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Abstract: The foremost wastage of bakery products which mainly disturbs the food supply chain,
especially in remote areas, is fungal growth. Good quality bread, especially with good height and
volume, is the demand of every customer. Here, we aimed to develop a unique antimicrobial approach
for the enhancement of the quality aspects and longevity of bread, using the synthesis of hydrogen
peroxide in bread, the glucose oxidase (GOx) bioactivity, and oxidation of thiol protein bonds, which
greatly enhance dough rheology, volume, and height by providing structural stability to the bread.
An Aspergillus niger-purified enzyme was immobilized on zinc oxide nanoparticles (ZnONPs) and
afterwards immersed in a buffered solution to create a mixture of GOx/ZnONPs. Analyses conducted
after localization revealed that the immobilized enzyme was more active than the mobilized enzyme.
GOx/ZnONPs were employed in the mixing process of bread production. The treated and control
groups were evaluated for dough rheology and quality metrics including bread height and volume
and storage at ambient temperature and conditions to determine shelf life by demonstrating fungal
growth. In addition, antimicrobial activity was evaluated by measuring the microbiological load
in terms of colony-forming units. Contrary to the control, the use of GOx/ZnONPs significantly
improved bread quality, particularly bread height by 34.4%, crumb color, and volume by 30%. The
shelf life of bread treated with GOx/ZnONPs was greatly extended, and the microbiological load,
including yeast and mold, and total bacterial count were much lower in the GOx/ZnONPs treatment
group than in the control group.
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1. Introduction

Health security and food quality have been the focus of continuous research with
a focus on application. Numerous health advantages have been linked to the intake of
baked products containing large amounts of stabilizers and conditioners. Consumption
and manufacture of meals with little preparation time have increased in popularity in
recent years. Throughout the world, consumers’ demand is increasing for natural fresh
products, especially bread [1]. So, the biggest issue for the bread industry is serving the
customers with the best texture with the natural aroma of these food products throughout
their shelf life. Bread is the most popular and oldest food used by humans as a major food.
It is also produced and most often approved for sale as a cultured product created from
water, salt, yeast, and wheat via many processes including combining, kneading, proving,
molding, and baking [2,3].

The viscoelasticity of wheat flour dough is because of gluten protein, which interacts
and swells due to water compatibility embedding the starch granules. A well-defined
characterization of the dough needs rheological studies [4,5]. The gluten matrix that
proteins create is what gives bread dough its excellent characteristics. Oxidizing sulfhydryl
(SH) and SH-disulfide (SS) exchange are the main reactions that create SS crosses along
with other covalent bonds. The final product’s quality characteristics are attributed by
this cross-linking [6]. While baking, starch is gelatinized, heat-set, and gluten protein
is pasted, resulting in the classic solid foam-back bread structure [7]. To increase the
qualitative features of bread, many enzymes are employed in the baking industry [8]. The
most common enzyme employed in the bread baking business is glucose oxidase (B-D
glucose: oxy: 1-oxireductase; EC1.1.3.4), which is derived from several fungi, mostly from
Aspergillus niger [9,10].

One molecule of GOx has two active sites that catalyze the conversion of B-D-glucose
into hydrogen peroxide (H2O2) and gluconic acid [11]. The most significant industrial use
of GOx is to extend the food products’ shelf life [12]. The main industrial applications of
GOx are baking, wine, production of egg powder, and gluconic acid [11]. Under Food and
Drug Administration (FDA) classification, it is generally recognized as safe (GRAS) [13].
Traditionally, to strengthen gluten and improve bread’s final volume and texture, different
oxidants are utilized by the baking industry [14], the commonest being potassium bromate
(KBrO3) [15]. Although, KBrO3 has been banned in many countries due to its carcinogenic
nature [16] and replaced mainly by a safe alternative, which is GOx [17,18]. GOx is an
effective oxidant that has consistently been shown to improve the texture, height, and
volume of bread [19–21].

Shelf-life extension has been achieved by GOx [22–24], as it has antimicrobial activity
on a large number of fungal strains and foodborne bacteria [25]. However, due to its
instability, it has limited industrial applications; therefore, going forward, a novel target is
to make it stable by immobilization.

