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Abstract: Short-term load forecasting is a prerequisite and basis for power system planning and
operation and has received extensive attention from researchers. To address the problem of concept
drift caused by changes in the distribution patterns of electricity load data, researchers have proposed
regular or quantitative model update strategies to cope with the concept drift; however, this may
involve a large number of invalid updates, which not only have limited improvement in model
accuracy, but also insufficient model response timeliness to meet the requirements of power systems.
Hence, this paper proposes a novel incremental ensemble model based on sample domain adaptation
(AWS-DAIE) for adapting concept drift in a timely and accurate manner and solves the problem
of inadequate training of the model due to the few concept drift samples. The main idea of AWS-
DAIE is to detect concept drift on current electricity load data and train a new base predictor using
Tradaboost based on cumulative weighted sampling and then dynamically adjust the weights of the
ensemble model according to the performance of the model under current electricity load data. For
the purposes of demonstrating the feasibility and effectiveness of the proposed AWS-DAIE algorithm,
we present the experimental results of the AWS-DAIE algorithm on electricity load data from four
individual households and compared with several other excellent algorithms. The experimental
results demonstrated that the proposed AWS-DAIE not only can adapt to the changes of the data
distribution faster, but also outperforms all compared models in terms of prediction accuracy and
has good practicality.

Keywords: short-term electricity load forecasting; concept drift; cumulative weighted sampling;
sample domain adaptation

1. Introduction

Electricity load forecasting has been attracting research and industry attention due
to its important role in the energy management system, which is the basis for energy
production and distribution and supply, as well as an important component of intelligent
power systems. Accurate short-term electricity load forecasting not only helps to promote
energy saving and emission reduction projects in the power system, but also helps to
operate the power system reliably and safely. According to the time scale, electricity
load forecasting can be divided into ultra-short-term electricity load forecasting, short-
term electricity load forecasting, medium-term electricity load forecasting, and long-term
electricity load forecasting. Among them, short-term load forecasting predicts the electricity
load values for the next few hours or days [1], and the forecast’s results are used as a basis
for planning the mobilization of power system units. The volatility of the electricity load
affects the optimal dispatch of the power system, and with the large-scale grid integration
of distributed energy sources [2], the difficulty of forecasting short-term electricity load
accurately has increased further due to the dramatic increase in volatility and nonlinearity
in the electricity load data.
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In recent years, deep learning methods have achieved great success in the field of short-
term electricity load forecasting because of their ability to model complex systems [3–5].
However, there is still a large gap in the application of traditional offline deep learning
methods to the industry. Traditional offline deep learning models all historical data, that is
all data should be available during training. For smart meters [6], only a part of the data is
available in the early stage of training, and the data will be delivered continuously, which
requires the traditional offline model to retrain the model by combining historical data and
newly arrived electricity load data. Obviously, this is not realistic; it requires much wasted
computing resource. However, the distribution pattern of smart meter data may change
due to the addition of new electrical equipment or changes in the consumption patterns of
residents, that is concept drift occurs [7], which will lead to the degradation or even failure
of the prediction performance of existing offline models. Therefore, in the electricity load
forecasting task, we need to continuously learn new data generated by the electricity meter
without retraining the entire dataset. Therefore, researchers have turned their attention to
online learning [8]. This learning mode, which only uses new data to update the model in
the process of prediction, greatly reduces the computational burden of the power system
and has higher prediction accuracy than traditional offline learning models.

However, most of the current online learning models use the newly arrived electricity
load data for regular or quantitative model update [9]. At this time, if the new data and
historical data have the same or similar data patterns, there will be invalid updates, which
does not only affect the computing resources. Real-time response puts forward higher
requirements and has little effect on the improvement of prediction accuracy. Therefore,
it is necessary to design a more reasonable online prediction model based on the actual
changes of the data.

