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Abstract: The incorporation of communication technology with Smart Grid (SG) is proposed as an
optimal solution to fulfill the requirements of the modern power system. A smart grid integrates
multiple energy sources or microgrids and is supported by an extensive control and communication
network using the Internet of Things (IoT) for a carbon-free, more reliable, and intelligent energy
system. Along with many benefits, the system faces novel security challenges, data management,
integration, and interoperability challenges. The advanced control and communication network in
the smart grid is susceptible to cyber and cyber-physical threats. A lot of research has been done
to improve the cyber security of the smart grid. This review aims to provide an overview of the
types of cyber security threats present for smart grids with an insight into strategies to overcome the
challenges. As the selection of techniques and technologies may vary according to the threats faced,
therefore the adoption of researched methods is compared and discussed. As cyber-security is the
greatest challenge in smart grid implementation, this review is beneficial during the planning and
operation of smart grids for enhanced security.

Keywords: artificial intelligence; blockchain technology; smart grids; internet of things; power
system security; machine learning; 5G technology

1. Introduction

The power sector of a country has become the backbone of its economy. The need
to replace primitive energy systems came with advances in the field of industrialization,
digitization, and electricity demand at the commercial and residential levels. Traditional
power distribution systems work on phenomena of remote generation, stepping up and
down voltage for transmission, distribution, and consumption based on the average de-
mand of an area, physical protective equipment connected at various nodes, ending with
metering consumer’s utilization on monthly basis. On the other hand, Smart Grid (SG)
is an emerging proposed technology that offers smart monitoring, inters connectivity of
multiple modes of generation, two-way communication, and enhanced utilization of re-
sources. With an increasing number of connected devices, it becomes difficult for the smart
grid to access the distributed network. Therefore, to support the smart grid, the Energy
Internet (EI), also known as the Internet of Things (IoT), is being utilized in the power sector
for the bidirectional flow of information. It deploys sensors, actuators, Radio-frequency
Identification (RFID), and microcontrollers capable of communication and computation, to
achieve a two-way communication process [1]. When IoT is integrated with the SG, it forms
an extensive network of a cyber-physical system capable of monitoring and controlling con-
nected devices remotely. Many countries have already adapted to this technology; however,
approaches to implementation vary according to the goals and policies of a country [2].

Transformation to the modern power sector requires a thorough analysis and planning
at every level. Integration of multiple modes of power generation, securing data transferred
to and fro, adopting a reliable communication protocol for big data handling, and providing
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uninterrupted power supply are a few prominent factors to study before implementing
this technology. Every country needs a thorough study of the process of implementation
of the smart grid as it offers a huge contrast to the traditional system. Thus, a careful and
in-depth study of all features is required for proper implementation.

The interconnection of numerous devices from the domestic to the commercial level
forms a network of communication in SG. We may say that SG is mainly a system of
communication networks and physical equipment interconnected and controlled by a
central unit. The physical equipment offers more predictable, less technical, and fewer
challenges due to difficult human access, and scheduled maintenance overruling the faults
caused by material and equipment damage. However, the challenges encountered by the
cyber network are more complex, frequent, and less predictable. Thus, cyber-security
has been identified as a top power industrial security target. The researchers have been
working on defining cybersecurity challenges and proposing various solutions. This paper
discusses many proposed and researched strategies, such as encryption, cryptography, and
device and network authentication. These strategies provide the solution to certain parts
of the problem and cannot counter all the issues. Thus, a broader approach is adopted
to successfully deploy the proposed system. In the last sections of the paper, we shall
also discuss broader approaches to machine learning, 5G technology, blockchain, and data
aggregation methods. A comparative analysis of techniques based on factors of latency,
efficiency, cost, and security is also presented in this research. Thus, this paper provides a
comprehensive study of various techniques and approaches adapted to over challenges
faced by SGs and an analysis of their features.

This paper is organized as: in Section 2, we will have an overview of the security
challenges in the IoT-supported SG technology. In Section 3, techniques and approaches
are explained to counter the challenges. Section 4 discusses the latest technological devel-
opments, with discussion in Section 5. In Section 6, the study is concluded.

2. An Overview of Smart Grid Security Challenges

Although the use of IoT seems very promising, it also can lead to a disaster in the
power chain if any fault occurs. Faults and challenges of the traditional network are easier
to overcome as most of the faults are in either equipment or parameter variation. However,
faults in SG, with IoT specifically, have mostly digital faults, such as cyber-attacks or data
transfer faults. Thus, every country analyzes the communication technology and protocol
standards according to the country’s policies before the implementation of SG (Table 1).
Refs. [3,4] explain the features of a general fault-tolerant control system. There are four steps
to attack and take control over a system, which are reconnaissance, scanning, exploitation,
and maintaining access, as shown in Figures 1 and 2. First, the attacker collects information
about the system (reconnaissance), then looks for weak points and loopholes in the system.
After scanning the system, he tries to gain full control of the system before exploiting the
information by installing a stealthy program [5]. Thus, security and data protection is
the biggest concern in SG. As SG utilizes a public network, according to [6,7], there is the
possibility of the following:

(1) Impersonation: A hacker can act as a legitimate user in an unauthorized way, spoofing
the identity of someone and making him pay for energy consumption.

