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Abstract: Before the transaction data in the blockchain is successfully linked, its signature must
be publicly verified by a large number of nodes in the blockchain, which is also one of the ways
to leak transaction information. To alleviate the contradiction between the public verifiability of
signatures and the protection of transaction privacy, we introduce a verifiably encrypted signature
scheme into the blockchain. A verifiably encrypted signature scheme contains two parts of signature
information: the encrypted signature is used for public verification, and the ordinary signature is
used for internal verification. To reach this goal even better, we design a new lattice-based verifiably
encrypted signature scheme, which separates the parameter settings of the signer and the adjudicator,
and replaces the Gaussian sampling algorithm with a small range of uniform random sampling,
achieving better efficiency and security.

Keywords: lattice-based cryptography; verifiably encrypted signature; Gaussian sampling; privacy
protection in blockchain

1. Introduction
1.1. Verifiably Encrypted Signature

A verifiably encrypted signature was first given by Asokan et al. [1] in 1997, which is
used to ensure the fairness of the exchange process in a distributed network [2]. Compared
with the ordinary signature, the verifiably encrypted signature has an adjudicator besides
the signer and verifier. The signer encrypts the ordinary signature using the adjudicator’s
public key, and the verifier uses the public keys of the signer and the adjudicator to verify
the authenticity of the signature ciphertext. If there is a dispute, the adjudicator recovers
the signer’s ordinary signature from the signature ciphertext. A verifiably encrypted sig-
nature is the core of fair contract signing protocols. When the party signing the online
contract repudiates, the adjudicator can take the extracted signature as evidence of the
signer’s signing behavior. In addition to the above applications, a verifiably encrypted
signature has many important applications in other fields. Jae Hong Seo et al. [3] have
implemented the accumulable optimistic fair exchange using a verifiably encrypted sig-
nature. Yujue Wang et al. [4] have introduced a cascading instantiable blank signature on
the basis of a verifiably encrypted signature, which realizes the protection of progressive
decision management. Therefore, the research on a verifiably encrypted signature has great
practical impetus.

A verifiably encrypted signature has achieved good results under the assumption
of traditional number theory, such as [5–7]. In pace with the rapid growth of quantum
algorithms, verifiably encrypted signatures that can strive against quantum algorithm
attacks become more pressing. As the most powerful branch of post-quantum cryptography,
lattice-based cryptography has a good degree of performance in the construction of various
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cryptographic primitives. A lattice-based verifiably encrypted signature includes [8–10].
To successfully complete the adjudication function of the adjudicator, these schemes have
one thing in common: the signer’s key depends on the adjudicator’s public key. Then,
the signer’s key will change with the change of the adjudicator, which forms a restriction
for the signer to choose the adjudicator. It is of great significance to remove the binding
relationship between the key of the signer and the adjudicator in a lattice-based verifiably
encrypted signature scheme.

Beyond the above point, as a basic algorithm in lattice-based cryptography [11,12], the
Gaussian sampling algorithm has more computational complexity [13] and is vulnerable
to side-channel attacks [14,15]. Thomas Prest [13] mentions the following facts. The
existing algorithms cannot use discrete Gaussian distribution directly; they have to sample
from a statistically approximate distribution. It is generally required that the statistical
distance between the sampling distribution and the expected discrete Gaussian distribution
is less than 2−100. To achieve it, a floating-point operation with a precision of at least
100 bits is required. Any precomputation means storing the variable values with the
same precision. This may seriously affect the sampling performance on the computer, or
even make it impractical to implement on a limited device. With regard to the security,
Léo Ducas et al. [16] emphasize the potential side-channel attack risk of Gaussian sampling
and suggest replacing Gaussian sampling with random sampling. As for small-range
random sampling, the sampling rejection algorithm ensures that the algorithm output will
not disclose the signature private key by filtering the output value.

In the wake of the post-quantum cryptography standard collection activities, the
efficiency and security of lattice-based cryptosystems have attracted many researchers’
attention, and more and more work has been performed to implement the lattice-based
cryptosystems, which promotes lattice-based cryptography from the theoretical stage to the
practical stage. So far, it is an important research direction to design a secure lattice-based
verifiably encrypted signature scheme with better efficiency.

1.2. Application

Blockchain is a research field that many cryptographers have recently been paying
close attention to, and it is widely used in financial payments such as Bitcoin. At present,
digital signature technology is used in the authentication link of blockchain. Specifically,
when payer Alice uses Bitcoin or other digital currency to pay payee Bob, she needs to
sign the transaction content and broadcast it throughout the whole network, to verify the
transaction in the network without an authority center.

Blockchain is an open network, and it is an important demand for privacy protection
for traders to complete the public verification of transactions without disclosing the sen-
sitive information of transactions. Transaction information can appear on the blockchain
network in the form of a hash digest, but corresponding digital signatures can still disclose
sensitive information. Gustavus J. Simmons [17] tell us that sensitive information can be
embedded in the random value of the digital signature and transmitted with the message
signature pair, which leads to a situation: in the process of signing a transaction, the digital
signature may involve sensitive information, and Alice does not want anyone other than
Bob to obtain the signature. Some people may think that this is simple: encrypting Alice’s
signature with Bob’s public key and sending the result to Bob. However, we say that this
idea is naive: because if the public key encryption scheme is adopted, other participants in
the network will no longer be able to publicly verify transactions and signatures, which
goes against the original intention of the decentralized blockchain.