Therefore, in this paper, an incremental ensemble short-term electricity load prediction
model based on sample domain adaptation is proposed, which effectively addresses the
above problem using two-stage concept drift detection [10,11] and transfer learning based
on sample domain adaptation. In summary, the main contributions of this paper are
as follows:

• We propose to combine the significance of change in the distribution of current elec-
tricity load data and change in model prediction performance to detect concept drift.

• We design the cumulative-weighted-sampling-based Tradaboost (AWS-Tradaboost)
for building the new base model, which solves the problem of inadequate training of
the model due to insufficient concept drift samples.

• We develop a novel strategy for updating the weights of the ensemble model.

The rest of this paper is organized as follows. Section 2 is an overview of related work
on short-term electricity load prediction. Section 3 describes the proposed AWS-DAIE
in detail. Section 4 presents the experiments and corresponding results. Conclusions are
presented in Section 5.

2. Related Work

Researchers at home and abroad have proposed a large number of short-term load fore-
casting methods and theories. The existing research is mainly divided into two categories:
traditional forecasting methods and artificial intelligence forecasting methods.

Traditional short-term electricity load forecasting methods include the grey model
method, fuzzy forecasting method, time series analysis method, and so on. Zhao et al. [12]
proposed to optimize the parameters of the grey model GM(1,1) by using the ant colony
optimization algorithm and introduced a rolling mechanism to improve the accuracy of
electricity load forecasting. Mamlook et al. [13] explored the effect of different parameters
including weather, time, and historical data with random perturbations on load forecasting
using the priority and importance of fuzzy sets and used fuzzy control logic to reduce
forecasting errors. Common time series analysis methods include autoregressive moving
average (ARMA), differential autoregressive moving average (ARIMA), generalized autore-
gressive conditional heteroskedasticity (GARCH), and so on. Reference [14] argued that
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there are different levels of noise disturbances in ARIMA forecasting short-term electricity
loads, which require re-identification of the model before estimating parameters for the
forecasting task, and that the model is able to determine the limit level of noise that the
model can tolerate before crashing.

Artificial intelligence methods have emerged in recent years and have been widely
used in short-term electricity load forecasting in power systems due to their powerful ability
to model complex relationships and adaptive self-learning capabilities. Typical ones include
support vector regression (SVR), long short-term memory networks (LSTM), gated recur-
rent units (GRU), time series convolutional networks (TCNs), and so on. Han et al. [15]
extracted meteorological features affecting wind and PV power generation using nonlinear
effects and trend correlation measures of the copula function and modeled wind and PV
power generation based on LSTM, which is capable of medium- and long-term wind/PV
power generation forecasting using limited data samples. Jung et al. [16] used the attention-
based gated recurrent unit (Attention-GRU) to model electrical loads in order to tap more
key variables in short-term load forecasting tasks and experimentally demonstrated that
the prediction performance of the model can be significantly improved when the inputs
are long sequences. Gong et al. [17] determined the order sequence of the model in the
electricity load by periodically analyzing the correlation of the electricity load data and
the fluctuation characteristics of the customer electricity load data. The Seq2seq model
is adjusted by combining the residual mechanism (Residual) and two attention mecha-
nisms (Attention) to achieve better results in predicting the actual electricity load data in a
certain place.

