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Abstract: Artificial intelligence technology has enabled the manufacturing industry and actively 

guided its transformation and promotion for the past few decades. Injection molding technology is 

a crucial procedure in mechanical engineering and manufacturing due to its adaptability and di-

mensional stability. An essential step in the injection molding process is quality inspection and man-

ual visual inspection is still used in conventional quality control, but this open-loop working method 

has issues with subjectivity and real-time monitoring capacity. This paper proposes an integrated 

“processing–matching–classification–diagnosis” concept based on machine vision and deep learn-

ing that allows for efficient and intelligent diagnosis of injection molding in complex scenarios. 

Based on eight categories of failure images of plastic components, this paper summarizes the theo-

retical method of processing fault categorization and identifies the various causes of defects from 

injection machines and molds. A template matching mechanism based on a new concept—arbitra-

tion function ������—provided in this paper, matches the edge features to achieve the initial classi-

fication of plastic components images. A conventional VGG16 network is innovatively upgraded in 

this work in order to further classify the unqualified plastic components. The classification accuracy 

of this improved VGG16 reaches 96.67%, which is better than the 53.33% of the traditional network. 

The accuracy, responsiveness, and resilience of the quality inspection are all improved in this paper. 

This work enhances production safety while promoting automation and intelligence of fault diag-

nosis in injection molding systems. Similar technical routes can be generalized to other industrial 

scenarios for quality inspection problems. 
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1. Introduction 

Artificial intelligence technology is continuously revolutionizing how human pro-

duction and labor is carried out in the new pattern of industrial development coordinated 

by “Made in China 2025” [1]. A new wave of technological change in the manufacturing 

sector has been brought on by the fact that intelligent production has evolved into the 

core of intelligent manufacturing. Injection molding is understood as the process by which 

a totally molten plastic substance is swirled by a screw at a specific temperature, injected 

into the cavity of the mold at high pressure, and then cooled and cured to produce a 

molded object. Due to the adaptability and dimensional stability of the processed prod-

ucts, it is one of the most widely used technologies [2] in mechanical engineering and 

manufacturing and is utilized on a large scale in the production of plastic items. The pro-

duction quality of the molded part is closely correlated with the defect detection and fault 

diagnostic capability of the injection molding system, which is a key performance indica-

tor of an injection molding machine [3]. Injection molding is also vulnerable to structural 

issues including flash, dimensional instability, short shot, buckling deformation, shrink-
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age depression, craze etc. In contrast, manual visual inspection is still employed in con-

ventional industrial production to find surface flaws in plastic components, but this open-

loop working technique is poor at real-time monitoring and is very subjective [4]. 

Machine vision and deep learning are the theoretical pillars of this paper. Machine 

vision is a class of non-contact, extremely reliable inspection methods [5,6]. Current vision 

inspection relies on the development of sensors that are utilized in a variety of industries, 

including industrial manufacture [7], smart automobiles [8], and disease recognition [9]. 

For domestic and international colleagues to conduct industry–academia research, it is 

crucial to build simple and intelligent fault diagnosis methodologies. Since 2012, the rapid 

development of deep learning has opened up new approaches in the field of fault diagno-

sis, as well as more interpretable methods [10]. 

The basis for determining processing flaws is the morphology and distribution of 

defective areas in the image [11]. Due to the objectivity of the intelligent detection system, 

no human intervention is allowed. Scientific and industrial leaders in this subject are de-

veloped nations, particularly the USA and Germany, with Cognex and ISRA serving as 

the leading examples. The basis for determining processing flaws is the morphology and 

distribution of defective areas in the image. Combining morphological processing tech-

niques with algorithmic parallelism, Torres F. et al. [12] proposed a surface inspection 

machine vision system for the printing industry and achieved great success. Li Di [13] 

captured phone glass flaws using a vision device CMOS camera and thus, using a princi-

pal component analysis technique, diagnosed the flaws with an 88% detection accuracy. 

high-quality images of defects, high-precision localization and detection are fundamen-

tally based on defect images of the highest caliber. Luke et al. [5,14–16] at Carnegie Mellon 

University have developed an algorithm that seamlessly transfers learning knowledge be-

tween various machines and offers real-time performance, improving the unsupervised 

machine learning algorithms that were initially used in the field of laser additive manu-

facturing, for accurate classification, detection, and feedback control. Their work allowed 

for accurate fault classification, detection, and feedback control. 

Deep learning is a data-oriented science and has facilitated technical advances in a 

variety of disciplines, including natural language processing [17–19] and self-driving ve-

hicles [20]. It has also offered up new methods for defect identification and fault diagnosis 

issues since its debut by Geoffrey Hinton [21] in 2006. A convolutional neural network is 

one of the primary methods used in the field of computer vision. Neural networks are the 

primary architecture for deep learning. Through adaptive training of multilayer net-

works, neural network algorithms have successfully replaced the onerous effort of man-

ual feature extraction and feature engineering and have attained more accurate generali-

zation capabilities. In 1989, LeCun [22] developed and proposed the convolutional neural 

network model. After AlexNet won the ImageNet championship in 2012, convolutional 

neural networks came to be seen as the standard for deep learning in the field of image 

recognition, replacing feature engineering methods that had previously dominated the 

academic community. D. Soukup et al. [23] used a combination of unsupervised hierar-

chical pre-training and data augmentation to train a convolutional neural network model 

to a 90% accuracy level. To detect steel plate defects, Jonathan Masci et al. [24] proposed 

a multi-scale pyramidal pooling network (MSPyrPool). With a training accuracy of 11.3% 

greater than the second-ranked model, the proposed MSPyrPool network significantly 

outperformed other engineering feature-based classifiers. Local connectivity and weight 

sharing reduce the algorithmic complexity of convolutional neural networks during train-

ing, and as the quality of the dataset improves and the network model continues to opti-

mized, deep learning networks have an increasing ability to generalize. 

This paper proposes an integrated method of “processing–matching–classification–

diagnosis” based on eight forms of defects in plastic components and uses images of plas-

tic components to diagnose the failure of injection molds and injection molding machines. 

The framework of this integrated method is shown in Figure 1. Accuracy, effectiveness, 
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non-contact and non-damaging, and an extended continuous working period are all ben-

efits of the integrated detection method in this study. The three main contributions of the 

research presented in this paper are to: 

(1) Reduce labor requirements at industrial production sites while enhancing produc-

tion security. 

(2) Advance fully automated injection molding production.  

(3) Advance the automation and intelligence of fault diagnosis systems for injection 

molds and injection molding machines. 

 

Figure 1. The framework of the integrated method: “processing–matching–classification–diagnosis”. 