We introduce verifiably encrypted signatures into the blockchain, which will solve the
problem that signatures need to be publicly verified and that signatures need to avoid the
disclosure of transaction information. The verifiably encrypted signature scheme designed
in this paper can reduce privacy leakage in the blockchain. In addition, our scheme can
also be used in other environments with privacy protection requirements for information
authentication, such as image encryption authentication privacy protection [18,19].
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1.3. Our Contribution

1. Taking the verifiably encrypted signature in a lattice as the research object, we in-
vestigate the limitations caused by the correlation between the parameters of the
signer and the adjudicator, the important role of the Gaussian sampling algorithm in
lattice signatures, and the fact that the Gaussian sampling algorithm is vulnerable to
side-channel attacks. On this basis, a new and verifiably encrypted signature scheme
based on the assumption of the lattice difficulty problem is designed. The new scheme
realizes the relative independence of the keys of the signer and the adjudicator and
avoids the pre-set communication between the two parties. We replace the Gaussian
sampling algorithm with a small range of uniform random sampling, which enhances
the scheme’s security and efficiency.

2. We analyze the double needs of blockchain for the authentication and privacy of
signatures and interpret verifiably encrypted signatures in a manner suitable for
the blockchain environment. We regard the transaction’s initiator as the signer, the
transaction’s receiver as the adjudicator, and the verifier who can verify the encrypted
signature as other public nodes in the blockchain. We embed verifiably encrypted
signatures into the blockchain environment and realize the public authentication
and privacy protection of transactions with the public verification and arbitration
verification functions of verifiably encrypted signatures.

1.4. Paper Outline

The subsequent content of this paper includes the following six aspects. In Section 2,
we display some notations and facts, as well as the module short integer solution problem
and the computational ring-LWR assumption. In Section 3, we describe the verifiably en-
crypted signature’s definition and security model, and the basic structure of the blockchain.
In Section 4, we design the verifiably encrypted signature scheme without Gaussian sam-
pling from a lattice, which is suitable for blockchain scenarios. Our scheme’s correctness
analysis is also here. In Section 5, we analyze our scheme’s security, including strong
unforgeability, strong opacity, and extractability. In Section 6, we make a comparison
between the previous related schemes and point out the application mode and the special
role of our scheme in the blockchain. Lastly, a conclusion is given in Section 7.

2. Preliminaries
2.1. Notations

The symbols in the paper mainly come from [16,20].
R = Z[X]/(Xn + 1) and Rq = Zq[X]/(Xn + 1) are two polynomial rings.
For integer w ∈ Zq, ‖w‖∞ = |w mod q|. For w = w0 + w1X + · · ·+ wn−1Xn−1 ∈ Rq,

‖w‖∞ = maxi‖wi‖∞. For w = (w1, · · · , wk) ∈ Rk
q, ‖w‖∞ = maxi‖wi‖∞.

Uβ̂ denotes uniform distribution in [−β̂, β̂], Un
β̂
= {w = ∑n−1

i=0 wiXi ∈ Rq̂|wi ← Uβ̂, i =

0, · · · , n− 1}, (Un
β̂
)× = {w = ∑n−1

i=0 wiXi ∈ Rq̂ is invertible|wi ← Uβ̂, i = 0, · · · , n− 1}.
For Sη = {w ∈ Rq |‖ w ‖∞≤ η}, w is a polynomial with coefficients that are less than

or equal to η in Rq, and Sl
η = {w ∈ Rl

q |‖ wi ‖∞≤ η, i = 1, 2, · · · , l}.
B60 = {c ∈ Rq|The coe f f icients o f c have 60 positive and negative ones, and the others

are zeros}.
For 2 ≤ p ≤ q̂, integer x, x̄ = x mod q̂, floor rounding functionb·cp : Zq̂ → Zp is

defined as: bxcp = b(p/q̂) · x̄c mod p, function Inv(·) : Zp → Zq̂ is defined as: Inv(x)←
{y ∈ Zq̂|bycp = x}.

Reconciliation rounding function [·]2,q̂ : x → b 2
q̂ · xc mod 2, reconciliation cross-

rounding function: 〈·〉2,q̂ : x → b 4
q̂ · xc mod 2.

The algorithm rec, with input y ∈ Zq̂ and z ∈ {0, 1}, output [x]2,q̂, where x is the
element with the smallest distance from y, such as 〈x〉2,q̂ = z.
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The randomized doubling function dbl : Zq̂ → Z2q̂, x 7→ 2x− e, where e samples from
{−1, 0, 1} with probabilities p−1 = p1 = 1/4, p0 = 1/2.

Functions f (n), g(n): N→ R+, f (n) = Ω(g(n)) denote that there exist two constants
U, V such that g(n) ≤ U · f (n) for all n ≥ V.

At the end of this subsection, we summarize the basic symbols used in the text into
Table 1 for easy searching.

Table 1. Symbol Description.

Symbols Symbolic Meaning

N natural numbers set
Z integers set
R real numbers set
R+ positive real numbers set
bxc the largest integer not exceeding x
dxe the smallest integer not less than x
Bit(x) binary representation of x
x ← S x is uniform random in set S
Rq polynomial rings
‖w‖∞ maxi‖wi‖∞
Uβ̂ uniform distribution in [−β̂, β̂]

Sη the set of polynomials with coefficients less than or equal to η in Rq
B60 {c ∈ Rq|The coe f f icients o f c have 60 positive and negative ones, and the others are zeros}
x̄ x mod q̂
bxcp b(p/q̂) · x̄c mod p
Inv(x) Inv(x)← {y ∈ Zq̂|bycp = x}
[x]2,q̂ b 2

q̂ · xc mod 2
〈x〉2,q̂ b 4

q̂ · xc mod 2
dbl(x) 2x− e

2.2. Lattice Problems and Facts

Definition 1 ([21]). M − SISq,m,β is defined as follows: Given a1, a2, · · · , am ∈ Rd
q , which

are uniform and independent, find z1, z2, · · · , zm ∈ R, such that Σm
i=1aizi = 0 mod q and

0 < ‖z‖ ≤ β, where z = (z1, z2, · · · , zm)T ∈ Rm.