Enzyme immobilization by physical adsorption or covalent attachment makes the
enzyme more stable and functional. However, physical adsorption has its own limitations,
such as unwanted enzyme diminution, casing of compressed areas, and lowering of en-
zyme activity. On other hand, in covalent immobilization of the enzymes, open active
sites are available on the particle surface of enzymes; thus, activities of the enzymes are
improved [26]. Prior to this, GOx was immobilized on iron oxide nanoparticles, which
led to increased thermal stability, according to research by Abbasi et al. [27]. Numerous
different natural and artificial polymers, including but not limited to chitosan, alumina,
starch, magnesium silicate, silica, polyesters, gelatin, and alginate, have been utilized to
immobilize enzymes up to this point [28–31]. Researchers worldwide are putting increased
emphasis on this material in recent years due to its simplicity in production, growth of
its surface area, biocompatibility, and low toxicity [32–34]. Given this situation, research
by Lee et al. [33] demonstrated that enzymes based on nanoparticles had better stabil-
ity and strength in comparison to their counterparts. This was due to the longevity of
the nanoparticles. The zinc oxide nanoparticles (ZnONPs) have antibacterial capabilities
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as well as zinc acting as a nutritional supplement, so it is the most popular strategy for
immobilizing enzymes. ZnONPs are now reported in the packaged food market as a
preferred alternative. To extend the longevity of the bread, we provide an idiosyncratic
antimicrobial-based strategy that targets the industrial significance of GOx hybrids. The
purpose of this research was to investigate how the bioconjugate of GOx/ZnONPs affected
the bread’s lifespan and quality and how the bioconjugate of GOx/ZnONPs is within the
tolerance limit of the human body.

2. Materials and Methods
2.1. Chemicals

Merck (Darmstadt, Germany) Germany’s zinc nitrate hexahydrate, 25% glutaraldehyde,
sodium hydroxide, Sigma Aldrich’s L-Cysteine-HCL, 3, 5, di nitro salicylic acid (DNSA),
2, 2-diphenyl-1-picrylhydrazyl (DPPH) (glucose oxidase refined from Aspergillus niger,
baker’s yeast, sucrose, and Oxide Germany’s lysine medium, Novobiocin, carbon base
yeast, glycine, L-lysine monohydrochloride, Bacteriological agar No. 1.

2.2. Preparationof ZnO Nanoparticles and Surface Modification

Co-precipitation method was used to prepare zinc oxide nanoparticles following
standard method. Briefly, in 250 mL flask, 100 mL of zinc nitrate (0.5 M) was taken, while
sodium of the same strength was supplemented drop by drop. The mixture was agitated at
60◦ Celsius for almost two hours until the color was changed from milky to clear solution
followed by centrifugation at 3000–4000 rpm for 15 min to obtain white precipitate. The
resulting precipitate was repeatedly cleaned with ethanol and deionized water before being
dried for 180 min at 100 ◦C to produce a powder mixture that is dried by pestle and mortar
method. Calcination was performed at 500 ◦C for 2 h to obtain ZnONPs. The schematic
diagram of ZnoNPs preparation is shown in Figure 1.
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 Figure 1. Schematic diagram of ZnoNPs preparation.

Surface modification of ZnONPs was performed with cysteine before going to mo-
bilization process. The process involves adding 100 mg of ZnONPs in 20 mL of ethanol
and sonication for 6 h. The mixture was allowed to dry at ambient temperature followed
by addition of 20 mL of potassium phosphate buffer 0.1 M was used for suspension of
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ZnONPs. An amount of 25 µL of 25% of glutaraldehyde solution was used in the mixed
solution. The application’s resulting product was washed after filtration [35,36].

2.3. ZnO Nanoparticles Characterization

Double beam UV–vis spectrophotometer (PerkinElmer Lambda 365) with wavelength
of 250–750 nm was used to track the production of ZnONPs. Using an FEI Nova-Nano
SEM-450 USA scanning electron microscope, the shape and size of the produced ZnONPs
were examined. Drop by drop, 10 µL of ZnONPs suspension was applied to the copper
grid with carbon plating. SEM samples that had been dried were carefully analyzed. The
X-Ray diffractometer (XRD) confirmed that the produced materials are crystalline. Using
Ca K1 irradiation with 1.5406 A wavelength, XRD examination was carried out using a
BRUCKER P2 PHASER in 20 locations ranging from 0 to 80 degrees.

2.4. GOx Immoblization on Modified ZnONPs

Aspergillus niger was cultivated under standardized growth conditions of 19.5 ◦C and
pH 5.48 to produce the GOx enzyme. GOx was immobilized by mixing 50 mg of ZnONPs
with 15 mg of active enzyme in 1 mL of potassium phosphate buffer solution (0.1 M). The
mixture was centrifuged for 5 min at 9000 rpm after being refrigerated at 4◦ C for 3 h.
Divided liquid was recovered, and the settling solid was washed with buffer to dispose of
the enzyme that was not bound. The supernatant and the solid combination were analyzed
using UV–visible technology at a 546 nm absorption [37]. Enzyme activity of both free
enzymes and supernatant was used to assess the effectiveness of GOx immobilization on
ZnONP surface.