The core and innovation of this work is the integrated method of “processing–match-

ing–classification–diagnosis”. To construct a template matching mechanism, a new con-

cept of arbitration function ������ is proposed in this paper. An effective template match-

ing mechanism is the basis for accurate classification of plastic components and fault di-

agnosis of injection molding systems. In order to increase the robustness of the matching 

mechanism, the arbitration function allows for error tolerance for images with less-than-

excellent initial matching accuracy (higher than the threshold Ω but less than its statistical 

scaling value) during the initial classification of the plastic part images. In addition, this 

paper improves the conventional VGG16 convolutional neural network by simplifying 

network structure and adjusting hyperparameters. A series of experiments show that the 

new network with improved VGG16 has improved generalization capabilities when deal-

ing with tiny batches of data, offering a fresh solution to the problem of fault diagnostics 

in injection molding systems. 

This work is organized as follows. In Section 2, we analyze the main defect types, 

diagnose strategies of injection molding, and preprocess the dataset using the classical 

approaches to extract the edge features from each image (including template images). In 

Section 3, we propose the arbitration function ������ to establish a template matching 

mechanism for injection molding and perform a preliminary test on the dataset. In Section 

4, we propose a novel convolutional neural network—improved VGG16 for small batch 

sample refinement classification based on conventional VGG16. In Section 5, we explain 

the main experimental results of this new network. Finally, in Section 6, we discuss the 

following study routes for this work and summarize the main conclusions of this paper. 
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2. Pre-Processing Algorithms for Data Sets 

2.1. Classification Theory and Setting of Image Dataset Labels 

The “input end” and research object of the intelligent algorithm is the set of image 

data. To achieve the fault diagnosis of the injection mold and the injection molding ma-

chine, the research in this paper is based on the surface flaws of the injection molding 

workpiece. The reason for the plastic part’s fault must be identified in order to properly 

identify the image collection. 

According to a macroscopic examination, the mold, the injection molding machine, 

and the injection molding process are the three elements that lead to faults in plastic parts. 

The first two categories of causes are mostly taken into account because this work is based 

on a specific injection molding production line. Combining the eight primary types of 

plastic component faults, the theoretical relationship between plastic part defects and in-

jection molding system failure is outlined from the aforementioned two viewpoints, 

which serves as the theoretical foundation for segmenting the data set. 

2.1.1. Dimensional Instability of the Plastic Components 

The direct cause of the dimensional change [25] in plastic components is the shrink-

age of plastic caused by temperature action. The size of plastic components will be unsta-

ble if there is a significant amount of uneven shrinkage. The impact of materials with var-

ious crystallinity levels needs to be studied further. The flaws are compared to the two 

causes mentioned above: 

(1) Injection molding machine: 

Insufficient plasticizing capacity, unstable feeding, unstable screw speed, uncon-

trolled temperature, malfunctioning proportional valve, dysfunctional total pressure 

valve, unstable back pressure, and other factors. 

(2) Injection mold: 

 The mold lacks sufficient rigidity and strength, and the core and cavity materials 

have poor wear resistance. 

 The “one mold with multiple cavities” mold gating system is unreasonable. 

 Dimensional instability of the plastic components are caused by an uneven mold 

cooling system configuration and a sizable temperature differential around the mold. 

2.1.2. Short Shot of the Plastic Components (Insufficient) 

This describes a scenario in which the injection mold cools and solidifies without be-

ing filled, leading to the production of flawed goods [26]. The main causes,  from the 

perspective of the “three elements of molding and processing” are a lack of material and 

an imbalance in the injection pressure and speed. There are the following diagnostic op-

tions for the mold and the injection molding: 

(1) Injection molding machine: 

 The injection molding machine’s plasticizing capacity is limited. 

 The thermometer exhibits a fault, causing the actual temperature to be lower than the 

necessary working temperature. 

 The nozzle’s inner hole’s diameter was improperly chosen. 

 Too little time passes between injections. 

(2) Injection mold: 

 The pouring system of the mold is designed absurdly. 

 The mold structure is designed absurdly. 
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2.1.3. Buckling Deformation of the Plastic Components 

Buckling deformation describes the deformation, bending, and twisting of plastic 

components. Anisotropy and the residual stress within the plastic part must also be taken 

into account when the plastic part’s structure is complicated [27]. Therefore, the mold de-

sign determines the plastic part’s propensity to warp, not the injection molding machine. 

(1) Injection mold: 

 Plastic components’ structural designs are illogical. 

 Unbalanced temperature in the mold. 

 The design of the pouring system is not suitable for this kind of component. 

 The ejector system’s design is illogical. 

 The exhaust system’s layout is unreasonable. 

 The mold’s material strength is insufficient. 

2.1.4. Flash of the Plastic Components 

The core mating surface, insert joint surface, and mold parting surface are among the 

positions where the flash [28], also referred to as overflow, batch front, or burr, occurs 

more frequently. From a structural standpoint, insufficient mold manufacturing precision 

and insufficient clamping force of the injection molding machine are the essentialcauses 

of the flash phenomenon. 

(1) Injection molding machine: 

 The injection molding machine’s clamping force is insufficient. 

 The clamping mechanism needs to be better adjusted. 

 Flash may be caused by severe check ring wear, spring failure in the spring nozzle, 

excessive barrel or screw wear, loss of heating system control, including the small 

buffer pad, etc. 

(2) Injection mold: 

 The mold parting surface’s manufacturing accuracy is subpar. 

 The mold’s design is absurd: 

1. Local flash and insufficient local filling are caused by an unbalanced distribution of 

mold cavities or by poor parallelism. 

2. The flash will be produced when the movable parts and sliding cores in the mold are 

out of balance. 

3. Neglected mold exhaust. 

4. When plastic components have uneven wall thickness. 

5. It is customary to open a side gate on the inside of a large molding hole that is in or 

near the center of the product. It is simple to cause minor warping deformation and 

flash under high injection pressure if the clamping force and supporting force of this 

part of the mold are insufficient. 

6. If the side of the mold has a movable member, the projected area of the side is also 

affected by the molding pressure, and flash will result if the supporting force is in-

sufficient. 

7. Flash can also be caused by the movable core’s poor matching accuracy or by an offset 

between the fixed core’s installation position and the cavity. 

8. For multi-cavity molds, consideration should be given to the reasonable design of 

each runner and gate, as failure to do so will result in flash and uneven filling of the 

mold. 

2.1.5. Shrinkage Depression of the Plastic Components 

Shrinkage depression refers to the increase in internal shrinkage rate brought on by 

the thickening of the plastic part’s local walls, and dents frequently occur in these loca-

tions [29]. Temperature differences, as well as the size and shape of the plastic compo-

nents, are major determining factors for this defect. 
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(1) Injection molding machine: 

 The size of the nozzle hole is inappropriate. 

 Not enough clamping force. 

(2) Injection mold: 

 The mold should have a uniform wall thickness at the design level and should not be 

too thick to ensure the isotropy of the shrinkage process in order to prevent shrinkage 

depression. If a thicker wall is necessary, think about creating a hollow structure; arcs 

in place of sharp corners at the shunt channel can significantly lessen the amount of 

denting that occurs there. 