The module short integer solution problem (M-SIS) is a generalization of the short
integer solution problem (SIS) and the ring short integer solution problem (R-SIS), whose
hardness is based on the module shortest independent vectors problem (Mod-SIVP).

Definition 2 ([20]). s is selected from a distribution χ over R. Let χs be the distribution of
(a, bascp), where a ← Rq̂, and let U be the distribution of (a, bbcp), where a, b ← Rq̂. Denote
S1 = (χl

s,D) and S2 = (U l ,D), D = {0, 1}∗. For a challenger C, PC,A(χ) is the probability for
an adversary A to win Exp1(C,A) with S1; QC,A(χ) is the probability for an adversary A to win
Exp2(C,A) with S2.

The computational ring-LWR assumption with respect to a secret distribution χ says that for
all challengers C, if QC,A is negligible for any adversary A, PC,A does so.

The computational ring-LWR assumption with respect to a secret distribution χ, also
as R− CLWRχ, is based on the approximate shortest independent vectors problem (app-SIVP).

Lemma 1 ([20]). If q̂ is odd and |x− y| < q̂/8, then rec(y, 〈dbl(x)〉2,2q̂) = [dbl(x)]2,2q̂.

Lemma 2 ([22]). B1 = B1(λ) and B2 = B2(λ) are two positive integers, e1 ∈ [−B1, B1] is a
fixed integer, and e2 ← [−B2, B2]. If B1

B2
is negligible, then the statistical distance between the

distribution of e2 and the distribution of e2 + e1 is also negligible.
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3. General Model of the Verifiably Encrypted Signature and Blockchain
3.1. Definition of Verifiably Encrypted Signature

For the verifiably encrypted signature’s definition and security model, we refer to
Kee Sung Kim and Ik Rae Jeong [10]. A verifiably encrypted signature scheme involves
three parties: the signer, verifier, and adjudicator. The signer is responsible for generating
the ordinary signature and the verifiably encrypted signature of the message, the veri-
fier is responsible for the verification of two kinds of signatures, and the adjudicator is
responsible for the ordinary signature extraction of the verifiably encrypted signature to
prevent the signer’s malicious repudiation. The three parties work together to complete
the following algorithms.

• Setup (λ): λ is the security parameter as input; this algorithm outputs PP as the
system public parameter.

• AKeyGen (λ): The adjudicator provides public key apk and secret key ask, which are
used to generate the signature ciphertext and extract an ordinary signature.

• KeyGen (λ): The signer provides a secret signing key sk and a public verification key
vk, which are used to generate and verify the ordinary signature, respectively.

• Sign (sk, M): With the signing key sk, the signer provides an ordinary signature σ for
message M.

• Verify (vk, (M, σ)): Given message M and its signature σ associated with the verifica-
tion key vk, the verifier and the adjudicator determine whether the ordinary signature
σ provides legal authentication for the message M. If the answer is yes, they output 1,
indicating approval of the authentication; otherwise, they output 0, indicating a denial
of the authentication.

• VES-Sign (sk, M, apk): With signing key sk, message M and the adjudicator’s public
key apk, the signer provides the verifiably encrypted signature δ.

• VES-Verify (vk, apk, (M, δ)): Given the signer’s verification key vk, the adjudicator’s
public key apk, and message M, as well as its verifiably encrypted signature δ, the
verifier and the adjudicator determine whether the signature δ provides legal authen-
tication for the message M. If the answer is yes, they output 1, indicating approval of
the authentication; otherwise, they output 0, indicating denial of the authentication.

• Adju (ask, vk, (M, δ)): With the adjudicator’s secret key ask, the signer’s verification
key vk and message M, as well as its verifiably encrypted signature δ, the adjudicator
extracts an ordinary signature σ from δ for message M.

The correctness of the scheme includes two aspects.

• (M, δ), the output of algorithm VES-Sign (sk, M, apk), needs to be verified by algo-
rithm VES-Verify (vk, apk, (M, δ)).

• (M, σ), the output of algorithm Adju (ask, vk, (M, δ)), needs to be verified using
algorithm Verify (vk, (M, σ)).

3.2. Security Model of the Verifiably Encrypted Signature

A verifiably encrypted signature scheme should satisfy strong unforgeability, strong
opacity, extractability, and abuse-freeness. Because strong unforgeability implies abuse-
freeness, we only consider three security definitions.

3.2.1. Strong Unforgeability

• Initialization: Challenger C executes the algorithms Setup, AKeyGen, and KeyGen,
and obtains the public parameters PP, the adjudicator’s secret key ask, and the public
key apk, as well as the signer’s signing key sk and verification key vk. Then, challenger
C provides the public parameters PP, the adjudicator’s secret key ask and public key
apk, and the signer’s verification key vk to adversary A.

• Verifiably Encrypted Signature Queries: AdversaryA adaptively performs verifiably
encrypted signature queries with a polynomial bound.
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Adversary A selects message M and sends it to challenger C for the associated verifi-
ably encrypted signature. Challenger C invokes the VES-Sign algorithm, and returns
the result to adversary A. Adversary A can adaptively execute the query polynomial.

• Forgery: When adversary A finishes the queries, he gives a fresh message M∗ and its
verifiably encrypted signature δ∗.

If a message–signature pair (M∗, δ∗) can pass the VES-Verify algorithm, and it is not
the result of some verifiably encrypted signature query, adversary A wins the game.