(2) Data Manipulation: Data transmitted over a public network can be modified by an
attacker, such as dynamic prices, and load readings.

(3) Cyber-Physical Attack: IoT-based SG is the largest cyber-physical system, with phys-
ical components of Circuit Breakers (CB), transformers, and relays along with ICT
components of sensors, and microcontrollers; it is more vulnerable to DoS attacks
as compared to a traditional grid system, which is generally only physical and very
difficult to reach. Any attack against the availability of service is called DoS [8]. These
attacks directly impact the physical layer of the system, jamming the channel and caus-
ing immense loss. Opacity is an increasing concern in a cyber-physical system. Most of
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the estimation algorithms allow sharing of explicit state information with neighboring
nodes, resulting in the disclosure of the state of the cyber-physical system [9,10].

(4) Privacy and Confidentiality: The security of data is an important aspect and challenge
for SG. Power system monitoring can cause privacy concerns at the user end by
divulging information about their routine, habits, traveling, etc. Thus, the flow of
information between customers and various entities must be protected for the user to
develop confidence in the power network. Eavesdropping is also an intrusion into the
privacy of the network. The attacker may obtain useful information by continuously
monitoring the network and eventually entering the system to obtain important
information.

(5) Phishing: Phishing can be the first step in putting the customer at risk. If a customer
does not discard a receipt or bill and the information is passed on to the hacker, he
can manipulate the information easier to create fake messages, and emails, or obtain
crucial information about the organization.

Table 1. Comparison of Smart Grid Communication Technology.

Technology Spectrum Data Rate Coverage
Range Applications Limitations

GSM 900–1800
MHz

Up to
14.4Kbps 1–10 km

AMI,
Demand
Response,

HAN

Data rates
are low

GPRS 900–1800
MHz Up to 17 kbps 1–10 km

AMI,
Demand
Response,

HAN

Data rates
are low

3G
1.92–1.8 GHz

2.11–2.17
GHz

384
Kbps–2Mbps 1–10 km

AMI,
Demand
Response,

WAN, NAN

High
communication

and
computational

cost

WiMAX
25 GHz, 3.5

GHz, 5.8
GHz

Up to 75
Mbps

10–50 km
(LOS)

1–5 km
(NLOS)

AMI, Fraud
Detection,

WAN

Not as
widespread as

other
methodologies,

still under
research

PLC 1–30 MHz 2–3 Mbps 1–3 km AMI, Fraud
Detection

Prone to noise
with power

network.

ZigBee 2.4 GHz,
868–915 MHz 250 Kps 30–50 m AMI, HAN

Very short data
range, and low
performance

inside the
building.
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3. Techniques to Overcome Security Challenges

Several techniques and countermeasures are used and proposed to provide the smart
grid with the required security. Usually, we classify solutions to security and big data prob-
lems which are discussed in detail below. However, the solution to the above-mentioned
problem cannot be achieved using one specific solution. There should be multiple tech-
niques deployed to form a global, unified strategy. Security of smart grid is a major area
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of research usually divided into detection, countering, and securing. The following figure
shows three main points of security. The following strategies are proposed to overcome
this problem. The first step is to improve protection against any malicious attacks. The
system should be prepared for any potential attack. With help of the following, we can
achieve the purpose:

3.1. Pre Attack

The first step is to improve protection against any malicious attacks. The system
should be prepared for any potential attack. With help of the following, we can achieve
the purpose.

Cryptography: Cryptography is an important technique to provide security to the SG
End-to-end encryption is a common cryptography technique for secure communication.
Encryption can either be symmetric or unsymmetrical. In symmetric cryptography, mes-
sages are encrypted and decrypted using the same key [13]. This technique often suffers
from exhaustion issues; however, it is faster compared to unsymmetrical cryptography.
The other type of encryption asymmetric encryption uses public and private key pairs
to encrypt and decrypt data. RSA (Rivest, Shamir, and Adleman) is a commonly used
asymmetric algorithm for communication data security. Since the smart grid is an extensive
network with many subsystems, it has various components with different working algo-
rithms co-existing. Therefore, a combination of both techniques is also common, however
the preference for one key depends on factors of data size, level of security required, and
speed of execution [14,15]. For a multi-agent system, there is always the risk of eavesdrop-
ping and differentially private distributed convex unconstrained optimization. Here every
agent tries to minimize the aggregate sum of their individual objective functions [16]. The
objective is to maintain the requirements of smoothness and convexity while keeping the
attributes differentially private.