 The mold’s cooling and heating system should guarantee that the cavity is essentially 

the same temperature. 

 The main channel, runner, and gate sizes should be appropriate, and the roughness 

should be reasonable in order to ensure that the melt is not obstructed and that the 

resistance is not excessive. 

 The mold temperature should be appropriately lowered for thick-walled plastic com-

ponents and raised for thin-walled plastic components. 

 The gate should open as symmetrically as possible and, to the greatest extent possi-

ble, at the thick-walled part of the plastic part. Additionally, the cold well’s volume 

needs to be increased. 

2.1.6. Crack of the Plastic Components 

Both small and large cracks that form on the surface of plastic components are re-

ferred to as cracks [30]. Demolding cracking and application cracking are two additional 

classifications based on the time at which cracks appear. The following is the cause anal-

ysis: 

(1) Injection molding machine: 

 The injection molding machine’s plasticizing capacity needs to be appropriate. If it is 

too big, it will deteriorate. It will not become sufficiently plasticized if it is too small, 

and it will crack if it is not thoroughly mixed because it will become brittle. 

 Pay attention to some engineering techniques, such as lowering the injection pres-

sure, slowing down the last stage’s injection, slowing down the ejection speed, pro-

longing the cooling period, etc. 

(2) Injection mold: 

 The ejection should be balanced in mold. In particular, the quantity of push rods, 

cross-sectional area, demolding slope, and cavity surface all need to be adequate to 

effectively prevent the concentration of residual stress in the ejection, which will re-

sult in the cracking of the plastic components. 

 The transition part should utilize a circular arc structure as much as feasible to reduce 

stress concentration. The plastic components' structure shouldn't be too thin. Use 

metal inserts sparingly to reduce the internal stress caused by the disparity in shrink-

age rates between inserts and plastic components. 

 Deep cavity plastic components should have appropriate demolding air inlets set to 

prevent the development of vacuum negative pressure, which would ultimately af-

fect demolding. 

 The sprue needs to be big enough to allow demolding of the pouring system’s con-

densate before it solidifies. 

 The nozzle and main runner in the sprue sleeve should be in line. 
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2.1.7. Craze of the Plastic Components 

Craze on plastic components can be caused by surface air bubbles and interior holes [31]. 

The main factor is gas interference during the molding process. (1) Injection 

molding machine: 

 The condition of the barrel, screw, and existence of a dead angle in the material flow 

through the rubber ring and head. 

 The heating system is out of control, which results in an excessively high temperature 

and deterioration. 

 To reduce the residence time as necessary. 

(2) Injection mold: 

 Poor exhaust. 

 The runner, gate, and cavity in the mold have high friction resistance, which leads to 

regional overheating and plastic degradation. 

 An unreasonable cooling system, an unbalanced distribution of cavities and gates, 

and local overheating are all potential causes of airflow obstruction. 

 The cavity is breached by a leak in the cooling water channel. 

2.1.8. Blackspots Coking of the Plastic Components 

These issues are typical injection molding flaws. Plastics or additional UV absorbers, 

antistatic agents, and other substances are thermally decomposed, explained, and coked 

in the barrel, and are then injected into the cavity with the melt. This thermal decomposi-

tion is the structural cause. 

(1) Injection molding machine: 

 The barrel of the machine becomes overheated as a result of the heating control sys-

tem losing control, degrading the related materials and turning them black. 

 The melt is stuck because of a screw or barrel defect, and it will degrade if it is heated 

for an extended period of time. 

 High heat in the barrel causes some plastics, such as ABS, to become cross-linked and 

coked. It is difficult to melt under conditions in which the original particle shape is 

almost maintained and, after being crushed by the screw, it is entrained into the plas-

tic part. 

(2) Injection mold: 

 The mold should have more venting slots opened because it may be poorly vented 

and the trapped air easily combustible. 

 The mold contains unsuitable oil lubricants and mold release agents. 

2.1.9. Acquisition and Image Database Calibration 

Continuous photography and image acquisition were undertaken for one production 

process on the injection molding production line using image acquisition equipment. Be-

fore image preprocessing and feature extraction, the database labels were categorized and 

calibrated to produce high-quality fault diagnosis. The details of the dataset are shown in 

Table 1. 

Table 1. This table shows the labelling of the dataset in this paper and the size of the dataset. 

Failure Name Number of Images Locking Tags 

Dimensional instability 16 Dimensional_instability 

Short shot 16 Short_shot 

Buckling deformation 16 Buckling_deformation 

Flash 17 flash 

Shrinkage depression 16 Shrinkage_depression 

Crack 16 Crack 
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Craze 17 Craze 

Blackspots coking 17 Blackspots_coking 

Qualified data 16 Qualified_data 

2.2. Image Restoration Technology for Fuzzy Images 

Due to the injection molding machine’s inertial motion, there is relative motion be-

tween the camera and the target image in a very short exposure time, and this motion blur 

causes the captured image’s pixels to drift [32]. On the other hand, the environment in the 

injection mold workshop influences the motion blur of the images. The interference of 

noise, such as variations in light and shade, dust, etc., will also lower the quality of the 

image. There must be some images in this dataset that need to be restored due to motion 

blur. The degradation model of the image serves as the foundation for the blurred image 

restoration technology, and the inverse process is calculated to complete the restoration. 

2.2.1. Image Degradation Model 

Utilizing image restoration technology, the damaged image is processed to restore it 

as much as possible. Establishing an appropriate image degradation model to describe the 

cause of degradation and to restore the image using its inverse process is a crucial tech-

nique. The image degradation process is modeled as a degradation system function H, 

where �(�, �) represents a pure image and �(�, �) represents a degraded image, �(�, �) 

corresponds to the external noise. Because the actual state in a factory is significantly more 

complicated than the theoretical model, noise should be taken into account. and the image 

degradation process is that �(�, �) is affected by a degradation system [33]. The exposure 

time is extremely brief, and the moving direction and speed of the image can roughly be 

considered as uniform linear motion �(�, �). Although image denoising will be under-

taken during data processing, it can be assumed that the noise is independent of the im-

age’s location information for the model’s capacity to generalize. The image degradation 

model is shown in Figure 2. 

�(�, �) = �(�, �) ∗ �(�, �) + �(�, �) (1)

 

Figure 2. Image degradation model. 

2.2.2. Blind Deconvolution Filtering Algorithm 

It is challenging for researchers to reliably acquire PSF functions at injection molding 

manufacturing sites because of real-world issues such as inconsistent lighting and poor 

camera hardware performance. Therefore, at the theoretical level, it is still exceedingly 

challenging to identify the precise reason why visuals blur in real time. The blind decon-

volution filtering algorithm can be used to recover the original image as much as possible 

when the exact reason for certain image degradation cannot be determined. Let 

��∫ ����� = ��, introduce the expected value of the random variable �(�) into (1). 