Theorem 1. A verifiably encrypted signature scheme owns strong unforgeability, if, for every
adversary A with polynomial bounded computational resources, the probability of him winning the
above game is negligible.

3.2.2. Strong Opacity

• Initialization: Challenger C executes algorithms Setup, AKeyGen, and KeyGen,
obtains public parameters PP, and the adjudicator’s secret key ask and public key
apk, as well as the signer’s signing key sk and verification key vk. Then, challenger
C provides public parameters PP, the adjudicator’s public key apk, and the signer’s
verification key vk to adversary A.

• Queries: Adversary A adaptively performs verifiably encrypted signature queries
and adjudication queries with a polynomial bound.

1. VES-Sign Query: Adversary A selects message M, and sends it to challenger
C for the associated verifiably encrypted signature. Challenger C invokes the
VES-Sign algorithm and returns the result to adversary A. Adversary A can
adaptively execute the query polynomial.

2. AdjuQuery: Adversary A sends (M, δ) to challenger C for the associated ordi-
nary signature. Challenger C invokes the Adju algorithm, and returns the result
to adversary A. Adversary A can adaptively execute the query polynomial.

• Forgery: When adversary A finishes the queries, he gives a fresh message M∗ and its
ordinary signature σ∗.

If a message–signature pair (M∗, σ∗) can pass the Verify algorithm and it is not the
result of some adjudication query, adversary A wins the game.

Theorem 2. A verifiably encrypted signature scheme owns strong opacity if, for every adversary A
with polynomial bounded computational resources, the probability of him winning the above game
is negligible.

3.2.3. Extractability

• Initialization: Challenger C executes the algorithms Setup and AKeyGen, and ob-
tains public parameters PP, the adjudicator’s secret key ask, and public key apk. Then,
challenger C provides the public parameters PP and the adjudicator’s public key apk
to adversary A.

• AdjuQueries: Adversary A adaptively performs adjudication queries with a polyno-
mial bound.
Adversary A sends (sk, vk, M, δ) to challenger C for the associated ordinary signature.
Challenger C invokes the Adju algorithm and returns the result to adversary A.
Adversary A can adaptively execute the query polynomial.

• Forgery: When adversary A finishes the queries, he gives a message M∗ and its
verifiably encrypted signature δ∗, as well as a signer’s key pair (sk∗, vk∗).

If the message–signature pair (M∗, δ∗) can pass the VES-Verify algorithm, and the
result of algorithm Adju (ask, vk∗, (M∗, δ∗)) is invalid, adversary A wins the game.
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Theorem 3. A verifiably encrypted signature scheme owns extractability, if, for every adversary A
with polynomial bounded computational resources, the probability of him winning the above game
is negligible.

3.3. The Structure of Blockchain

The blockchain is a chain composed of a large number of blocks. Blocks are generated
via an enormous number of distributed network nodes through a consensus algorithm.
Each block records different transaction contents. In a blockchain, each node can be
considered a user. Each user has a unique address information identification, the address
information comes from the user’s public key, and the private key is held locally by the
user. When user A attempts to initiate a transaction with user B, he signs the transaction.
The transaction will lock a payout and claim that only recipients who meet the lockup
conditions will be the owner of the money. To be specific, user A signs the transaction
using his private key, claiming that the money can only be spent by providing recipient
B’s legitimate signature. User A marks B with user B’s address, which can be a string of
numbers. Because this condition is met, the only user who can provide B’s signature is
B himself, and so funds are safely transferred from A to B. Each node in the blockchain
performs the following tests after receiving a transaction:

1. Check whether the signature in the transaction is valid or not, and reject it if the
signature is invalid.

2. Check whether the delivery address has sufficient funds to complete the transaction,
and reject the transaction if the balance is insufficient.

3. Update the blockchain ledger based on the consensus mechanism.

The decentralized design not only reduces the risk of network congestion and collapse,
but also protects the privacy and freedom of users. However, for some specific focus events,
such as a huge transaction on the blockchain during the time period when a company or an
individual needs to pay a huge amount of money, even if there is no identity information
of both parties in the transaction, people will associate the possible link between them and
obtain the property distribution of the parties through the public transaction information.
Identity anonymity is far from enough for real life, where identity can be locked through
multiple channels. If transaction information and corresponding signatures can obtain
more privacy protection, the blockchain can give people more of a sense of security.

4. Lattice-Based Verifiably Encrypted Signature Scheme without Gaussian Sampling

Our scheme is based on Fiat–Shamir style lattice-based signature schemes [23]; we
use the construction framework of the scheme [23] and the optimization algorithm of the
scheme [16] is also applicable. In our scheme, the signer’s key generation algorithm and
the adjudicator’s key generation algorithm are relatively independent, which avoids the
interaction between the signer and the adjudicator in the key generation phase. We use
a small range of uniform random sampling algorithms instead of a Gaussian sampling
algorithm to reduce the impact of side-channel attacks and the computational complexity
of the scheme.

4.1. Design

• Setup (n): The system parameters, sets, and functions involved in the scheme are
defined as follows.

1. q = 223 − 213 + 1 = 8,380,417, n = 256, η = 5, k = 5, l = 4, γ1 = (q− 1)/16 =
523,776, β = 275, q̂ = Ω(n6.5 log n) is odd, p = n3.75 log1/4 n, β̂ = n2.75 log1/4 n.

2. Function G : {0, 1}256 −→ Rq̂ is defined as in [20].
3. Functions H1 : {0, 1}∗ −→ B60 and H2 : {0, 1}256 → {0, 1}dnl log2 3e are collision-

resistant hash functions.
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• AKeyGen (n): The adjudicator selects τ ← {0, 1}256, ŝ ← (Un
β̂
)× and computes

a = G(τ), b = bŝacp. Then, he provides a public key apk = (τ, b) and a secret key
ask = ŝ.