Authentication and Key Management: Authentication means verifying an object
before it enters the system. Authentication can be of a network, a device, or a code. For
multicasting purposes, secret info asymmetry, time asymmetry, and hybrid asymmetry
are used. Key management is an important aspect of authentication. Key management is
categorized as Public Key management (PKI) or Shared key management. In public key
management, security between two parties is verified by an external third party called a
certificate authority. In shared key management, four steps are followed. Key Generation,
Key Distribution, Key Storing, and Key Update. Based on the extensive distribution
network of SG, there should be consideration of specific key requirements as discussed
in [17]. The selection of framework relies on various factors, including scalability, evolution
ability, and security; however, after thorough comparison, Advanced Key Management
Architecture (ASKMA) and Scalable Method of Cryptographic Key (SMOCK) management
showed promising results for smart grid. A certificate-based encryption method is the
latest tool presented in [18], which gives certificates of operation and safety to controllers
and data users. The computation and communication results show a tremendous reduction
in cost at a much higher safety rate. Most authentication methods have high computational
and communication costs, a lightweight authentication protocol is recommended in [19].
The author analyzes the security and cost efficiency of the researched method through
comparison with other technologies.

Code Attestation: There is recent research on code attestation both through software
and hardware. It provides feedback to stakeholders about the quality of the software,
product, or service under test. It thus prevents malware to hide. Even in some cases,
malware can change signature execution code, and hardware-based code attestation can be
utilized. More techniques of attestation are provided in [20].

Device Security: IoT-based smart grid is loaded with communication components.
Any weak point offered in any device can lead to the risk of collapse of the whole system,
thus a need to regularly configure all devices becomes necessary for the integrity of the
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supply chain in SG. Recommended technologies are Host IDS, host data loss prevention
(DLP), and automated security compliance checks [21].

3.2. Under Attack

Once the system or a part of the system is under attack, there are two steps to counter
it. One is to detect the attack, to know where the attack occurred, the parts of the system
affected by the attack, and the type of attack. The other task is to counter the attack. During
attack detection techniques, Data Loss Prevention (DLP) & Intrusion Detection Systems
(IDS) are recommended.

• Intrusion Detection System (IDS): An intrusion detection technique scans the system
continuously for any malicious activity and reports any anomaly detected. This
way, once a malicious device or network is detected, it is isolated from the system
and reported either to a centralized security system or to an administrator. The
intrusion detection techniques are classified into the following five types also described
in [22,23].

• Network Intrusion Detection System is employed at certain planned points in the
system from where most of the data passes to monitor the flowing traffic in all direc-
tions. It hits the alarm to the administrator once an anomaly matches the behavior or
certain virus

• Host Intrusion Detection System only monitors incoming and outgoing data packets
and checks for any suspicious activity. It takes snapshots of data and keeps on
comparing them to previous data packets to check for abnormalities.

• The other techniques include protocol-based, application-based, and hybrid intrusion
detection techniques. Authors in [24] proposed cyber security solutions for the fog-
based smart grid SCADA system. It proposed a multilayer approach and categorizes
the solution into four categories of intrusion detection, authentication, key manage-
ment, and privacy-preserving approaches. However, IDS has several limitations, such
as a high rate of false positives. In [25], IDS based on data mining algorithms is
suggested, which can overcome this problem. For the SCADA system, security is
enhanced through recent machine learning models based on preprocessing, clustering,
feature selection, and classification. A recent study in [26], used by Markov, a Chain
Clustering model is used, followed by Rapid Probabilistic Correlated Optimization
for feature selection, ending with the Block Correlated Neural Network technique
for classification. Similarly, the authors of [27,28], have recommended clustering and
fused optimization-based classification methodologies for SCADA security.

• Data Loss Prevention (DLP): DLP techniques are used and designed to prevent the
unauthorized use and transmission of confidential information without the loss of
important data or obtaining data affected by the virus. This means this technique fights
malicious activity to cause any harm to data and any prevention technique to act on
data. DLPs generally perform periodic audits to verify the security criterion is being
met. Network DLP and Host-based DLP are common strategies used, as discussed
in detail in [29]. After the detection of an attack, it is countered with pushback and
configuration methods. In this technique, the router is configured to push back all
unauthorized IPs. In configuration techniques, the network topology is changed. This
results in isolating the attacker from the system and stops the attack at an early stage
as discussed in detail in [30,31].