The combination of models is a new trend in the field of electricity load forecasting,
and common combinations include stacking of models and ensemble learning. The stacking
of models can fully utilize the advantages of each model to improve the accuracy of load
forecasting. Guo et al. [18] constructed historical electricity loads, real-time electricity prices,
and weather as the inputs of the model in the form of continuous feature maps. CNN was
used to cascade shallower and deeper features at four different scales to fully explore the
potential relationships between continuous and discontinuous data in the feature maps.
The feature vectors at different scales were fused as the inputs of the LSTM network, and
the LSTM neural network was used for short-term electricity load forecasting. Ensemble
learning is a new paradigm that combines multiple models to improve the prediction results
and can obtain better prediction results than an individual model. Wang et al. [19] used
clustering to divide historical electricity load data into multiple partitions, trained multiple
LSTM models for different partitions, and finally, used FCC models to achieve the fusion
of multiple LSTMs. In this work, the authors used the improved Levenberg–Marquardt
(LM) algorithm to train the FCC models to achieve fast and stable convergence. Electricity
load forecasting based on decomposition preprocessing has been a hot topic in recent years.
Khairalla et al. [20] proposed a flexible heterogeneous integration model that integrates
support vector regression (SVR), back propagation neural network (BPNN), and linear
regression (LR) learners. The integration model consists of four phases: generation, pruning,
integration, and prediction. Li et al. [21] used ICEEMDAN to decompose complex raw
electricity load data into simple components and aggregated the final prediction results after
forecasting each component individually using a multi-kernel extreme learning machine
(MKELM) [22] optimized by grey wolf optimization (GWO). Lv et al. [23] proposed a hybrid
model with the elimination of seasonal factors and error correction based on variational
modal decomposition (VMD) and long short-term memory networks in response to the
dramatic changes that occur in short-term electricity loads due to various factors, which
further complicate the data.

Tang et al. [24] used the K-means algorithm to cluster the electricity load, grouped
similar data into the same cluster, decomposed the electricity load into several components
using ensemble empirical modal decomposition (EEMD), and selected candidate features
by calculating Pearson correlation coefficients to construct the prediction input. This
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paper selected the deep belief network (DBN) and bidirectional recurrent neural network
(Bi-RNN) as the prediction models.

The models mentioned above all belong to the category of offline learning, and in
order to learn from new data, researchers have started to research networks and frame-
works based on online learning and incremental learning. Von Krannichfeldt et al. [25]
advocated combining batch processing and online learning to provide a novel online en-
semble learning approach for electricity load forecasting by implementing an improved
passive aggressive regression (PAR) model to integrate online into the forecasting results
of the batch model to ensure the adaptability of online applications. Álvarez et al. [26]
developed online learning techniques for APLF for recursive updating of hidden Markov
model parameters and then used the Markov model to model and quantify the uncertainty
in forecasting of electricity load data. However, the regular or quantitative update model
does not fully consider the actual change of data and requires high real-time response for
computing resources, and when the electricity load is in a relatively stationary state, there
may be a large number of invalid updates, while also causing a large amount of valuable
computing resources to be wasted.

In this paper, we performed concept drift detection in terms of data blocks and adapted
to concept drift through domain incremental learning and dynamic adjustment of model
weights. When different batch data no longer conform to the static homogeneous distribu-
tion assumption, domain incremental learning is able to avoid catastrophic forgetting of
historical knowledge while updating the model using only newly arrived data [27]. Con-
cept drift describes the unforeseen shifts in the underlying distribution of streaming data
over time [28]. Concept drift detection techniques have emerged in recent years [29–31];
some of them detect concept drift based on the error rate of the model; some detect concept
drift using changes in the data distribution; some detect concept drift based on hypothesis
testing. To solve the problem that the model cannot be adequately trained due to few
concept drift samples, this paper trained the base model by improved transfer learning
based on sample domain adaptation [32], which makes the distribution of drift samples
approximate the data distribution of that historical data block by adjusting the data weights
of the historical and current data blocks and generates the base model based on concept
drift samples in the process of adjusting the weights.

3. Research Methodology

In this paper, an incremental learning short-term electricity load forecasting model
based on sample domain adaptation is proposed. First, two-stage concept drift detection
(DSCD) was performed on the current mini-batch samples, and then, we trained a new
base model using the sample domain adaptive transfer based on cumulative weighted
sampling Tradaboost (AWS-Tradaboost) to solve the problem that the model cannot be fully
trained due to few concept drift samples. Finally, we propose a novel incremental ensemble
weight updating strategy to construct the final short-term electricity load forecasting model.
The processing of the model is shown in Figure 1. The dataset used in this paper was
the PRECON dataset [33], and the detailed description of the dataset will be given in the
Research Results.

...
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Figure 1. Overall process of AWS-DAIE.