∥ ℎ × � − � ∥�= ��∫ (ℎ × � − �)���� = ��∫ ����� = ���(�) (2)

From this, it is known that the image restoration idea of the blind deconvolution fil-

tering algorithm is min[���(�) + ���(ℎ)]. where r is a penalty function and �� is a posi-

tive weighting coefficient. The Lagrangian form of this problem is: 
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min�(�, ℎ) = min[∥ ℎ × � − � ∥�+ ���(�) + ���(ℎ)] (3)

The expression of Equation (3) �� includes the coefficients of the Lagrange multipli-

ers. The core of the algorithm is how to define the penalty function. According to the rule 

of ��: ��(�) = ∫|∇�|�����, Equation (3) can be translated into the following form: 

min�(�, ℎ) = � min �(ℎ × � − �)� + �� �|∇�|� + �� �|∇ℎ|�� ���� (4)

Take partial derivatives with respect to � and ℎ, thereout the following frequency 

domain expression is finally determined. 

⎩
⎪
⎨

⎪
⎧�(�, �) =

�(�, �)�(�, �)

|�(�, �)|� + ���(�, �)

�(�, �) =
�(�, �)�(�, �)

|�(�, �)|� + ���(�, �)

 (5)

Among these, �(�, �) can be estimated according to the empirical formula of this 

paper, where M and N represent the size of R: 

�(�, �) = 4 − 2cos �
2��

�
� − 2cos �

2��

�
� (6)

2.2.3. Fuzzy Image Recovery Tests (Constrained and Unconstrained Methods) 

A point spread  function(PSF) is created to cause the image to move linearly by 10 

pixels in a direction of 30 degrees, and a normal distribution random number is used to 

simulate the noise signal to create the motion-blurred image as a result. Constrained least 

squares filtering and Wiener filtering are used to process the images, taking into account 

the noise-to-signal ratio K. The test results are shown in Figure 3. The image to be pro-

cessed is shown in the upper right corner with motion blur and noise added, the restora-

tion effect of Wiener filtering is shown in the lower left corner with K set to 0.0014, and 

the restoration effect of constrained least squares filtering is shown in the lower right cor-

ner. The experimental findings demonstrate that when the point spread function is 

known, the restoration effect of the Wiener filter outperforms that of the constrained least 

squares filter. 

 

Figure 3. Image restoration experiment of constrained filtering algorithm. 

This paper uses the blind deconvolution algorithm to restore the below motion 

blurred image shown in Figure 4, because the point spread function is difficult to obtain 
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accurately in the actual situation and the influence of noise in the actual production situ-

ation is also complicated. 

 

Figure 4. Image restoration experiment of the blind deconvolution algorithm. 

The lower left of Figure 4 displays the restoration effect of the blind deconvolution 

filtering, and the lower right corner displays the point spread function (PSF) that the blind 

deconvolution algorithm fitted. The application scene is more accurate to reality thanks 

to the algorithm’s effective recovery of the image’s edge and contour information. Accord-

ing to a number of experimental results, the blind deconvolution algorithm’s restoration 

effect is superior to the constrained least squares filter’s effect under the same circum-

stances and comes close to the Wiener filter’s performance. The blind deconvolution al-

gorithm is used in this paper to restore the blurred image because it is more practical than 

the Wiener filter given the complexity of the actual working conditions. 

2.3. Preprocessing of Plastic Components Images 

2.3.1. Gamma Transform 

In order for the computer vision system to better understand the image during sub-

sequent feature analysis, it is necessary to perform grayscale processing on the image be-

fore extracting image features. In this experiment, the grayscale is processed using the 

gamma transform method. The gamma transform is a nonlinear operation on the gray 

value of the input image, resulting in an exponential relationship between the gray value 

of the output image and the gray value of the input image: 

���� = ����
�  (7)

The name of this index is Gamma. In this study, the experimental parameter Gamma 

is set to 2.2, and the red curve in Figure 5 depicts the relationship between the gray values 

of the input and output images. When the gray value is transformed and output, the 

change speed is improved, the contrast of the image’s highlighted region is increased, and 

the exposure issue is fixed while the gray value significantly decreases in the low gray 

value area of the red curve in the high gray value area. 
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Figure 5. Gamma correction. 

In this paper, the image dataset is gray-processed based on gamma transform. Taking 

an qualified image as example, Figure 6 shows the actual effect of gamma change. 

 

Figure 6. The original image and the image after gamma transformation. Original image is at left, 

the same image after gamma transform is at right. 

2.3.2. Image Smoothing 

As can be seen from a comparison of the three processing results, the weighted aver-

age method falls short in addressing the exposure problem, whereas histogram equaliza-

tion strengthens the exposure phenomenon. This will have an effect on the ensuing feature 

extraction. After using the gamma transform technique, the background noise can be sig-

nificantly reduced and the exposure problem can be better controlled. This paper finally 

uses the gamma transform, a grayscale processing method, to process the original data. 

The basic idea behind median filtering is to replace the pixel value that corresponds 

to the convolution kernel’s center with the median of the pixels within the filter’s convo-

lution range. The filtering process is then finished by repeatedly traversing and sorting 

the image matrix. The algorithm has good robustness to speckle noise and salt and pepper 

noise because median filtering does not depend on points within the filter that are too 

different from the typical value (generally considered noise). 

�median (�, �) = median [�(�, �)](�,�)∈�(�,�) (8)

In the formula, �(�, �)  represents the neighborhood of the current point, and 

�median (�, �) is the final output value. Figure 7 illustrates the median filter’s fundamental 

idea. In this paper, median filtering was applied to the image with a window width of 5 × 

5, which can not only reduce noise but also better preserve the texture features of the im-

age. 
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Figure 7. Schematic diagram of median filter. 

2.4. Feature Extraction of Image Datasets Based on Canny Algorithm 

The Canny algorithm was proposed by John Canny [34] and has endured since its 

introduction. Much work [35–37] has been undertaken on the four core steps of the Canny 

algorithm, which is considered to be one of the most effective classical algorithms for edge 

detection. In this study, the edge information was chosen as the image feature, and the 

Canny algorithm was used to obtain the edge information. Three criteria for edge opera-

tors are suggested by the Canny algorithm. 

(1) The signal-to-noise ratio standard 

Correct edge information should not be overlooked during the edge detection pro-

cess, and noise information should not be misinterpreted as an edge. The introduced sig-

nal-to-noise ratio is recorded as SNR, and the larger the SNR, the higher the quality of the 

extracted edges. The two aforementioned objectives are monotonic functions of SNR. 

��� =
�∫

��

��
 �(−�)ℎ(�)���

��∫
��

��
 ℎ�(�)��

 (9)

where G(x,y) denotes the edge function and h(x) denotes the impulse response of a filter 

of width W. 

(2) Positioning Accuracy Guidelines 

The algorithm’s edge points should be as near as possible to the actual edge’s center. 

The non-maximum suppression theory is put forth in the Canny algorithm to realize this 

criterion. Let L represents the edge positioning accuracy. 