3.3. Post Attack

Post attack techniques are used to identify the entity involved once the attack is de-
tected at a later stage. Forensic is a key strategy used. Forensic studies analyze and intercept
digital attacks and investigate hacking protocols, cyber terrorism, and digital espionage.
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4. Recent Development in Technology
4.1. Blockchain Technology

Blockchain technology is an underlying technology that works on the principle of
Bitcoin where transactions (of data) are performed by encrypting data into packets and
transferring them to the desired location without the need for a third party. However, it does
involve a computing power provider called miners, which secures transactions [32]. This
approach suggests, as explained in [33,34], that following a centralized approach makes the
system more vulnerable and requires more cost for communication infrastructure. Thus,
decentralization is the requirement of EI. The decentralized units work independently and
do not require a central trusted authority. Thus, adopting decentralization solves many
problems that a centralized network has, such as total network collapse, modifications or
alterations in data packets, privacy leakages, and single point of failure. In light of the
proposed idea, blockchain and edge computing provide promising opportunities.

Blockchain technology [35] is a collection of blocks. These blocks record different
blocks of data, information, and transaction history. They link together to form a chain to
address the cryptographic hash of the data stored in the last block. Hence, new blocks are
generated which keep on adding to the chain at regular intervals. The replication of the
chain occurs across the network. The data in chains are locked and verified through various
techniques against any modification. In SG, blockchain contributes in the following ways.

4.1.1. Advanced Metering Infrastructure:

A lot of information is generated about billing, payment records, and energy consump-
tion by AMI devices (Figure 3). This information is communicated to a central unit, which
not only gets exposed to attacks but also becomes difficult to transmit this big data over
miles. Thus in [36], a model is proposed with smart contracts that add a block whenever a
transaction is made. Contract technology is an automatic execution of certain conditions
once predecided requirements are met. In [37], a model for smart energy grids is proposed
which is based on the energy generation at the distributed end and remote monitoring to
avoid one-point failure [37,38].
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The author in [39] proposes a united blockchain and edge computing technology,
emphasizing energy security. As opposed to central data centers, here blockchain mainly
ensures the privacy of all participants in a decentralized data storage to protect against
malicious activities within the communication channels. The research work in [40] intro-
duces a reliable energy scheduling model through the blockchain and smart contract. This
addresses the growing privacy concerns of a centralized system for financial and behavioral
information [41].
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4.1.2. Monitor, Measure, Control, and Protect

Blockchain technology is used to monitor various parameters of power devices
through sensors and the Power Management Units (PMUs) [42] and share this information
with MTUs, which are considered control centers (Figure 4). This status information is
then shared among grid operators, suppliers, and consumers for intelligent governance
to enhance the grid’s stability and monitor power theft and loss. A discussion on gen-
eral blockchain protection mechanisms is discussed in [43]. In [44], the authors present a
blockchain and smart contract-based monitoring system. It ensures the security of every
transaction occurring between parties after they meet the terms predefined.
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4.1.3. Use of Blockchain in Microgrid

With the penetration of DERs, MG is becoming an integral part of SG. Microgrids work
on geographically available renewable resources to meet the energy demand of a certain
area. Surplus energy is then shared with other microgrids through a central unit. However,
MG can face the problem of variations in available resources, such as solar or wind. For this
purpose, the DERs scheduling technique based on blockchain is used. It helps to provide
a trustworthy platform so DERs can be trusted. [45] presents a smart contract-assisted
architecture to facilitate decentralized optimization. It distributes the operator’s role across
various entities of microgrids.

The authors in [46] focus on the problem of voltage regulations in microgrid networks
that result from power penetration. The voltage is regulated through active output power
using the droop loop control law [47]:

vu = vre f − γ(gu − pu) (1)

vu and vref are the output voltage of DER and the reference value for MG.
The output reactive power can be determined by active output power (qu) as:

qu =
√

s2
max − p2

u (2)

s2
max is the maximum tolerable apparent power, p2

u is the maximum tolerable active
power. DER should equally participate in voltage control over time:

M 1k =
k

U f
1 U f (3)

where 1 U f is all one vector of length Uf, k is constant.
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It is important to consider this parameter, as both under-voltage and overvoltage
cause damage to the system. Overheating is caused by overvoltage which can damage
power system infrastructure. On the other hand, under-voltage can cause the system to
collapse. The authors introduce a proportional-fairness control scheme to control voltage
violations. The work in [48] addresses the voltage regulation problem where they introduce
a transactive energy system (TES) which also follows principles of blockchain technology.