Sustainability 2022, 14, 14205 5 of 16

3.1. Two-Stage Concept Drift Detection

The AWS-DAIE algorithm proposed in this paper only performs incremental updates
for concept drift samples, so we need to introduce the two-stage concept drift detection
algorithm (DSCD) that we designed. As the name implies, the DSCD algorithm detects
concept drift in two stages. The first stage of concept drift detection monitors changes in
model performance to determine the degree of adaptation of the current model to new
arrivals, while the second stage determines whether concept drift has occurred by checking
whether there is a significant difference between the distribution of the current data block
and the historical data.

In the first stage of concept drift detection, for each current sample i, its corresponding
sliding window Wi contains the samples from i− t to i. Calculate and compare the absolute
value of the prediction error AEi−t of Wi−t and the absolute value of the prediction error
AEi of Wi (record the current window and the last full window, respectively); if the absolute
value of the prediction error of the window corresponding to sample i, AEi, is greater than
the absolute value of the prediction error of the window corresponding to a time sample
i − t, AEi−t, (AEt > a ∗ AEt−1), then the current state will be set to drift warning and
start collecting the current samples using the adaptive window Wadaptive. If the data in the
adaptive window Wadaptive do not reach the preset data amount, the absolute value of the
error corresponding to the window corresponding to m consecutive samples is less than
a times the absolute value of the prediction error corresponding to the first sample of the
adaptive window, and the drift warning state is released. Clear the data in the adaptive
window, and start the next round of concept drift detection. If the amount of data in the
adaptive window reaches a preset size, start the second stage of concept drift detection. In
this paper, we refer to the literature [11] to determine the parameters and select the set of
parameter values that make the smallest prediction variance based on a large number of
experiments as follows: a = 1.08, m = 5, n = 40.

We collected a certain amount of data under the drift warning state after the first
stage of detection, but there may be cases where the data are flagged as a concept drift
warning due to noise-induced fluctuations or the model itself is not sufficiently trained.
Then, we need to check whether these data are significantly different in distribution from
the historical electricity load data, which is the second stage of the concept drift detection.
We need to introduce a theorem before introducing the second stage of concept drift
detection, namely the paired t-test: we let S and T be two independent time series sample,
let S = (S1, S2, S3, . . . Sn1) ∼ N(µ1, σ2) and T = (T1, T2, T3, . . . Tn1) ∼ N(µ2, σ2) denote
their sample means values, respectively, and let σ2

S and σ2
T denote the variances of samples

S and T, respectively, given the original hypothesis of H0 : µ1 − µ2 ≤ δ at the confidence
level α, when the statistic t follows the following distribution.

t =
Sa − Ta − (µ1 − µ2 − δ)

σw

√
1

n1
+ 1

n2

∼ t(n1 + n2 − 2) (1)

σ2
w =

(n1 − 1)σ2
S + (n2 − 1)σ2

T
n1 + n2 − 2

(2)

Among them, n1 + n2 − 2 denotes the degrees of freedom of the distribution. The
statistic t lies in the rejection domain at the confidence level α when t > tα(n1 + n2 − 2),
at which point, the original hypothesis H0 is rejected and µ1 − µ2 > δ accepted; at this
time, the two samples S and T are judged to be significantly different at the confidence
level α; the above theory is the criterion for the second stage of concept drift detection.
Firstly, historical electricity load data are divided into m blocks of equal size, so that the
training data are represented as T = T1

⋃
T2...

⋃
Tm, and each block is used to train the

base model. Then, we performed down-sampling on these data blocks to obtain Tdowns;
the size is denote as Tsize. Secondly, the paired t-test was performed on the data in the
adaptive window Wadaptive and Tdowns. When the results of the paired t-test between the
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data in the adaptive window Wadaptive and Tdowns at confidence level α fall into the rejection
domain, the current data block is considered to have concept drift. On the contrary, it is
considered to be a pseudo-concept drift caused by noise fluctuation or insufficient training
of the model. Then, the data in the adaptive window are used to fine-tune the base model
with worst prediction performance among ensemble learning, and clear the data in the
adaptive window Wadaptive, and continue to monitor the changes of the model prediction
performance. Through the above two stages, the concept drift samples is used to train a
new base predictor when the true concept drift is detected and is used in the subsequent
incremental learning process. The overall process of the two-stage concept drift detection
algorithm is shown in Algorithm 1.