� =
�∫

��

��
 ��(−�)ℎ�(�)���

��∫
��

��
 ℎ��(�)��

 (10)

where ��(�, �) and ℎ�(�, �) represent the derivative of the edge function and impulse re-

sponse, respectively. The larger the L value, the higher the positioning accuracy of the 

algorithm. 

(3) Single edge unique response criterion 

When different answers are given for the same edge, only one of them can be proven 

to be accurate, and the others must be rejected. The average distance of the zero-crossing 

points of the detection operator’s impulse response function should be satisfied in order 

to guarantee the accuracy of the chosen response: 

��(�) = � �
∫

��

��
 ℎ��(�)��

∫
��

��
 ℎ��(�)��

�

�
�

 (11)

The optimal approximation operator of the product of signal-to-noise ratio and local-

ization, which is comparable to the first-order derivative of the Gaussian function, is the 
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Canny edge detector, which combines functional theory. The algorithm’s basic operation 

entails processing the image using a Gaussian smoothing filter, calculating the gradient 

direction and amplitude of each image pixel, using a non-maximization suppression al-

gorithm to further determine the edge information, and then using a heuristic edge deter-

mination method based on double thresholds for complete edge removal. 

Based on the generalized function theory, the Canny edge detector is the optimal 

approximation operator of the product of SNR and location, which is similar to the first 

derivative function of a Gaussian function. In the image data set, a qualified workpiece 

image is selected, and the edge information is extracted by Canny operator after prepro-

cessing, so as to establish a database for vision and deep learning tasks. The feature ex-

traction results of standard templates and various defect images are as follows: 

Establish the standard template as Figure 8. The experiment demonstrates that it is 

easier to gather the semantic information of the image when using a high threshold for 

edge extraction. 

 

Figure 8. (a) The high (200, 240) (b) and low (20, 40) thresholds. 

Feature extraction of eight types of defect images by high threshold as Figure 9. 

 

Figure 9. Edge feature information of various defect images by Canny algorithm. 

3. Template Matching Mechanism Based on Arbitration Function ������  

3.1. Matching Algorithm Based on Hu Invariant Moments 

Many characteristics of the image’s edge contour are present, and these characteris-

tics form the realistic basis for the template matching mechanism suggested in this paper. 

Moment is a crucial operator for describing image features. Moment is a feature obtained 

by integrating all points on a contour. It is frequently employed in motion image sequence 

analysis, image matching, image reconstruction, and pattern recognition. Moments are 

used in mechanics to describe the spatial relationship of matter, in statistics to characterize 

the distribution of random variables, and in image processing to describe the distribution 

of pixels. The description of the pixel distribution by the image moments can reflect the 

shape characteristics of the image. The relationship between pixels and the image origin 

moment and centroid moment is used to reflect the characteristics of the image, which has 
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good stability and generalization ability. The image is a two-dimensional or three-dimen-

sional space. The second-order moment’s mathematical meaning is variance, while the 

third-order moment’s mathematical meaning is skewness. 

3.1.1. Numerical Calculation of Hu Moments 

Hu moment invariant theory was first proposed by M.K.Hu in 1962 [38]. The Hu 

moment is a collection of moment invariants made up of nonlinear combinations of mo-

ments. It effectively addresses template matching by having rotation, translation, and scal-

ing invariance. Changes to scale, image translation, coordinate transformation, and rota-

tion, among other things, occur during the process. The origin moments of the order of 

Hu moments are as follows, where p and q are the order of the horizontal and vertical 

distances in image pixel coordinates, respectively. 

��� = ∬ �����(�, �)���� (�, � = 0,1,2 ⋯ ) (12)

Specifically, Hu moments are seven invariant moments calculated from the second-

order and third-order central moments, and the calculation formula is as follows: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

�� = ��� + ���

�� = (��� − ���)� + 4���
�

�� = (��� − 3���)� + (3��� − ���)�

�� = (��� + ���)� + (��� + ���)�

�� = (��� − 3���)(��� + ���)[(��� + ���)� − 3(��� + ���)�] + (3��� − ���)(��� + ���)[3(��� + ���)� − (��� + ���)�]

�� = (��� − ���)[(��� + ���)� − (��� + ���)�] + 4���(��� + ���)(��� + ���)

�� = (3��� − ���)(��� + ���)[(��� + ���)� − 3(��� + ���)�] − (��� − 3���)(��� + ���)[3(��� + ���)� − (��� + ���)�]

(13) 

The HU moment data of the template image established in this paper are obtained 

through experiments and shown in Table 2: 

Table 2. This table shows the HU moment data of the template image. 

HU Moment Numerical Results 

Hu1 (1) 2.02425 

Hu1 (2) 4.46429 

Hu1 (3) 8.01779 

Hu1 (4) 8.98081 

Hu1 (5) 18.0195 

Hu1 (6) 11.5543 

Hu1 (7) 17.499 

3.1.2. Contour Matching Algorithm Based on Hu Moments 

Hu moment-based contour matching, is to use the matching result as a measure of 

geometric contour similarity. The smaller the value, the closer the “distance” between the 

image and the template, the higher the degree of similarity between the two. The matching 

method is shown in Equation (14): 

��� = ∑���
�  ∥∥���

� − ���
� ∥∥ (14)

In the Equation (14), ��� denotes the matching result, i corresponds to the image se-

quence, j denotes the matching times of the same image. A represents the standard tem-

plate, B represents the previous images to be tested. K represents the kth Hu moment of 

images. As for the template, this algorithm’s matching accuracy ranges from 0.0871 to 

0.1517. 
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3.2. Plastic Template Matching Mechanism Based on Arbitration Function ������ 

The lower limit of accuracy for recognizing qualified plastic components is recorded 

as threshold Ω, Ω = 0.15. A qualified image is one for which the image matching result 

falls below the threshold; otherwise, it is categorized as a defective image. The matching 

mechanism achieves the initial classification of plastic components, and, in the subsequent 

work, it will carry out fine classification based on deep learning. 

After obtaining Hu’s matching accuracy data, this paper proposes a new concept of 

arbitration function ������. A specific matching mechanism is formed through the arbi-

tration function ������: if the function value is 0 (��� is higher than the threshold Ω but 

less than its statistical scaling value), the image can be preprocessed twice, and the feature 

information is further extracted before a secondary matching, if the second matching ac-

curacy is still greater than threshold Ω, the tested image is regarded as defect image. If the 

function value is 1 (the matching accuracy is lower than the threshold), the component 

represented by the image is a qualified product. If the function value is −1, the component 

is immediately classified as part of a defect image dataset. 

������ =

⎩
⎪
⎨

⎪
⎧

1 ���� ≤ Ω�

0 �Ω�� <
∑���

�  ℎ��(�)

∑���
�  �

Ω�

−1 ���� >
∑���

�  ℎ��(�)

∑���
�  �

Ω, or ��� > Ω( when � = 2)�

 (15)

In the Equation (15), i represents the number of the image to be tested, j represents 

the number of times the same image is input to the arbitration function, � ∈ �, � ≥ 1. 