• KeyGen (n): The signer samples A ← Rk×l
q , s ← Sl

η , and computes t = As. Then,
verification key vk = (A, t), and signing key sk = s.

• Sign (sk = s, µ ∈ {0, 1}∗): The signer obtains the ordinary signature σ with respect to
the signing key sk = s and the message µ ∈ {0, 1}∗.
1. Sample α← Rk

q, y← Sl
γ1−1, and compute w = Ay + α, c = H1(µ, w), z = y + cs.

2. If ‖z‖∞ ≥ γ1 − β, repeatedly sample y ← Sl
γ1−1, and compute w = Ay + α,

c = H1(µ, w), z = y + cs.
3. If ‖z‖∞ < γ1 − β, return σ = (z, c, α) as the signature of message µ.

• Verify (vk = (A, t), (µ, σ = (z, c, α))): Given message µ and its signature σ = (z, c, α)
associated with verification key vk = (A, t), the verifier make the following judgment.
If c = H1(µ, Az− ct + α) and ‖z‖∞ < γ1 − β holds, the signature is valid and output
1; otherwise, the signature is invalid and output 0.

• VES-Sign (sk = s, µ, apk = (τ, b)): With signing key sk = s, message µ, and the
adjudicator’s public key apk = (τ, b), the signer computes the verifiably encrypted
signature δ.

1. Sample y1 ← Sl
γ1−1, y2 ← Sl

1, and compute w = Ay1 + Ay2, c = H1(µ, w),
z1 = y1 + cs, z = y1 + cs + y2.

2. If ‖z1‖∞ ≥ γ1 − β or ‖z‖∞ ≥ γ1 − β, repeatedly sample y1 ← Sl
γ1−1, and

compute w = Ay1 + Ay2, c = H1(µ, w), z1 = y1 + cs, z = y1 + cs + y2. The
operations end when ‖z1‖∞ < γ1 − β and ‖z‖∞ < γ1 − β.

3. Compute α = Ay2 and construct the corresponding non-interactive zero-knowledge
proof π due to [24].

4. Sample r ← (Un
β̂
)×, and let v̄ = bInv(b)rcp, v̂ = Inv(v̄), v = 〈dbl(v̂)〉2,2q̂.

5. Let a = G(τ), u = bracp, v = H2([dbl(v̂)]2,2q̂)⊕ Bit(y2).

Then, verifiably encrypted signature δ = (z, c, α, π, u, v, v).
• VES-Verify(vk = (A, t), apk = (τ, b), (µ, δ = (z, c, α, π, u, v, v))): Given vk = (A, t),

apk = (τ, b), and message µ, as well as its verifiably encrypted signature
δ = (z, c, α, π, u, v, v), the verifier makes the following judgment.

1. Judge the legality of π. If the result is no, output 0 and reject the signature;
otherwise, continue.

2. If c = H1(µ, Az− ct) and ‖z‖∞ < γ1− β holds, the signature is valid and output
1; otherwise, the signature is invalid and output 0.

• Adju (ask = ŝ, vk = (A, t), (M, δ = (z, c, α, π, u, v, v))): With ask = ŝ vk = (A, t), and
message M, as well as its verifiably encrypted signature δ = (z, c, α, π, u, v, v), the
adjudicator extracts an ordinary signature σ from δ for message M.

1. Compute v′ = ŝInv(u) and y2 = Bit−1(v⊕ H2(rec(v′, v))).
2. Let z1 = z− y2.

Then, output the ordinary signature σ = (z1, c, α).

4.2. Correctness Analysis

The correctness analysis of the scheme includes the correctness of the ordinary sig-
nature, the correctness of the verifiably encrypted signature, and the correctness of the
adjudication algorithm. We will elaborate on them separately.
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4.2.1. The Correctness of the Ordinary Signature

According to the analysis in reference [16], in the ordinary signing algorithm, when
the recommended parameters are used, the average number of iterations is

en·β·l/γ1 = e256×275×4/523776 ≈ 1.71

so that the signing algorithm can be effectively terminated, and z satisfying the condition
‖z‖∞ < γ1− β can be obtained easily. In addition, because t = As and z = y + cs, we have
Az− ct + α = A(y + cs)− ct + α= Ay + cAs− ct + α = Ay + ct− ct + α= Ay + α= w;
therefore, c = H1(µ, w)= H1(µ, Az− ct + α).

4.2.2. The Correctness of the Verifiably Encrypted Signature

In the verifiably encrypted signing algorithm, the probability of ‖z1‖∞ < γ1 − β is
about e−n·β·l/γ1 . When ‖z1‖∞ < γ1 − β, the probability of ‖z‖∞ = γ1 − β is no more than
the probability of ‖z1‖∞ = γ1 − β − 1, so that the probability of both ‖z1‖∞ < γ1 − β

and ‖z‖∞ < γ1 − β is about e−n·β·l/γ1 · γ1−β−1
γ1−β . Therefore, in the verifiably encrypted

signing algorithm, when the recommended parameters are used, the average number of
iterations is en·β·l/γ1 · γ1−β

γ1−β−1 =e256×275×4/523776 × 523776−275
523776−275−1≈ 1.71, so that the verifiably

encrypted signing algorithm can be effectively terminated, and z1, z satisfying the condition
‖z1‖∞ < γ1 − β and ‖z‖∞ < γ1 − β can be obtained easily. Moreover, because t = As
and z = y1 + cs + y2, we have Az− ct = A(y1 + cs + y2)− ct= Ay1 + cAs + Ay2 − ct
= Ay1 + ct + Ay2 − ct= Ay1 + Ay2= w; therefore, c = H1(µ, w)= H1(µ, Az− ct).