2.5. FTIR Analysis

FTIR was used to measure the interaction between biomolecules and nanomaterial. To
prepare samples for FTIR measurement, GOx produced from Aspergillus Niger was freeze
dried (lyophilized). Similarly, the GOx/ZnONPs mixture was centrifuged, cleaned, and
dried before being used as an FTIR sample for an immobilized enzyme. Analyzing FTIR
using Bruker’s AL-PHA-P spectrometer, both GOx/ZnONPs and GOx were examined.
To check for morphological alterations brought on by the adsorption of GOx on ZnONPs’
exterior, GOx/ZnONPs were subjected to an SEM examination. This was accomplished by
carefully drying 10 L of a colloidal mixture of GOx and ZnONPs on a copper grid covered
with carbon.

2.6. Assessement of Enzymatic Activities

The catalytic activities of GOx (free and associated) were assessed by DNSA assay op-
eration parameters (pH 7.0 and 25 ± 1 ◦C). In the presence of GOx, the alkaline 3,5 dinitro
salicylic acid was reduced by glucose to form 3-amino 5-nitro salicylic acid. The reac-
tion mixture’s absorbance was measured at 546 nm with a UV–vis spectrophotometer
(PerkinElmer Lambda 365). On the basis of the variation in glucose level, the catalytic
performance of GOx was evaluated. Using a typical glucose profile, the reaction mixture’s
unknown glucose concentration was determined. The enzymatic activity was measured as:

Enzyme Activity (U/mL) =
Glucose Conc. × 1000

NF × DF

NF: normalization factor.
DF: dilution factor.

2.7. The Bioconjugate (GOx/ZnONPs) Preparation

GOx/ZnONPs bioconjugate was dissolved in 50 mL of potassium phosphate buffer
(0.1 M) to produce a suspension (pH 7). The solution was then sonicated, followed by the
addition of 0.2 mL of surfactant. To evaluate the bread, the organic solvent was utilized
while it was being mixed.
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2.8. GOx/ZnONPs Experimental Design and Application of solution in Bread Making

Dough of bread was produced by combining basic ingredients—yeast, sugar, flour,
and salt—along with ingredients such as GOx and GOx/ZnONPs by mechanical means
into a well-developed homogeneous mass. Then, after fermentation at 25 ◦C to 27 ◦C for
ten minutes, dough was divided by specific size and shape. Final molding was performed
after intermediate proofing. After molding, the bread dough was allowed to relax and
ferment until it reached the final volume prior to the baking process. This is carried out
in a specialized chamber named a proofer with a set humidity of 80% and temperature of
37 ◦C for 85 min. Then, the bread was baked at 170 ◦C for 30 min. Bread was cooled, sliced,
and then put for shelf-life study and bread height and volume measurement. Height was
measured by putting a measuring scale in the center of the bread.

2.9. Volume of Bread Was Measured by Seed Displacement Apparatus

Seed displacement apparatus, as shown in Figure 2, was used for measurement of
volume of different bread. Volume meter was opened by unlatching the lower housing
and swinging it to the down position. The volume gauge was closed by returning it to
its upright posture once the sample had been inserted into the bottom housing’s center.
Rapeseed was able to fill the closed lower housing once the bottom clasp was locked and
the gate slider was released.
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As shown by the quantity of rapeseed in the cylinder, the volume was immediately
read from the standardized column. The volume record was recorded, and this action was
repeated for a minimum of three samples from the same batch to calculate an average volume.

2.10. Enumeration of Yeast and Mold in Bread by Colony Count—GLA Method

Yeast and mold need a nitrogen source to grow. The amino acid lysine can be used
by all yeast and mold strains. Therefore, using lysine medium (Oxide Germany) as a sole
nitrogen source, all yeast and mold will be able to grow on the plates [38]. The same holds
true for a combination of the amino acids glycine and lysine. Adding glycine to the medium
will result in better growth of yeast and mold species, so it is easier to count the colonies
after a shorter incubation time. Novobiocin (Merck, Darmstadt, Germany) is added to the
medium to suppress the growth of any bacteria that may be present in the sample.

2.11. Sensory Evaluation of Bread Quality Attributes

Softness was evaluated by hand compression. Control was scored at a number 5; if
the softness was worse, it was scored from 0–4; if softness was better than the control, it
was scored from 6–10. The difference in texture (fineness and regularity of crumb) was
evaluated with a score of 5 being the control, and other samples rated against the control
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scored 0–4 for being worse than the control and 6–10 for being better than the control.
Similarly, the whiteness of crumbs all samples was evaluated against the control.