4.1.4. Blockchain in Decentralized Energy Trading

With a growing number of consumers and producers, energy trading becomes a rising
need. A smart grid with help of DERs should be able to reduce peak load, operating on
islanded and with grid mode using the bidirectional flow of energy. The Peer-to-peer
(P2P) energy trading method seems a promising future technology. In this method, trad-
ing is performed between two parties, and data is stored in a chain of blocks. In [49],
the authors introduce an energy coin and peer-to-peer (P2P) energy trading system for
energy harvesting and a credit-based payment scheme. Authors in [50] introduce a token-
based decentralized system named PriWatt which is based on the principles of Bitcoin.
This system consists of blockchain-assisted smart contracts, multi-signatures, and anony-
mous encrypted messaging streams. In [51], the authors present a technique to facilitate
P2P energy trading using a blockchain-based crowdsourced energy system (CES) at the
distribution level.

A comparison of reviewed publications on blockchain features is given in Table 2.

Table 2. Literature Review on the Use of Blockchain in Smart Grid.

Application of Blockchain Reference

Power flow [52,53]

Demand Response [46,54,55]

Security and Privacy [56–59]

4.1.5. Challenges of Blockchain Technology

Blockchain technology has recently gained popularity for its applications in smart
grid, however, it has many technical limitations [33,60].

1. One of the main challenges faced by smart grid is theoretical throughput, which
means the number of transactions per minute. According to [61], the number of
transactions performed by blockchain is five per second. The small number will limit
blockchain applications in e-commerce as it requires quicker and large transactions
every second. This will increase the cost of the communication network.

2. Another important issue of blockchain technology is high latency, which is time to
process the transaction and more time to provide security for the double transaction.
To overcome the issue, the authors of [62] propose a bitcoin protocol that reduces
latency greatly by increasing the number of nodes and decoupling the bitcoin network
by two planes.

3. As the application of blockchain continues to grow, the size and bandwidth have
been a rising concern. As new data is added, new blocks keep on accumulating, and
broadcasting all the dates will keep increasing the cost. A probable solution is to keep
on deleting old data blocks as proposed by the authors in [63].

4. Identity threat is a main risk of blockchain. Identity in the blockchain is the com-
bination of public and private keys. The overall security of blockchain lies behind
the private keys. In [64], the authors provide a solution for password-protecting the
private key. In this way even if the key is stolen, the funds will remain protected
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4.2. 5G Technology

The fifth generation of mobile network5Gbenefits the SG through its ultra-reliable and
low latency rate in contrast to previous generations. In comparison to previous generations,
5G offers two main features, which are machine-type communication (MTC) and ultra-
reliable and low latency communication (uRLLC). The 5G network can support SG with its
machine-type communication (MTC) feature in many ways: smart metering, handling a
huge volume of data, low latency, fault localization, vehicle-to-grid (V2G), and integration
of DERs [65] (Table 3). Another distinguishing feature of 5G technology is the millimeter
wave (mmWave). As the relationship between wavelength and frequency is given by [66]:

λ =
v
f
=

c
f

(4)

where v is regarded as the same as c, which is the speed of light, f is the frequency, and
λ is the wavelength. The speed of light is constant, and 5G has a frequency that may
increase up to 100 GHz, therefore 5G can offer a high band spectrum called millimeter
wave (mmWave) [67]. In [7,68], the authors explain using 5G cellular technology for
distributed monitoring and control. The approach is based on considering two network
systems, i.e., centralized network management (CNM) and distributed network manage-
ment (DNM) [69], as shown in Figure 5. It compares the performance of 5G with 4G-LTE
technology and results based on simulations show a significant reduction in latency and
system response in case of faults.

Refs. [13,70] compare different communication technologies, such as power line com-
munication (PLC), Fiber Optics, and 5G wireless communication technology on parameters
of cost, the distance of coverage, noise effect, and security. Much research has been made to
implement this technology for SG, such as in [71], where 5G-based fog and cloud comput-
ing is suggested to implement extensive connectivity and faster communication among
electrical vehicles. In [72,73], the authors explain extended mobile edge computing based
on 5G to increase overall network capacity for the transmission of big data packets. More-
over, in [74] electric vehicles (EVs) are programmed to participate in DR by transferring
power consumption data to the DR calculator. To summarize, 5G technology can support
the smart grid in the following ways [75].

(1) Massive links of flexible loads: A prominent feature of 5G technology is its ability
to simultaneously connect with several communication devices through controllers
that can be built-in or present at the terminal end of any device using its massive
machine-type communication (mMTC) feature.

(2) Fast transfer speed and low communication latency for remote control: The commu-
nication method based on 5G has reliable and low latency communication (uRLLC)
features. Faster communication and low latency time are key parameters for com-
munication and in 5G technology, the response time can be as low as 1 ms, which is
negligible for frequency regulation services [69]. Therefore, the 5G network helps to
reduce instability in the communication network and better performance in frequency
regulation parameters for countering oscillations.