4.2.3. The Correctness of the Adjudication Algorithm

When q̂ = n6.5 log n, p = n3.75 log1/4 n, β̂ = n2.75 log1/4 n, v̂ = Inv(v̄) = Inv(b)r +
e1= (aŝ + e2)r + e1= aŝr + (e2r + e1), v′ = ŝInv(u)= (ar + e3)ŝ=aŝr + ŝe3, v̂− v′ = (e2r +
e1)− ŝe3. Due to ŝ, r ← (Un

β̂
)×, ‖ŝ‖∞ ≤ β̂, ‖r‖∞ ≤ β̂, and |e1| ≤ q̂/p, |e2| ≤ q̂/p, |e3| ≤ q̂/p,

we have |e2r + e1| ≤ nβ̂q̂/p + q̂/p and |ŝe3| ≤ nβ̂q̂/p, so that |v̂− v′| = |(e2r + e1)− ŝe3|≤
2nβ̂q̂/p + q̂/p < q̂/8 with overwhelming probability.

According to Lemma 1, rec(v′, v)= rec(v′, 〈dbl(v̂)〉2,2q̂)= [dbl(v̂)]2,2q̂. Due to
v = H2([dbl(v̂)]2,2q̂)⊕ Bit(y2), Bit(y2) = v⊕ H2([dbl(v̂)]2,2q̂)= v⊕ H2(rec(v′, v)); hence,
y2 = Bit−1(v⊕ H2(rec(v′, v))).

According to the verifiably encrypted signing algorithm, w = Ay1 + α, c = H1(µ, w),
z1 = z− y2 = y1 + cs, and ‖z1‖∞ < γ1− β. From the analysis of Section 4.2.1, σ = (z1, c, α)
is a valid ordinary signature.

5. Security Analysis of Our Scheme
5.1. Strong Unforgeability of Our Scheme

Theorem 4. If there exists adversary A who can attack the strong unforgeability of our scheme
with a probability that cannot be ignored, then challenger C can find a solution to an M-SIS problem
instance with a non-negligible probability by using his ability. In other words, because the M-SIS
problem is difficult to solve, our scheme is strongly unforgeable.

Proof. Suppose that adversary A can forge a verifiably encrypted signature with probabil-
ity ε > 0, and the maximum number of times he executes hash queries is Q1; the maximum
number of times that he executes the verifiably encrypted signature queries is Q2. By
interacting with adversary A, challenger C can find the non-zero vector v ∈ Rl satisfying
the condition Av = 0(modq) and ‖v‖∞ < 2γ1, with probability ε2

2(Q1+Q2)
for the M-SIS

problem instance A ∈ Rk×l
q .

• Initialization: Challenger C gives system parameters according to the algorithms
Setup, and provides the adjudicator’s public key apk = (τ, b) and secret key ask = ŝ
according to algorithms AKeyGen. He also samples s← Sl

η , computes t = As, and
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sets the verification key vk = (A, t) and signing key sk = s. Then, the challenger C
provides the system parameters, the adjudicator’s public key apk = (τ, b) and secret
key ask = ŝ, and the signer’s public verification key vk = (A, t) to adversary A.

• Queries: Adversary A adaptively performs the following queries with a polyno-
mial bound.

1. H1Query: Challenger C maintains a listH1 for H1 queries. When adversary A
sends message µi to challenger C, C samples ci ← B60, zi ← Sl

γ1−β−1. Then,

he selects y2i ∈ Sl
1, such that ‖zi − y2i‖∞ < γ1 − β. C computes αi = Ay2i,

lets ci = H1(µi, Azi − cit), saves (µi, zi, ci, y2i) in list H1, and returns ci. When
adversary A sends message µi for the H1 query again, C returns ci directly.

2. VES-Sign Query: AdversaryA selects message µi and sends it to challenger C for
the associated verifiably encrypted signature. Challenger C searches listH1 for µi
and constructs the non-interactive zero-knowledge proof πi for αi = Ay2i. Then,
Challenger C samples ri ← (Un

β̂
)× and computes v̄i = bInv(b)ricp, v̂i = Inv(v̄i),

vi = 〈dbl(v̂i)〉2,2q̂, a = G(τ), ui = briacp, vi = H2([dbl(v̂i)]2,2q̂) ⊕ Bit(y2i).
Finally, Challenger C returns δi = (zi, ci, αi, πi, ui, vi, vi) to adversary A.
If µi does not exist in listH1, challenger C executes H1 query for message µi firstly.

• Forgery: When adversary A finishes the queries, he gives a new message µ∗ and its
verifiably encrypted signature δ∗ = (z∗, c∗, α∗, π∗, u∗, v∗, v∗), which satisfies c∗ =
H1(µ

∗, Az∗ − c∗t) and ‖z∗‖∞ < γ1 − β.

Because adversary A can make at most Q1 hash queries and Q2 verifiably encrypted
signature queries, the number of ci is, at most, Q1 +Q2. For an undocumented w = Az− ct,
adversary A has only 1

3256 probability of producing c, such that c = H1(µ, w). Therefore, c∗

comes from {c1, c2, · · · , cQ1+Q2} with probability 1− 1
3256 . In addition, adversary A forges

a valid verifiably encrypted signature with probability ε, so that (µ∗, z∗, c∗) comes from the
valid forgery and c∗ ∈ {c1, c2, · · · , cQ1+Q2} with probability ε− 1

3256 . Let c∗ = cj, it comes
from some H1 query or verifiably encrypted signature query.

