section 7.5 authenticates the
fact that the optimized gains of PID and ADRC controllers are robust enough to withstand
any deviations in system parameters from the nominal values. This is certainly claimed,
as the variation in system parameters in the form of solar irradiance of the solar–thermal
plant (shown by Figure 12a), random load perturbation (RLP) (shown in Figure 12b)
and variation in the number of electric vehicles (EVs) connected to the grid (shown in
Figure 12c) has very little effect on the performance of the power system. This is desired
for an efficient optimization approach such that the system should be stable enough to
withstand any changes. Thus, the proposed algorithm C-19BOA is efficient enough in
optimizing the 2nd order ADRC and PID controller gains and need not be changed for
alterations in system parameters. Hence, C-19BOA fulfills the required criteria to establish
itself for applications in engineering problems.

8. Conclusions

This paper introduces a novel bio-inspired meta-heuristic optimization algorithm
based on the behavior of present-day coronavirus disease (COVID-19). The spread of
COVID-19 infection from one person to another through social contacts is modeled math-
ematically. Similarly, the infection spread control through containment factors is also
modeled mathematically, and the COVID-19-based optimization algorithm (C-19BOA) is
developed. Initially, the proposed C-19BOA is successfully tested on standard mathematical
IEEE benchmark functions in order to check its performance in minimizing the benchmark
functions. The optimized benchmark function values for C-19BOA are compared with
already established bio-inspired optimization algorithms viz. GA, PSO, MBO, BBO and
AOA. Performance analyses reveal the developed C-19BOA is on par with the established
optimization algorithms in terms of minimization of benchmark functions and convergence
to optimal values. Furthermore, the developed C-19BOA is tested for modern engineering
problems for regulating the power system parameters within defined limits, optimizing
the industrial applied PID controller gains and developed 2nd order ADRC gains in load
frequency control operation of a two-area electrical power system. The simulation results
indicate that the proposed algorithm, C-19BOA, is efficient enough to overcome the per-
formances of GA, PSO, MBO, BBO and AOA in terms of regulating the dynamic stability
of the power system. In addition, the developed 2nd order ADRC outperforms the indus-
trially applied PID controller in improving the performance of the hybrid power system.
The robustness analysis for the C-19BOA optimized PID controller and 2nd order ADRC
gains to check the robustness of the developed power system in case of any contingency
also validates the effectiveness of the proposed optimization algorithm. Analyses and
simulation outcomes illustrate the dominance and effectiveness of the proposed C-19BOA
in solving benchmark functions and modern engineering problems. Future research can be
carried out on post-vaccination effects with a possible decline in virus proliferation.
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Nomenclature

LFC: Load frequency control; PZ: Patient zero; SD: Social distancing; IR: Infection rate; TD:
Threshold distance; ρSD: Social distancing probability; DPR: Disease propagation rate; ρM: Mask
use probability; AR: Antibody rate factor; ρAR: Antibody rate probability; ∆ fi : Incremental change
in frequency (Hz); SLP: Incremental load change (p.u. MW); KPS: 1/Di: Power-system gain; ∆Ptiei−j:
Area i-j tie-line-power interchange (p.u. MW); KSolar: Solar–Thermal gain; TSolar: Solar–Thermal
time-constant; TPS: 2Hi/f × Di : power-system time constant; Bi: bias coefficient; KEVi: Electric
vehicle gain; TEVi: Electric vehicle time-constant; NEVi: No. of electric vehicles; Rij: Speed-regulation
constant; Tgov: Governor time-constant; Ttur: Turbine time-constant; Treh: Reheater time-constant;
Kreh: Reheater gain; HPS: Hybrid power system.

Appendix A

System parameters:
Frequency (f): 60 Hz; Hi: 5 s; Ri: 2.4 Hz/p.u. MW, Bi: 0.425 p.u. MW/Hz; Di: 8.33 × 10−3

p.u. MW/Hz; a12: −2/3; loading: 50%.
Solar plant: KSolar: 1; TSolar: 1; TSolar: 20 s.
Power system: TPSI : 20 s; KPSI : 120 Hz/(p.u. MW).
Electric vehicle: KEVi: 1; TEVi: 1 s; RAGi = Ri; NEVi: 1000.
Thermal unit: Treh: 10 s; Kreh: 0.5: Tgov: 0.08 s; Ttur: 0.3 s.
Wind unit: Kw: 1; Tw: 1.5 s
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