(3) Rigorous Security and Improved User Privacy: Network based on 5G architecture can
enhance privacy, provide a secure data transfer, and support diversified services via
the end-to-end service level agreement (SLA) assurance [76]. Network function virtu-
alization (NFV) and software-defined networking (SDN) methods lay the foundation
of physical 5G for customized need-based services of network topologies, referred
to as network slices. SDN works on the principle of separating the control plane
which decides where data needs to be trafficked from the data plane, which pushes
the packets of data toward the destination. NFV works on accelerating service by
allowing network operators to route traffic through various functions.

(4) High reliability and low power consumption: Demand response is an important
feature to calculate system efficiency and reliability. For SM, a system may have to
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face sudden failures, causing delayed smart responses, reducing the effectiveness of
the system, and inefficiency of the system to fulfill the requirements [77]. Based on the
test of factory automation in [78], the uRLLC feature of 5G networks can guarantee
as low as a few sub-milliseconds radio transmissions, which is reliable enough to
support DR in power systems. Then, 5G can transfer data at a much higher speed,
estimated to be 100 times greater than that of 4G.

Table 3. Characteristics of 5G Technology.

Grid
Characteristics

5G Technology

Availability Coverage
Energy
Usage

Reduction

Battery Life
Devices

Increased
Connectiv-

ity

Bandwidth
Per Unit

Area
Latency

Data Rate
Improve-

ment

Accommodation
in all generation,
storage Options

[80]

Yes No No No Yes No Yes Yes

Enable New
Product Service
and Market [81]

Yes No Yes Yes Yes Yes Yes No

Provide the
power quality for

the range of
needs [82]

Yes Yes Yes Yes Yes Yes Yes Yes

Optimization of
utilization and

operating
efficiency [83]

Yes Yes Yes No Yes No Yes Yes

Provides
resiliency to

disturbances [84]
Yes Yes Yes No No Yes No Yes

Attacks and
Natural Disasters Yes Yes Yes No No No Yes Yes

Enable User’s
Participation [85] Yes Yes Yes Yes Yes Yes No Yes
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4.3. Artificial Intelligence and Machine Learning
4.3.1. Artificial Intelligence

Artificial Intelligence (AI) is rapidly changing our daily life activities. AI is rapidly
revolutionizing power systems with its advanced techniques. With new components and
features of the smart grid, AI can be the optimal solution to growing and evolving power
systems. State-of-the-art artificial intelligence techniques can support various applications
in a distributed SG, such as transmission line security, fastest communication between
stakeholders, large data management, priority setting, and detection of malicious attacks,
along with many others. In particular, artificial techniques are applied in various appli-
cations for smart grids. These techniques can be used to forecast the power generation
of renewable energy which is essentially helpful for the smart grid to calculate available
resources and avoid unpredicted circumstances. Similarly, AI can also help diagnose faults
in the system and protect equipment in the power system. Artificial intelligence is also
used to observe consumer consumption behavior, load forecasting, and calculate network
security. As the SG involves various stakeholders, such as energy producers, markets,
and consumers, artificial intelligence can potentially help to increase the reliability of the
smart grid. AI techniques can be classified into four categories based on area, i.e., Expert
System (ES), Fuzzy Logic (FL) [86], Artificial Neural Network (ANN), and Evolutionary
Computation (EC).

(a) Expert System: It is a program based on Boolean logic that tries to apply human
expertise in a certain domain. The knowledge base is organized in the form of IF-
THEN rules. The statement is connected by a logical operator (AND, OR, NOT) [87].

IF X = A AND Y = B THEN Z = C

(b) Fuzzy Logic: Fuzzy Logic in a multivalued system in which variables are represented
as fuzzy sets.

(c) Artificial Neural Network (ANN): It is the most complex and generic form of AI
in which the program tries to emulate the human biological nervous system and
formulates behavioral responses based on the non-linear inputoutput behavior of the
nature of the brain.

In [88], the authors propose an unsupervised scheme for the detection of CDIAs in SG
communications networks. The proposed scheme is based on a state-of-the-art algorithm
called iForest. The iForest, or isolation forest plots, are the points based on interpolation to
isolate the data point which shows distinct characteristics as compared to the rest of the data
interpolation and trend. The performance of the technique has been tested by comparing it
to IEEE standards, which show that the proposed scheme reasonably improves detection
accuracy in the operational environment. Therefore, these make AI techniques popular and
suitable. Similarly, the decision tree is another tool used for classification and prediction.
The author in [89] uses a CART algorithm-based decision tree that evaluates an anomaly
based on an intrusion detection database. In the paper [90], the fundamentals of three AI
techniques for STLF, which are Artificial Neural Network ANN, Support Vector Machine
SVM, and Adaptive Neuro-Fuzzy Inference System ANFIS, are described in detail. These
techniques are able to deal with complex systems with high reliability and accuracy of
results, wide area applications, and much less computational cost (Table 4). The comparison
with other AI techniques is not added as their application will be very limited with reduced
model accuracy.
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Table 4. Comparison of Artificial Intelligence Techniques for SG [85].