If c∗ = cj comes from some H1 query, C interacts with adversary A to execute H1
queries and verifiably encrypted signature queries again. According to [25], adversary
A generates a new verifiably encrypted signature δ′ = (z′, c′, α′, π′, u′, v′, v′) for message

µ∗ with probability (ε − 1
3256 )(

ε− 1
3256

Q1+Q2
− 1

3256 ) ≈ ε2

Q1+Q2
, where c′ 6= c∗. This is because

Az∗ − c∗t = Az′ − c′t, t = As, so that A(z∗ − z′ + c′s− c∗s) = 0. Due to ‖z∗‖∞ < γ1 − β,
‖z′‖∞ < γ1 − β, ‖c∗s‖∞ ≤ β, ‖c′s‖∞ ≤ β, so that ‖z∗ − z′ + c′s − c∗s‖∞ < 2γ1. If
z∗− z′+ c′s− c∗s 6= 0, v = z∗− z′+ c′s− c∗s is a solution. If z∗− z′+ c′s− c∗s = 0, there
exists s′ 6= s such as As = As′ and z∗ − z′ + c′s′ − c∗s′ 6= 0 with overwhelming probability,
then v = z∗ − z′ + c′s′ − c∗s′ is a solution. For adversary A, the occurrence probabilities of
s′ and s are equal, so that v is obtained with a probability of at least 1

2 .
If c∗ = cj comes from some verifiably encrypted signature query, H1(µ

∗, Az∗ − c∗t) =
H1(µj, Azj − cjt). If µ∗ 6= µj or Az∗ − c∗t 6= Azj − cjt, then adversary A finds a preimage
of cj. Therefore, µ∗ = µj and Az∗ − c∗t = Azj − cjt, then A(z∗ − zj) = 0. Due to z∗ 6= zj,
z∗ − zj 6= 0. Moveover, ‖z∗‖∞ < γ1 − β, ‖zj‖∞ < γ1 − β, then ‖z∗ − zj‖∞ < 2(γ1 − β) <
2γ1. Therefore, v = z∗ − zj is a solution.

In short, whether c∗ = cj comes from H1 query or a verifiably encrypted signature
query, challenger C can find a non-zero vector v ∈ Rl satisfying Av = 0(modq) and
‖v‖∞ < 2γ1 with a probability of ε2

2(Q1+Q2)
.

5.2. The Strong Opacity of Our Scheme

In our scheme, message µ’s verifiably encrypted signature is δ = (z, c, α = Ay2, π, u, v, v),
and the strong opacity of our scheme equals that δ = (z, c, α = Ay2, π, u, v, v) will not
divulge information about y2.

For z = z1 + y2, according to Lemma 2, z and z1 are statistically indistinguishable,
and z1 has nothing to do with y2, so that z will not divulge information about y2.
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According to the hardness of the module short integer solution problem, α = Ay2
will not divulge information about y2, and then c = H1(µ, Ay1 + α) also will not divulge
information about y2.

π is the zero-knowledge proof of α = Ay2, so π will not divulge information about y2.
In conclusion, δ = (z, c, α = Ay2, π, u, v, v) will not divulge information about y2,

so that z1 = z − y2 cannot be obtained merely by δ = (z, c, α = Ay2, π, u, v, v); hence,
our scheme owns strong opacity. For a more rigorous description of strong opacity, see
Theorem 5.

Theorem 5. If there exists an adversary A who can break the strong opacity of our scheme with
probability ε, then challenger C can construct an algorithm that can solve the M-SIS problem with a
probability of at least ε/qH , where qH is the maximum number of queries to H1.

Proof. Given an instance of M-SIS problem A ∈ Rk×l
q , challenger C needs to find a non-zero

short s satisfying As = 0 mod q.

• Initialization: Challenger C executes the algorithms Setup, AKeyGen, and KeyGen,
and sends the public key apk = (τ, b), vk = (A, t), and PP to the the adversary A.

• Queries: Allowed queries include H queries, VES-Sign queries and Adju-Queries.
When A finishes the queries, and with probability ε outputs a forged ordinary signa-
ture for some message, Challenger C can solve the M-SIS problem.

1. H Query: C first examines the list L for this query µ. If it has not existed in the list
L, C randomly chooses c ∈ B60, records the corresponding relationship between
µ and c in the table, and sends c to A. If the query µ has existed in the list L, C
returns its corresponding c to A directly.

2. VES-Sign Query: A adaptively chooses message µ, and sends it to the challenger
C. C executes the VES-Sign algorithm, and returns (z, c, α, π, u, v, v) to A.

3. AdjuQuery: Assume that A has queried to H before Adju-Queries. When re-
ceiving the Adju-Queries to the verifiably encrypted signature (z, c, α, π, u, v, v),
C returns the ordinary signature (z− Bit−1(v⊕ H2(rec(ŝInv(u), v))), c, α).

Hence,A finally proposes a valid ordinary signature (z1, c, α) with probability ε. If c is
a response of the VES-Sign query, there exists another signature (z′1, c, α) for some message
µ′, such that

H1(µ, Az1 − ct + α) = H1(µ
′, Az′1 − ct + α).

Hence, µ = µ′, and Az1 − ct + α = Az′1 − ct + α. That is, A(z1 − z′1) = 0 mod q.
Note that A successfully forges a new and valid signature; thus, s := z1 − z′1 6= 0. Because
‖z1‖, ‖z′1‖ ≤

√
l · (γ1 − β)2, thus there exists a non-zero vector s, such that As = 0 mod q,

and ‖s‖ ≤ 2
√

l · (γ1 − β)2. That is, challenger C solves the M-SIS problem instance with
probability ε/qH . If c is not a response of the VES-Sign query, C may sign the same message
again, and the situation is similar.