2.12. Analytical Statistics

Using Statistix 10 program, data were statistically evaluated by ANOVA and shown
as mean standard error. The least significant difference (LSD) test was used to compare
several mean scores. At p < 0.05, variations were deemed statistically significant. Origin
Pro 8 was employed to plot the data.

3. Findings and Analysis
3.1. Assay Strategy

Bread’s shelf life was extended by GOx’s bioactivity, and GOx’s stability and metabolic
activity were increased by immobilization [27]. GOx was therefore immobilized on the
altered ZnONPs surface and then contained in a buffer that was used during the mixing
phase of bread creation. Hydrogen peroxide and gluconic acid are produced when GOx
and glucose combine. The bread’s shelf life is increased, and microbiological assaults are
warded off thanks to the hydrogen peroxide content.

3.2. ZnONPs Synthesis

White precipitates were the first sign that ZnONPs had formed. Using a UV–vis
spectrometer with a wavelength range of 300–800 nm, the formulation of ZnONPs was
verified. ZnONP production was verified by a sharp peak at 378 nm (Figure 3a) [39]. XRD
analysis of the crystalline nature of ZnONPs revealed the hexagonal wurtzite structure
(Figure 3b). These planes correspond to (202), (004), (201), (112), (200), (103), (110), (102),
(101), (002), and (100). The lack of additional impurity bands in the XRD data supports
the better purity of produced ZnO nanoparticles. The very strong and condensed peaks
demonstrated the superb crystalline quality of the synthesized ZnONPs. Our XRD findings
line up with those that have been published previously [40]. SEM was used to analyze the
morphology and size of produced ZnONPs. The synthetic ZnONPs had a spherical shape
(Figure 3c), and the size, as determined by the graph, was 94.28 nm (Figure 3d).

3.3. GOx Immobilization on ZnONPs

ZnONPs with cysteine modifications have GOx covalently bonded to them. The whole
process was built upon a two-step mechanism. Cysteine was initially adsorbed onto ZnO
using a thiol group, and then the cysteine region was activated using glutaraldehyde.
The second phase included using an imine linkage to covalently connect the GOx to the
glutaraldehyde carbonyl group. By using cysteine to modify ZnONPs, one carboxyl group
(-COOH) and one amino group (-NH2) are formed, remaining electrically neutral, as shown
by the chemistry of these two processes. Because it is electrically isolated, this type of
support has an advantage over others in that it prevents the unintended adsorption of
enzymes on the support. Bezbradica et al.’s investigations [35] also provided an explanation
for this phenomenon. They claim that due to the electrostatic connection between the
opposing charges of the protein and the support, the charges are vulnerable to undesired
deposition of the enzyme, which may block part of the enzyme’s catalytic sites [35].

To verify that GOx was immobilized on the altered ZnONPs surface or remained in its
original condition after immobilization, FTIR evaluation was carried out. In addition to
the amide-I (the peptide stretching pulses of the -C=O group) and amide-II (NH in-plane
bending and CN stretching modes of the polypeptide chains), respectively, the FTIR range
of native GOx displayed two distinctive peaks at 1648 cm−1 and 1530 cm−1 (Figure 4, blue
curve) [41]. These pairs of peaks at 1648 cm−1 and 1530 cm−1 were also seen in the FTIR
spectra of the GOx/ZnONPs, demonstrating unequivocally that the GOx maintained its
active state after being immobilized on ZnONPs [41,42]. Additionally, the FTIR spectra of
GOx revealed a distinctive band of the NH2 group in the range of 3000–3500 cm−1 [43]. This
band has a small upward shift in the FTIR spectra of GOx/ZnONPs. This demonstrated
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unequivocally how the NH2 group contributed to the immobilization of GOx on the exterior
of ZnONPs by imine linkage.
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3.4. GOx/ZnONPs Bioconjugate SEM Imaging

To obtain some knowledge of the morphological features in ZnONPs after GOx im-
mobilization, SEM pictures of GOx/ZnONPs were collected. In comparison to ZnONPs
without immobilization, the deposition of GOx on the exterior of ZnONPs demonstrated a
propensity to build a more complex pattern of GOx/ZnONPs (Figure 5). These forms of
morphological alterations in nanoparticles caused by biomolecules during settlement on
their surface have also been documented in research by Kazmi et al. [44].
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3.5. Analysis of the Free and Adsorbed Enzyme’s Function