Algorithm 1 DSCD.

Input: D: newly arrived data; t: detecting window size; a: concept drift warning threshold;
m: threshold number of released concept drift warning; Wadaptive: adaptive window;
n: adaptive window size; Tdowns: downsampling of historical data

Output: concept drift sample Ddri f t
1: Wadaptive = NULL;
2: state = None; count = 0;
3: number = 0;
4: for sample di∈D do
5: Wi: sliding window with the last t samples of di;
6: AEi = AbsoluteError(Wi);
7: AEi−t = AbsoluteError(Wi−t);
8: if state==None and AEt > a ∗ AEt−1 then
9: Wadaptive = Wadaptive U di;

10: state = warning;
11: count = count + 1
12: else
13: break;
14: end if
15: if state==warning then
16: if count < n then
17: if AEi > a ∗ AEi−t then
18: count = count + 1;
19: else number==m
20: state = NULL;
21: number = 0;
22: number = number + 1
23: end if
24: end if
25: else
26: state = driftwarning
27: end if
28: if state = driftwarning then
29: Compute sample mean and variance of Wadaptive and Tdown denote as µwadaptive,
30: µtdown and σ2

wadaptive, σ2
tdown;

31: compute double-sided statistics t1;
32: if t1 ≥ tα(2n− 2) then
33: return concept drift sample Wadaptive;
34: state = None;
35: else
36: state = None;
37: end if
38: end if
39: end for
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3.2. AWS-Tradaboost

After detecting concept drift in the previous section, we need to use the concept drift
samples to train a new base model. However, the based model may not be adequately
trained due to few concept drift samples. This paper used sample domain transfer learning
to solve this problem. Tradaboost is a classical sample domain transfer learning algorithm,
which continuously reduces the impact of bad data by iterating data weights. During
iteration, when the prediction error of a sample in the source domain is large, the influence
of the sample on the new base model in the next iteration is weakened by reducing the
weight of the sample. It is considered that the training of a sample is insufficient when the
model has a large prediction error for this sample in the target domain, and the weight of
this sample needs to be increased to better train this sample in the next iteration. The model
can better fit the target domain data, and the samples in the source domain data that are
closer to the target domain distribution will obtain higher weights through several iteration.
However, this algorithm only updates the sample weights according to the current iteration,
ignoring the impact of historical iterations on the construction of the current base model.
In this paper, we propose an accumulation weight sampling (AWS) method to select the
samples with the largest cumulative contribution to the base model training during the
iteration process for the next iteration. The current iteration is denoted as c, and we need a
two-dimensional list of the weights W of each sample in the historical iterations, so that
W is denoted as W = [[w1

1, w2
1, . . . , wc

1], . . . , [w1
m, w2

m, . . . , wc
m]], where m is the number of

samples in the source domain. The algorithm is described in Algorithm 2.

Algorithm 2 AWS.

Input: weight vector W, source domain sample (Tsource)
Output: the specified number of samples with the largest cumulative contribution D

′

1: Step 1: Calculation of cumulative weighted contribution:
2: [awc = [wac

1 , wac
2 , . . . , wac

m ]
3: where is expressed as follows:

4: wac
i =

c
∑

j=1
λc−jwj

i

5: Forgetting factor: The further away from the current
6: iteration, the smaller the contribution to the current base
7: model
8: Step 2: The k samples with the largest cumulative
9: contribution are selected and recorded as D