5.3. Extractability of Our Scheme

For a verifiably encrypted signature δ = (z, c, α, π, u, v, v) associated with message µ,
if δ is valid, we can extract an ordinary signature σ. Proof π guarantees the existence of
the short vector y2 in α = Ay2. With the adjudicator’s secret key ask = ŝ, we can compute
v′ = ŝInv(u), y2 = Bit−1(v ⊕ H2(rec(v′, v))); let z1 = z − y2, then σ = (z1, c, α) is an
ordinary signature for message µ.

6. Comparison of Related Work and Our Scheme’s Application in the Blockchain

So far, there has been a lot of work on verifiably encrypted signatures. We mainly com-
pare some of the main schemes in terms of application scenarios, key features, difficulties
basis, and resistance to quantum attack. Table 2 shows the details of the comparison. Due to
space, some abbreviations are used in Table 2, which are explained as follows. “Resistance
to Quantum Attack” is abbreviated as RQA, “cascade-instantiable blank signature” is abbre-
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viated as CBS, “adjudicator public key binding” is abbreviated as APKB, “inhomogeneous
small integer solution problem” is abbreviated as ISIS, and “Module short integer solution
problem” is abbreviated as M-SIS.

Table 2. Comparison of Related Work.

Schemes Application Scenarios Key Features Difficulties Basis RQA

[2] Ethereum no adjudicator Strong Diffie-Hellman assumption ×
[3] optimistic fair exchange homomorphic composite order Bilinear groups ×
[4] CBS non-interactive prime order Bilinear groups ×
[5] Bitcoin escrow protocol ECDSA-like discrete logarithm problem ×
[6] Internet exchange undeniable signature discrete logarithm problem ×
[7] online contract signing obfuscator decisional linear assumption ×
[8] electronic commence standard model short integer solution problem X
[9] Internet exchange APKB ISIS X
[10] nothing no adjudicator ISIS X
Ours Bitcoin transaction privacy protection M-SIS X

According to the analysis in Table 2, schemes in the literature [8–10] and our scheme
are all lattice-based schemes against quantum algorithm attacks. We further analyze the
efficiency of these four schemes in Table 3.

Table 3 lists the comparisons of different verifiably encrypted signature schemes in
lattices. m and n represent the dimension and rank of the lattice used in the scheme [8–10],
respectively, and k and l represent the dimension and rank of the modular lattice in our
scheme, respectively. These four parameters play a decisive role in the verification key size,
signing key size, and signature size. Our scheme is based on module lattices, and the values
of the corresponding parameters k, l are smaller than that of m, n in general lattices. Thus,
the scheme in our work has advantages in terms of signature and key sizes. Furthermore,
our construction does not require Gaussian sampling, and it is much simpler to implement
it securely against side-channel attacks.

Table 3. Comparisons of the Schemes in Lattice.

Schemes Verification Key Size Signing Key Size VES Size Gaussian Sampling

[8] mn log q m2 log q 3m log q + l X
[9] mn log q m2 log q 2m log q + n + l X
[10] 2mn log q 2m2 log q (2m + m2) log q + n + l X
Ours k(l + 1) log q l log q (k + l) log q + n + k ×

When our scheme is applied to the blockchain scenario, there are three participants:
the payer Alice (signer), the payee Bob (digital signature receiver), and the verifier (miner
in the blockchain). More precisely, these three parties are nodes in the blockchain network.
After generating a transaction between Alice and Bob, Alice signs the transaction with her
private key, associates Bob’s public key with the signature to obtain the verifiably encrypted
signature, then broadcasts the result to the blockchain network. The miner in charge of
keeping a ledger verifies the signature and records it. Each miner can verify the verifiably
encrypted signature to prove the real existence of the transaction, but they cannot obtain
more information about the transaction and both parties from the signature. The payee
Bob has the private key used for the encrypted signature and is able to obtain the common
signature of the transaction for further confirmation of the transaction, and as evidence to
avoid disputes with the payer Alice. Figure 1 shows the basic framework.
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Figure 1. The Framework of Our Scheme.

Introducing verifiably encrypted signatures into the blockchain has two functions.
First, publicly verifiable signatures are encrypted. Verifiably encrypted signatures prevent
blockchain nodes from obtaining transaction information through this signature while
ensuring the signature authentication function. Second, for the recipient of the transaction,
he still obtains the ordinary signature of the transaction, so that the displayed authentication
of the transaction information under his control is realized. A verifiably encrypted signature
balances the public verification demand of the signature, the privacy demand of the
transaction party, and the controllability of the arbitration demand, to a certain extent.

7. Conclusions

We construct a new and verifiably encrypted signature scheme in the lattice; the
scheme realizes the relative independence of the signer and adjudicator, eliminates depen-
dence on the Gaussian sampling algorithm, simplifies the parameter setting process of the
participants, enhances the security, and improves the operation efficiency, which is a better
choice for the actual applications. We integrate this signature scheme into the blockchain
environment, which not only realizes the public verification requirements of the blockchain
for transactions, but also reduces the disclosure of information about the privacy of transac-
tions from the disclosure of signatures in the blockchain to a certain extent. Our scheme
provides a good choice for blockchain transaction authentication. In our environment, the
initiator and receiver of a transaction need to consult with each other about the transaction
information, which is a natural situation in real life. If message recoverability is added
to the signature, this restriction is no longer necessary. The last thing we want to say is
that, in the blockchain environment, we have given the signer, verifier, and adjudicator a
new role and a new idea for the verifiably encrypted signature scheme’s application. We
believe that this idea can be extended to more application environments that are sensitive
to signature privacy.
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