At operating conditions (pH 7- and 25 degrees Celsius), the catalytic performance of
free and adsorbed GOx was determined. It was shown that the unbound enzyme had lower
activity (18.1 ± 0.33 U/mL) than the bound enzyme (23.3 ± 2.08 U/mL). For liberated GOx
function, a pH of 5.5 was ideal. The deviance from the ideal pH value could be the cause
of the decline in liberated enzyme activity. The bound enzyme, however, demonstrated
considerably greater activity at pH 7, indicating that it has a broader pH range of action
than the liberated enzyme. This could be because the immobilization of an enzyme on a
surface changes its microenvironment, which alters the pH range in which the enzyme is
active [45].

3.6. Impact on Bread’s Shelf Life of GOx/ZnONPs Bioconjugate Solution

The GOx/ZnONPs solution was employed in the mixing phase of the bread making
procedure to evaluate its impact on the prolonged storage of the bread. Up to 7 days were
spent observing the bread. The findings revealed that the treated samples significantly
outperformed the control in terms of fungal decay resilience and texture preservation up
to the end of the week, while the control was very quickly exposed to spore germination
and crust shape degradation after day three (Figure 6). There are several theories as to
why GOx/ZnONPs prolong the bread’s shelf life. First off, the GOx/ZnONPs bioconjugate
functions as both an effective antibacterial and an oxygen sequester [46,47]. Second, we
hypothesized that treated samples would produce H2O2 because of the biocatalytic function
of the GOx/ZnONPs bioconjugate. By sealing the cracks in the surface, this film of H2O2
decreased moisture loss and preserved the integrity of the doughy crust. Finally, the H2O2
in the samples treated also acted as a potent antiseptic against microorganisms, preventing
fungal development in the test samples. The research’s conclusions are consistent with past
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literature. For instance, Desikan et al. commented on the impact of H2O2 on the bread’s
shelf life [48].
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3.7. Bread Quality Parameters

Bread height and volume are important parameters to evaluate its market value.
Quality parameters of bread that were studied using application tests were mainly bread
height, volume, and microbiological load, especially yeast and mold. Height was highest,
i.e., 168 mm with GOx/ZnONPs, 160 mm with GOx, and 155 mm with ZnO NPs, and
was lowest with the control sample, as shown in Figures 7 and 8C. GOx/ZnONPs showed
their enhanced effect due to their higher activity and stability. A similar effect was seen on
the volume of bread, the highest value being 2370 cm3 with GOx/ZnONPs, while it was
2050 mm with GOx, 2010 mm with ZnO NPs, and lowest, i.e., 1825 cm3, with the control
sample, as shown in Figures 7 and 8D.

Microbiological load, i.e., yeast and mold, increased with time and reached up to an
acceptable limit on the seventh day with GOx/ZnONPs, on the fifth day with GOx and
ZnO NPs, and on the fourth day with the control sample, as shown in Figure 8B. It showed
that the antimicrobial effect of GOx and ZnO NPs was summed up in GOx/ZnONPs, which
ultimately increased the shelf life of bread up to 07 days, which was just 03 days in the
control sample.

The effect of GOx/ZnONPs on bread, its shelf life, yeast, and mold count is shown in
Figure 8.
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3.8. Sensory Evaluation of Bread Quality Attributes

Bread quality attributes of softness, fitness, and regularity in crumb texture and
whiteness of crumb were given a sensory evaluation against the control. As per the
sensory evaluation, all addressed quality attributes were significantly improved in GOx
and ZnONPs, with the best results in GOx/ZnONPs (Figure 9).
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4. Conclusions

The utilization of GOx immobilized on ZnONPs formed the basis of a unique method
for extending the shelf life of bread. Following immobilization of the GOx on ZnONPs,
examination showed that the immobilized enzyme was more active than its free equivalents.
The GOx/ZnONPs bioconjugate proved effective for treating bread in several ways. First
off, the GOx/ZnONPs bioconjugate is an effective oxygen scavenger and antibacterial.
This H2O2 layer also served as a potent disinfectant and guarded the bread from microbial
degradation. The biocatalytic activity of this bioconjugate formed a thin coating of H2O2
that covered the bread. The combination of all the elements created an outstanding frame-
work that significantly extended the shelf life of the bread. The suggested GOx/ZnONPs
bioconjugate has excellent industrial potential and may be utilized to extend the shelf life of
other food products. To increase the usability and efficacy of the synthetic GOx/ZnONPs
bioconjugate spray, more tests are being conducted under various storage environments
and on a range of food products.
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