AI Technique Advantages Disadvantages

ANN

• Artificial Neural Network
(ANN) is less complex than
other AI methods.

• Multi-layered mechanism to
understand and detect
relationships between
variables.

• Can work with many
training algorithms.

• More computational cost.
• Tends to overfit.
• The empirical nature of model

development.

SVM

• With the help of regulation
parameters, the overfitting
problem can be avoided, as
observed in ANN.

• Has higher efficiency when
the data set has a clear
margin between classes.

• Expert knowledge about the
problem can be built by
kernel trick.

• It is not suitable for the large
data set.

• With overlapping classes, this
technique does not work well.

• The testing phase is relatively
slow.

ANFIS

• A combination of ANN and
fuzzy systems is a so-called
neuro-fuzzy system that is
capable of eliminating the
basic problems in fuzzy
system design and using the
learning ability of an ANN
of automatic fuzzy if-then
rule generation and
parameter optimization.

• Sensitive to initial number of
fuzzy rules (number of
choices).

• Computational complexity
increases as the number of
fuzzy rules increases.

4.3.2. Machine Learning

Machine Learning (ML) and Data learning (DL) are becoming increasingly popular
in the field of data exploration. Most machine learning techniques are characterized as
supervised, unsupervised, and reinforcement learning patterns [91,92] The first one works
by providing labels to data for algorithms to work. These labels work as a set of predefined
instructions for the data. The second technique, on the contrary, works by segregating data
into groups based on their similarity. Finally, the reinforcement technique, in which the
operator works by interacting with the environment and using human-level integration
to reinforce input to predict the output. These technologies work on the principle of
differentiating ‘normal’ data from ‘abnormal’ data by studying the algorithm and patterns
of interaction. [93] presents the thematic taxonomy of ML and DT used for IoT-integrated
devices, as shown in Figure 6 The supervised learning method is a widely used machine
learning method. It collects the data in the form of (x, y) and corresponding expected (x*,
y*) [94]. It works on the prediction of y* in response to a query x*. A novel human-level
control through a reinforcement technique called a Qnetwork agent uses reinforcement
learning [95]. Q-learning learning can be defined by the equation:

Qnew(st, at) = Q(st, at) + α× (rt + γ×maxQ( st+1, a)−Q(st, at)) (5)
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when Q(st, at) is the current value, α is the learning rate, rt is the reward, γ is the discount
factor, max Q(st+1, a) is the estimate of optimal future value and lastly, Q(st, at) is the
current value.
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Since wireless communication is widely operational worldwide, to deploy machine
learning, compatibility route for a Wireless System Network (WSN), challenges of data
limitation, and fault tolerance scalability need to be considered.

The author in [96,97] discusses the symbolic dynamic filtering (SDF) technique to
monitor regular interactions between subsystems while improving computational efficiency.
Proposed techniques utilize machine learning (MI) and Dynamic Bayesian Network (DBN)
techniques to detect unobservable false data injection (FDI) attacks and patterns of changes
in the attack [98]. The scalability of the technique is tested on IEEE systems and the results
show the percentage of false alarms to be less than 2%. Similarly, the paper [99] presents a
smart machine learning-based algorithm to reduce electricity expenditure and optimize
generation cost along with carbon emission reduction. It calculates a reduction of 41% in
end-use cost, 18% in generation cost, and approx. 20% in carbon emissions. Authors in [100]
provide ML solutions in integration with Gaussian Process Regression (GPR) to cope with
the problem of parameter variations that arise in mutual energy trade between Energy
Districts (ED) and SG. The model is compared with the optimization energy management
model (EMM) on parameters of prosumer energy cost (PEC), prosumer energy surplus
(PEC), and grid revenue (GR). The Gaussian neighboring function is given as:

h (t) =
1

σ
√

2π
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The article [101] proposes real-time monitoring of grid information as a high-frequency
measurement in contrast to current standards of information transmission over 15 min (Fig-
ure 6). It also provides a solution to cope with traffic due to high-frequency measurement
by compressing with the reconstruction method ensuring minimum error at the receiving
end. Other machine learning techniques, such as supervised learning: K-nearest neighbor
(k-NN) can be used for query processing [102,103], but this strategy can be inaccurate
for high dimensional data [104]; Decision Tree (DT) which is a classification method to
categorize data before making a decision working with only linear data [93,105]; Neural
Networks [NN] which are used in chains of decision algorithms to segregate complex and
linear functions for solving network challenges [106]; Support vector machines (SVM)
can be used to investigate malicious behavior in data by comparing temporal and spatial
correlations [107]; Bayesian Statistics is based on statistical data analysis methods, such as
probability distribution to detect uncertainty [108]. Similarly for unsupervised learning,
K-means clustering [109], and Principle Component Analysis (PCA) [110], a comparison
table is given in Table 5.