ℎ��(�) represents the Hu invariant moments of the template image. 

The matching mechanism proposed in this paper is visualized in Figure 10. 
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Figure 10. Matching mechanism between the tested image and the standard template. 

The following Table 3 shows the matching values for each type of defect image: 

Table 3. Matching test of nine types of images on Hu moments. 

Failure Name Matching Accuracy 

Dimensional instability 0.1970 

Short shot 1.2874 

Buckling deformation 0.4767 

Flash 0.6806 
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Shrinkage depression 0.7619 

Crack 1.0137 

Craze 0.7046 

Blackspots coking 0.3175 

Qualified data 0.0871 

According to the experimental results, the Hu moment matching algorithm is robust 

when matching defect images and has size invariance for rotation, translation, and scal-

ing. Qualified data show a clear distinction between the qualified images and the defect 

ones. The matching mechanism based on Hu theory developed in this paper achieved the 

initial evaluation of the components qualification from visual inspection. 

4. Fault Classification Based on Improved VGG16 

4.1. VGG16 Convolutional Neural Network Overview 

VGGNet is a deeper model than the AlexNet network proposed by the Visual Geom-

etry Group team [39] at the University of Oxford. This study is based on the more tradi-

tional VGG16 structure, which is a kind of feedforward neural network. Each layer’s neu-

ron nodes begin at the input layer to take in the data and information transmitted by the 

layer beneath them, process that data, and then output them. Figure 11 depicts the one-

way, multi-layer structure of the VGG16 deep neural network. 

 

Figure 11. VGG16 Convolutional neural network structure diagram. 

4.2. Fault Diagnosis Classification Test Based on Traditional VGG16 

4.2.1. Data Set Preprocessing and VGG16 Network Parameters 

The data set that was processed in the prior step contains the experimental data used 

in this paper. The experiment’s network parameters were set up in accordance with Figure 

11. Convolutional neural networks must first undergo some preprocessing on the dataset 

in order to make training easier: To calibrate the names of the different defect labels in the 

dataset, the one-hot encoding tool is first introduced. Variables are transformed into bi-

nary representations that machine learning algorithms can recognize and use. Each cate-

gory needs to be separate from the others in order for the coding tool to work. The data 

set’s tensors must also be normalized to increase the network’s classification accuracy. 

The pertinent equation is as follows: 

� =
� − ����

���� − ����
 (16)

Following these preprocessing steps, the entire data set is randomly split into a train-

ing set and a test set with an 80/20 split. The concept of the difference between the test set 

and the validation set is not stressed in this paper because of the small size of the data set. 

A number of conventional hyperparameters will be used to test the VGG16 convolutional 



Sustainability 2022, 14, 14280 17 of 26 
 

neural network that was used in this study. The root mean square forward gradient de-

scent algorithm is the algorithm that the optimizer chooses, and the loss function uses the 

categorical cross-entropy function (RMSProp). In addition to solving the adaptive gradi-

ent algorithm, the learning rate might drop suddenly, and the algorithm for preventing 

decay differs from the standard momentum SGD algorithm. It keeps each of the adaptive 

gradient algorithms while calculating the second-order momentum using the weighted 

average of the window sliding. To benefit from the learning rate, the parameters can be 

adaptively updated. The activation functions used in this experiment’s convolutional 

layer and fully connected layer are both ReLU functions, and the accuracy rate has been 

chosen as the network’s evaluation metric. The initial learning rate of the network is set 

to 10��, the training process’s batch size to 256 and the training epoch to 50. 

4.2.2. Analysis of Test Results 

The loss function value for the VGG16 model on the training and validation sets is 

shown on the left in Figure 12, and the model’s evaluation index is shown on the right. 

The “accuracy rate” of classification prediction, also referred to as “classification accu-

racy” below, was used in this experiment. 

(1) The VGG16 convolutional neural network’s classification accuracy was insufficient. 

Before and after the 37th training, the accuracy on the test set increased from 13.33 

percent to 43.33 percent, and, as a result of the overfitting issue, the fitting function 

of the accuracy oscillated with a significant amplitude for the last 10 pieces of train-

ing. The second training’s oscillation phenomenon was the worst, and it restricted 

the model’s ability to improve both its classification accuracy and the accuracy of its 

numerical values. The classification accuracy of VGG16 on this dataset is not high 

because, in the case of overfitting, the peak classification accuracy only reached 53.33 

percent. 

(2) The early fitting effect of the loss function was quite impressive when compared with 

the results of the prediction accuracy. However, before and following the 14th train-

ing, a minor overfitting issue started to emerge. The number of training rounds was 

increased, which caused this phenomenon to worsen and ultimately prevented the 

loss function from converging. The model’s loss function value on the test set in the 

12th training was 0.3667. Following that, oscillations with growing amplitude started 

to appear. Large outliers in the loss function value can be attributed to unreasonably 

high hyperparameter settings, such as the optimizer or network model’s learning 

rate, in the early stages of training. 

(3) The accuracy of the classification is positively correlated with the numerical value of 

the multi-class confusion matrix, which represents the classification result in Figure 

13. However, it is possible to predict silver streaks, shrinkage depressions, flash 

edges, and surface black spots as qualified plastic components. Experiments show 

that the network has a better recognition effect on plastic components with unstable 

size, warpage deformation, poor filling, and qualified plastic components. 

 

Figure 12. Training results of the VGG16 network. 
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Figure 13. Multivariate confusion matrix for VGG16 network. 

A confusion matrix is a visual evaluation tool that is used to see which class the net-

work ultimately assigns to the test’s sample of each class. In the image above, the ordinate 

represents the actual label value of the data, while the abscissa represents the model’s 

predicted value for that label. The coordinate letters are abbreviations of labels. 

4.3. Improvements to the Traditional VGG16 Topology 

The classification accuracy, convergence value of the model loss function, and con-

vergence are all subpar for the traditional VGG16 network training results. In terms of 

productivity, the network had trouble correctly classifying different defect images as qual-

ified plastic components. Such a diagnosis mechanism cannot address the actual needs of 

industrial production, and it will simultaneously lower the rate of product qualification 

and create significant issues and costly waste. A better VGG16 algorithm is suggested in 

this paper based on network topology and hyperparameter debugging. The primary re-

quirements are to increase the generalizability of the model, optimize the convergence of 

the loss function, and increase the classification accuracy of the fault diagnosis and classi-

fication processes. The strategies for structural improvement are the main topic of this 

section. 