′

We need to calculate the similarity between the current drift sample and each historical
data block using dynamic time warping (DTW), and the index corresponding to the historical
data block with the highest similarity is recorded as index = arg minm

i=1(DTW(Di, Dcurrent)),
then return the historical data block Dindex corresponding to the index and the base model
Mindex. We took this historical data block as the source domain dataset Tsource = Dindex;
the sample size is denoted as S; the concept drift sample was taken as the target domain
dataset Ttarget; the data size is T. In Algorithm 3, we first complete a series of initialization
operations including: merging the source and target data to form a new training dataset,
setting the maximum number of iterations N, and initializing the weights of the merged
dataset w1 and the weights of the learning machine ρ. Then, the samples with the largest
cumulative contribution to the base predictor training are selected using the AWS algorithm
for building the training set of the predictor. Then, calculate the prediction errors of the trained
model in the source and target domains, and finally, the weights of the source and target
domains are updated in each round of iteration. If the prediction error of the sample in the
source domain is larger, it means that the sample is less relevant to the target domain, and the
weight of the sample needs to be reduced to reduce its influence. Conversely, if the sample in
the target domain has a large prediction error, we need to reduce its weight to improve his
impact in the next round, and the final predictor is returned when the number of iterations
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reaches the maximum N. Therefore, the specific steps of Tradaboost based on cumulative
weighted sampling are shown in Algorithm 3.

Algorithm 3 AWS-Tradaboost.

Input: Tsource: original domain sample; Ttarget: original domain sample; Mindex: the
index of Tsource; N: the maximum number of iterations;

Output: new base model Mnew
1: Initialize: The initial weight vector:
2: w1 = (w1

1, w1
2, . . . w1

S+T)

3: where w1
i = {1/T,i=1,2,...T

1/S,i=T+1,...S+T wac = [[w1
1], . . . , [w1

T ]]

4: ρ = 1/(1 +
√

2 ln N))
5: for t = 1, 2, . . . , N do
6: D = AWS(Tsource, wac) + Ttarget
7: Mindex = train(Mindex, D)
8: calculate error on Tsource, Ttarget:

9: ε =
S+T
∑

i=1
wt

i ∗ (
abs(y−ŷt

i )

max(abs(y−yt))
)

2

10: βt = ε/(1− ε)
11: if i<S then
12: wt+1

i = wt
i · ρ

abs(yi−ŷt
i )

13: else
14: Wt+1

i = wt
i · βt

abs(yi−ŷt
i )

15: end if
16: update cumulative weight:
17: wac = [[w1

1, . . . wi
1], . . . , [w1

T , . . . , wi
T ]]

18: end for

3.3. Ensemble Incremental Models

In this paper, a model buffer was designed to store all the base models corresponding
to the current prediction task, and we chose the temporal convolutional network (TCN) as
the base model.

The weights of each base model are the most critical factor affecting the prediction
performance of ensemble model. Hence, we designed a novel weight update strategy
in this paper, which enables the model to adapt to the current electricity load data. We
describe our model weight update scheme in detail.

When concept drift occurred, we collected concept drift samples and trained a new
base predictor using the AWS-Tradaboost algorithm in Section 3.2 and then added the
newly trained base predictor to the model buffer pool. The following scheme was designed
to update the model weights of each base predictor:

(1) Take out the conceptual drift sample of the adaptive window in Section 3.1 denoted
as D = (D1, D2, . . . , Ddt); dt denotes the sample size of the drift sample.

(2) Update and normalize the data weights of the conceptually drifted samples. Pre-
dict D using the ensemble model prior to the addition of the new base predictor while
calculating the relative error of the prediction results, denoted as E = (E1, E2, . . . , Edt),
where Ei is denoted as follows:

Ei = |Ht−1(xi)− yt
i |)/(max(Ht−1 − yt) (3)

where Ht−1(xi) represents the predicted value of the ensemble model before adding a new
base predictor. t represents the number of base models of the ensemble model.

We first calculate the weights of the concept drift samples by using the following equation.