Table 5. Comparison of Machine Learning Approaches.

Approaches Machine Learning
Algorithm Complexity Characteristics

System Dependability

NNs

High Estimate the
dependability metric

Fault Detection Moderate Dynamic fault detection
model

Metric Map DT Low Link Quality Estimation

Assessing accuracy
and reliability metrics GP Moderate Information Processing

Tasks

A QoS schedular

RL

Low
QoS task scheduler for
adaptive multimedia

sensor networks

Uncertainty and
coverage factors Moderate Investigate coverage

problems

QoS-aware power
management Low

QoS-aware power
management in energy

harvesting sensor nodes

QoS provisioning Low A structure modeling toll
for QoS provisioning

Machine learning approaches have a greater advantage over other technologies in
terms of detection methodologies and advanced monitoring and detection algorithms.
Malware is a rising issue and counter approaches of machine learning show advances in
design and systems that can automatically detect malicious activity and malware detection.
However, a major drawback of these approaches is the accuracy, especially for Deep
Learning (DL) approaches. DL approaches are novel, less understood, and lack a general
understanding of the public, which causes errors. Thus, human supervision should be
there when applying machine-learning approaches [111].

5. Discussion

Based on the above-mentioned properties and features of various approaches to
provide security to the SG, in addition, to counter communication problems, we can
analyze them on basis of latency, cost, security, complexity, interoperability, and carbon
emission. Blockchain is the most known and implemented of these technologies. It offers
low-cost, less complex solutions for SGs; however, it lacks the diversity of services and
requires additional security measures. Moreover, 5G is the newest of all and has been
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emerging since then. It offers a high-speed and secure network for smart grids along with
data handling features. The high cost and carbon emission rate are factors that restrict this
technology. AI certainly offers promising solutions; however, it also comes with a high cost
and extensive training for stakeholders due to its complex connectivity. The summary of
the analysis is shown in Table 6.

Table 6. A Comparison between Features of Advanced Technologies for Smart Grid Cyber Security.

Approach Latency Interoperability Cost Complexity Carbon
Emission Security Data

Handling

Blockchain and Edge
Computing Medium High Low Low Low Medium Medium

5G technology Low Medium High Medium High High High
Artificial Intelligenece Low Medium High High Medium High High

Machine Learning Low Medium High High Low Hugh High

Limitation of research: The research presents a comprehensive overview of security
enhancement methodologies for smart grids. However, a smart grid comes with many
other challenges and threats which are not the focus of this research.

Future Research Direction: In terms of the future direction of research on smart grids,
the following areas can be explored:

• Utilization of a dedicated domestic communication network for power IoT to send
and receive energy-related data on a dedicated network to provide more privacy
to consumers

• Effect of environmental factors on a smart grid’s performance and robustness. Due
to climate change, and other environmental factors, if any link in the chain of smart
grid technology is affected, the smart grid will have loose ends. In this regard, it is
researched how this technology can be entirely shifted to wireless technology.

• Integrating smart grid technology with traditional power systems. This can enroute revo-
lutionize the power system gradually but effectively and through the gradual economic
burden. The research will be useful for developing and underdeveloped countries.

6. Conclusions

In this paper, solutions to various security and communication challenges for SG were
presented The research was based on the motivation to revolutionize the energy sector with
an SG supported by IoT. This paper explains the capacities and capabilities of researched
approaches and techniques to overcome these challenges. We comprehensively discussed
the types and subtypes of these technologies along with features and researched and
surveyed proposals. Through this study, we analyzed the utilization of these techniques
and approaches for the efficient application of IoT-based smart grids. We also compared
them on multiple factors to find out the more efficient of these. This opens opportunities
for future research as many approaches proposed in this paper are still under research
and the final judgment call of efficiency can only be after a full understanding of them.
However, many countries have and are already investing in SG technology based on their
energy goals.
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Abbreviations

Abbreviation Description
MG Microgrid
SG Smart Grid
IoT Internet of Things
DER Distribution Energy Resource
DR Demand Response
EV Electrical Vehicle
AMI Advanced Metering Infrastructure
RFID Radio Frequency Infrastructure
PV Photo Voltaic
RES Renewable Energy Resources
FAN Field Area Network
FDI False Data Injection
PMU Power Management Units
DDoS Distributed Denial of Service
ICS Wireless Sensor Network
PKI Public Key Infrastructure
EI Energy Internet
CB Circuit Breaker
DoS Denial of Service
DLP Data Loss Prevention
IDS Intrusion Detection System
TES Transactive Energy System
DL Deep Learning
ML Machine Learning
AI Artificial Intelligence
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