4.3.1. Improvements I: Changing the Number of Layers and Convolutional Kernels 

Through sequential models, convolutional neural networks link multi-layer network 

architectures to create a vast hypothesis space. To perform deep learning, the model’s hy-

pothesis space must encompass the feature space. To train more realistic and complex 

hypothesis functions and to recognize more abstract deep features of images, the number 

of network layers must be properly deepened. However, deep learning is a form of sys-

tems engineering, and there are other efficiency factors besides the number of network 

layers. The hardware environment, network topology, datasets, and hyperparameters 

must all be carefully taken into account. It is not recommended to use a network that is 

too deep for gradient backpropagation because this can cause serious overfitting issues. 

The first enhancement made in this paper involves appropriately reducing the number of 

network layers in order to guarantee the hidden layer’s operational efficacy. The existing 

network’s convolution kernel count is also decreased in this paper. This network struc-

ture’s relationship to this hyperparameter is more direct. A properly reduced convolution 

kernel can reduce the algorithm’s time complexity. However, this assessment is also based 

on the size of the particular data set. 
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4.3.2. Improvements II: Introduction of Weight Regularization 

In addition to the gradient disappearance issue during backpropagation, deeper net-

work models do not always represent better classification performance. The gradient dis-

appearance problem gets worse as the number of layers is increased because the neural 

network’s gradient descent algorithm functions by sending feedback signals from output 

losses in the opposite direction to deeper layers. On the other hand, a gradient explosion 

issue can also be brought on by a network that is too deep. The root of the issue is an 

excessively high neuron weight value, which causes the gradient value of the deep net-

work to grow exponentially as the number of layers increases. Both of these issues are the 

result of the weight update process being unable to proceed normally because of the ex-

cessively deep network layers. 

This paper introduces weight regularization in the convolutional layer in response to 

the overfitting phenomenon and the practical issues with the aforementioned two types 

of deep learning. An essential concept in deep learning isolation. In order to increase the 

model’s ability to generalize, this paper adopts the L2 regularization scheme in the Keras 

architecture and adds the square of the neuron weight value as a regular term into the loss 

function. 

4.3.3. Improvements III: Dropout Methods 

Deep neural networks have the benefit of allowing for the training of more robust 

mathematical models using smaller amounts of data. Deep neural networks still have a 

large number of network parameters that need to be learned and updated, even though 

appropriately reducing the number of network layers can solve the overfitting issue. One 

of Keras’ layer components, the dropout algorithm, was developed primarily to address 

overfitting and enhance the network’s generalization. Dropout algorithm prevents mu-

tual adaptation of neurons in the same layer by setting the weight value of each neuron 

in a layer of a neural network to zero through a probability value. As a result, the dropout 

algorithm can increase the network’s capacity for expressiveness while also enabling neu-

rons to express their features more. In this study, the probability was set to 0.5 and a drop-

out layer was added between the weight layers after adjusting the number of network 

layers. 

Figure 14 shows the structurally optimized VGG16 convolutional neural network. 

 

Figure 14. VGG16 network after structural optimization. 

4.4. Debugging of Hyperparameters 

4.4.1. Changing the Optimizer 

The gradient descent of the deep neural network and the parameter optimization 

process are realized via the optimizer. Based on the back propagation theory, the process 

of updating the weights of the optimization algorithm is as follows: 

��
∗ = arg min��

 � ��(��, ��)� (17)



Sustainability 2022, 14, 14280 20 of 26 
 

In the Equation (17), L and f correspond to the loss function and the output function 

respectively, �� represents the kth parameter in the network structure, ��
∗ represents the 

optimal parameter, and �� corresponds to the input of the convolutional neural network. 

The adaptive gradient algorithm was used to create the RMSProp optimizer, which 

addresses the issue in which the learning rate caused by the latter in the training process 

drops sharply in the later stages. In addition to introducing the hyperparameter decay 

coefficient and computing the second-order momentum value using the weighted average 

method, the algorithm maintains the benefit from which each parameter in the adaptive 

gradient algorithm being adaptable to different learning rates. In this paper, the RMSProp 

optimizer was replaced by the adaptive moment estimation (Adam) optimizer, which dy-

namically adjusts the learning rate of each parameter using the first-order moment esti-

mation and second-order moment estimation of the gradient. This incorporates RMSProp 

and the SGD algorithm while taking into account first-order momentum. The algorithm’s 

advantage, when second-order momentum is taken into account, is that each iteration of 

the learning rate has a specific range. One of the most popular optimizers in use right now 

is Adam. The model learning rate in this paper was set as 6 × 10−5. 

4.4.2. Changing the Activation Function 

The conventional VGG16 network’s activation function ReLU can address the gradi-

ent disappearance issue. This function, which is actually a ramp function, can simulate 

the sparseness of neurons in biological neural networks due to its wide excitation bound-

ary and unilateral inhibition. sex. The efficiency of gradient descent is impacted by ReLU’s 

non-zero centralized nature, which creates a “bias offset” in the following layer. Another 

significant issue is that the ReLU function cannot update the weight value when the input 

value is less than 0. To ensure that the neuron can also have a non-zero gradient to update 

the parameters when the neuron is in an inactive state, a small positive number is added 

when the input is negative. 

This algorithm’s drawback is that the neuron will saturate and become essentially 

inactive when the input value is a negative value with a large modulus. The eLU function 

[40] introduced in this paper is improved on the leaky ReLU algorithm by substituting a 

logarithmic curve on the -axis of the input value for the straight line that was previously 

used, combining the benefits of both. 

�(�) = eLU (�) = �
� � ≥ 0

�(�� − 1) � < 0
 (18)

5. Results 

5.1. Fault Diagnosis Classification Test Based on VGG16 after Structural Optimization 

The data set used in this experiment is the same as it was in the previous one, so the 

associated preprocessing work will not be repeated. Figure 15 displays the outcomes of 

the training set and test set. The new model has good generalization ability, according to 

an analysis of the classification accuracy data on the right. The classification accuracy has 

increased from the initial 6.67% to the final 90% after 50 training sessions. The classifica-

tion accuracy of the model on the test set essentially stayed in the range of 86.67% to 

90.00% over the course of the last 10 training sessions before stabilizing at 90.00%. The 

new model fits the data better than the conventional VGG16 model, effectively avoiding 

the over-fitting issue, and significantly increasing prediction accuracy. The overall loss 

function value of the model exhibits a monotonically decreasing trend, according to the 

analysis of the loss function value data on the left. The 50th value for the function was 

1.4301. Although the convergence effect is not ideal, the convergence trend is significantly 

more significant than the previous network. This necessitates further fine-tuning of the 

model’s hyperparameters. It should be noted that the dropout layer introduced in this 

paper effectively filters out the impact of outliers on the loss function value. 
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Figure 15. Training results of VGG16 after structural optimization. 

The issue of low work efficiency brought on by incorrect identification and classifi-

cation still exists, according to the confusion matrix analysis of the classification results. 

The optimized network improves prediction accuracy for shrinkage and sag of plastic 

components in comparison with the previous network, but it is not stable in terms of size, 

warping, and shrinkage. Distortion and poor fill recognition both worsened when com-

pared with the previous networks. 