Wt
i = (1/dt) · eri

(1−eri)), i = 1, 2, . . . , dt (4)



Sustainability 2022, 14, 14205 9 of 16

dt denotes the sample size of the concept drift sample. By endowing the concept drift
sample, data weights are used to balance the prediction error of the ensemble model after
adding the new base predictor. The data weights are normalized:

Wt
i =

Wt
i

t−i
∑

j=0
Wt−j

i

(5)

(3) Construct new concept drift samples Dnew by assigning the above weight.

Dnew = (D1 ∗Wt
1, D2 ∗Wt

2, . . . , Ddt ∗Wt
dt
) (6)

(4) Evaluate the prediction error of all base predictors hk(k = 1, 2, . . . , t) in the model
buffer pool on Dnew:

ERt
i = abs(hk(xi)− yt

i)/(max(abs(hk − yt)) (7)

(5) Then, the regression error rate and the regularization error rate are calculated
as follows.

ek =
dt

∑
i=1

Wt
i · ERi (8)

βk =
ek

1− ek
(9)

(6) Finally, the weights of each base model are obtained as follows:

Wk =
(1/βk)

(
t

∑
k=1

(1/βt
k))

(10)

4. Research Results
4.1. Dataset Description

This paper conducted an experimental evaluation using the PRECON [33] dataset,
which records the electricity consumption patterns of 42 households in Pakistan with vary-
ing financial status, daily routes, and load profiles between June 2018 and September 2019.
The sampling frequency of the original data is once a minute, and in this paper, we re-
sampled its frequency to once an hour; after resampling, each household contained about
8760 electricity load data. Due to the large number of households involved in the PRECON
dataset, it is not possible to clearly and concisely present the algorithm’s prediction results
on all households; we conducted experiments on the electricity loads of most households
and, finally, selected four households (house3, house8, house13, house25) with more sig-
nificant conceptual drift in the electricity load data and present the algorithm’s prediction
results on these four households. The ratio of training set and test set was set to 7:3, so the
test sets of all four datasets were the electricity load data between 12:00 on 11 February 2019
and 23:30 on 31 May 2019.

We selected the house8 datasets for further analysis. In a non-stationary time series, the
distribution and properties of the data change significantly over time, which poses a great
challenge and difficulty in the task of short-term electricity load forecasting. This paper
used the KPSS test to assess whether the house8 electricity load dataset was stationary.
KPSS determines whether a time series is stationary (trend stable) around a defined trend.
The original hypothesis was that: the series is trend-stationary. In the KPSS test, if the test
statistic is greater than the critical value, the null hypothesis is rejected, indicating that the
series is non-stationary.
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It can be seen from Table 1 that the test statistic of house8 in the KPSS test was greater
than all critical values, which indicates that the electricity load dataset of house8 is non-
stationary. This inevitably increases the difficulty of short-term electricity load forecasting.

Table 1. KPSS test results of house8.

Dataset KPSS

stat T(α)

1% 2.5% 5% 10%

House8 2.06 0.739 0.674 0.463 0.347

Figure 2 shows a part of the test set of house8. The continuous black curve in the
figure represents the normally distributed electricity load data; the green square part
represents the data segment with concept drift; the blue dot part is the data caused by
noise fluctuations.�����������	
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Figure 2. Image presentation of house8.

4.2. Evaluation
4.2.1. Comparison Algorithms

In order to evaluate the performance of AWS-DAIE, we compared it to some excellent
offline training-based and incremental-based classical algorithms in recent years, and the
results of the experiments are presented in Section 4.2.3. The compared algorithms included
(1) a hybrid of the temporal convolutional network and gated recurrent unit (TCN-GRU) [34],
(2) a novel hybrid CNN with LSTM autoencoder-based framework (CNN-LSTM-AE) [35],
(3) an incremental ensemble for electricity load model (IncEnsemble) [36], and (4) an incre-
mental ensemble LSTM model (IncLSTM) [37].

Among the above algorithms, TCN-GRU and CNN-LSTM-AE are both traditional
offline time series forecasting algorithm. InEnsemble incrementally updates the model
using batches of newly incoming electricity load data, that is using quantitative updates to
adapt to changes in the data distribution, while IncLSTM is an incremental learning time
series forecasting model using transfer learning and ensemble learning, and the base model
is a bidirectional LSTM.