The experimental results demonstrate that structural optimization using the VGG16 

convolutional neural network significantly enhances prediction accuracy. However, the 

new model still has two issues from the results in Figure 16: the serious issue of incorrectly 

classifying flawed artifacts still exists; and the loss function’s convergence is poor, neces-

sitating the tuning of hyperparameters. 

 

Figure 16. Multivariate confusion matrix of VGG16 network classification results after structural 

optimization. 

5.2. Fault Diagnosis Classification Test after Changing the Optimizer 

The training epochs were increased to 150 to fully utilize the capabilities of the new 

optimizer. Figure 17 displays the training results. In this experiment, the network’s clas-

sification accuracy increased from 3.33% to 93.33%. The classification accuracy of the 

model increased from 90.00% to stabilize at 93.33% from the 80th training to the end. The 

VGG16 network’s accuracy was further enhanced by the Adam optimizer with improved 

network structure but without hyperparameter tuning. In comparison to the prior exper-

imental data, the convergence value of the loss function in the new network is 1.0171, a 

decrease of 0.413. 
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Figure 17. New VGG16 test results with Adam replacing RMSProp. 

Figure 18 depicts the results of the confusion matrix used in this experiment. It is 

discovered that the issue of the detection system’s incorrect classification of defective plas-

tic components remains unresolved. The four types of defects—plastic components flash, 

inadequate filling, silver streaks, and surface black spots—are still not accurately identi-

fied by this new network model; however, dimensional instability and warpage defor-

mation are better identified. 

 

Figure 18. New VGG16 network classification results with Adam replacing RMSProp multivariate 

confusion matrix. 

5.3. Fault Diagnosis Classification Test Based on Improved VGG16 (Final Model) 

The improved VGG16 network proposed in this paper is the network used in this 

section, and the activation function is further adjusted in accordance with 5.2. We used 

the same experimental setting as in Section 5.2 to experiment, and the results are displayed 

in Figure 19. According to the data, the new VGG16 network achieves 96.67% classifica-

tion accuracy on the test set after structural optimization and hyperparameter tuning. The 

classification accuracy of the new VGG16 network stabilizes from 93.33% to 96.67% in the 

last third of the training process. The fault classification task in this paper can be success-

fully completed by the VGG16 network. The model on the test set has a loss function con-

vergence value of 1.1627, which is 0.2674 lower than it was before hyperparameter tuning. 
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Figure 19. Training results of the improved VGG16 network. 

The network exhibits good robustness in the classification and prediction of eight 

types of defect images and qualified images of plastic components, Figure 20 shows the 

final classification results. The improved VGG16 does not mistakenly classify original de-

fective plastic components as qualified plastic components, allowing for high-quality 

mold fault diagnosis. This is revealed through the analysis of the confusion matrix created 

by this most recent network. 

 

Figure 20. The final multivariate confusion matrix of the improved VGG16 network classification 

results proposed in this paper. 

6. Discussion and Conclusions 

6.1. Discussion 

This paper traces the causes of injection molding machine and mold failure from 

failed plastic components and has wide application value. Further study should focus on 

the following points: 

(1) Strengthen innovative research on image processing algorithms. Further research 

should focus on more efficient and comprehensive fuzzy image recovery algorithms 

and feature extraction algorithms with stronger resistance to noise interference. To 

increase matching accuracy and the classification efficiency of convolutional neural 

networks, it is crucial to build robust features that are more suited to matching. 

(2) Introducing a fresh method of template matching that considers multiple variables. 

After satisfying the dimensional invariance of imagerotation, translation, and scaling 



Sustainability 2022, 14, 14280 24 of 26 
 

in this paper’s template matching method, which is still based on conventional ma-

chine vision, it does not account for environmental factors that may be present while 

taking photos for actual production. Further work should introduce a new approach 

to template matching that considers multiple variables, where the arbitration func-

tion should be a multivariate function. 

(3) Additional VGG16 network optimization about residual connections. Deep learn-

ing’s classification effectiveness can be somewhat increased through network topol-

ogy optimization and hyperparameter tuning, but recent research has shown that 

residual connection structure can further resolve the gradient disappearance prob-

lem, leading to an essential improvement in the classification effectiveness of the 

model. This paper used deep learning algorithms to classify the defective images of 

plastic components. Residual connectivity will be the further prospect of the classifi-

cation algorithm in this work. 

(4) The convergence trend and value of loss function should be further optimized. The 

convergence of the loss function of the model in this study is insufficient to pursue 

the generalizability of the model, and the convergence value of the loss function of 

the final accepted network structure is 1.1627. Further study can pay attention to 

ways to maintain classification accuracy while progressively reducing convergence 

value of the loss function. 

6.2. Conclusions 

With the advent of Industry 4.0, the production methods of the manufacturing in-

dustry are undergoing deep changes [41,42]. This paper proposes an integrated idea of 

“processing–matching–classification–diagnosis” based on machine vision and deep learn-

ing. Additionally, this paper realizes the automation and intelligence of fault diagnosis 

for injection molding machines. It also builds an intelligent system for defect detection 

and fault diagnosis in injection molding. 

(1) This paper summarized a theoretical system for processing fault classification for 

plastic part failure to address the issue of processing an image dataset of injection-

molded plastic components. This system emphasized the theoretical connection be-

tween the eight primary types of plastic part defects and the types of injection mold-

ing system failure. The dataset was sorted into nine categories using this theoretical 

framework (eight defective categories and one qualified category). The image dataset 

processing provides a realistic foundation for subsequent matching and detection 

operations. To fully recover fuzzy images, this paper firstly established an image 

degradation model in this study using a blind deconvolution approach. The gamma 

transform method was used to process the dataset in greyscale, the random noise of 

the dataset was removed by using a median filtering algorithm, and the geometric 

contour data were retrieved by the Canny algorithm for the subsequent matching 

procedure. 

(2) A matching mechanism between the images to be tested and the standard template 

was proposed for the detection of flaws in plastic components. The template match-

ing method for plastic components was established by providing an arbitration func-

tion ������ with the aid of the dimensional invariance of Hu moments such as rota-

tion, translation, and scaling. This matching mechanism was inspired by conven-

tional machine vision. It is possible to identify and initially classify problematic im-

ages of plastic components in the dataset using scientific methods. The plastic com-

ponents were divided into two groups after being checked by this mechanism: qual-

ifying and faulty. 

(3) To address the issue of fault diagnosis in plastic components, this paper began with 

the matching mechanism, classified the initially discovered defect images using the 

convolutional neural network method in deep learning, and determined the causes 
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of each type of defect in conjunction with the processing fault classification theoreti-

cal system. This paper proposed an improved VGG16 network from the conventional 

VGG16 convolutional neural network by adjusting its network topology and hy-

perparameters. The improved VGG16 achieved defect image classification and fault 

diagnosis with a high quality of 96.67% classification accuracy. 
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