4.2.2. Evaluation Metrics

In order to evaluate the prediction performance of the proposed AWS-DAIE and to
compare the performance with the above-mentioned algorithms, some metrics need to
be determined to measure the performance of each model on the short-term electricity
load forecasting task. X = (X1, X2, X3, . . . , XT) is the original electricity load observations’
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values and predicted values X̂ = (X̂1, X̂2, X̂3, . . . , X̂T), where X denotes the average of
the electricity load observations values. In this paper, we used the following four metrics:
root-mean-squared error (RMSE), mean absolute error (MAE), symmetric mean absolute
percentage error (SMAPE), and R2, which are represented as shown below:

MAE =
1
m

m

∑
i=1
|Xi − X̂i| (11)

RMSE =

√
1
m

m

∑
i=1

(Xi − X̂i)
2

(12)

SMAPE =
1
m

m

∑
i=1

|Xi − X̂i|
|(|Xi|+ |X̂i|)/2|

(13)

R2 = 1−

m
∑

i=1
(Xi − X̂i)

2

m
∑

i=1
(Xi − X2)2

(14)

where m denotes the length of the test set. In general, the lower the first three metrics and
the higher the last one, the higher the prediction accuracy of this algorithm is. Meanwhile,
in order to reduce the influence of random factors in the experiment on the performance
evaluation of the algorithm, 10 independent repetitions of each algorithm were conducted
on all datasets, and the average result of the 10 experimental results was taken as the
final result.

4.2.3. Experimental Results

This section presents the experimental results of AWS-DAIE and the comparison of
AWS-DAIE algorithm and several other excellent algorithms on the datasets mentioned
above. The experimental setup and the experimental environment should be as similar as
possible. The following describes the parameter settings for each algorithm; some uniform
settings are described below: the optimizer was Adam, which constructs the input data
in a sliding window of window size tw = 6, batchsize = 128, and NVIDIA GeForce GTX
1650Ti was used to accelerate the training of the models in a windows 10 environment. The
parameters of each model were set as follows:

a. TCN-GRU: A TCN model with a kernel size of 3; the number of filters is 64; dilation
factors were set to 1, 3, 5, and 7. There were four GRU layers with 64 neurons. The last
layer of the GRU was connected to two fully connected layers with 32 and 16 neurons,
respectively.

b. CNN-LSTM-AE: Two Conv1D layers with 64 filters. There were four LSTM layers with
64 neurons, fully connected layers with 32 and 16 neurons, respectively, a maximum
pooling layer step size of 2, a a kernel size of 3.

c. InEnsemble: The base model of ensemble learning model included regression algo-
rithms (MLR, SVR), time series analysis models (AR, Holt–Winters, ARIMA,
and so on).

d. IncLSTM: The number of initial base models was 4; the base model as a fully connected
layer with three layers with 64 neurons and two fully connected layers with 32 and
16 neurons, respectively.

e. AWS-DAIE (proposed): The size of the initial model pool was 4, and the TCN was
selected as the base model. The parameters of there TCN were as follows: the kernel
size was 3; the dilation factor was set to 1, 3, 5, and 7; the number of filters was 64; the
number of neurons was 32 and 16 fully connected layers, respectively.

This section gives the experimental results of AWS-DAIE on four datasets and plots the
associated experimental results. In addition, the prediction performance of the AWS-DAIE
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algorithm was compared with other excellent algorithms. Figure 3 shows the prediction
accuracy metric of several classical time series forecasting algorithms and the proposed
AWS-DAIE algorithm on the four households (house3, house8, house13, and house25) of
the PRECON dataset. It can be seen from the table that the performance of each algorithm
on house3 was relatively the same, while the prediction performance of each algorithm
on the house8, house13, and house25 datasets was significantly different. The AWS-DAIE
model outperformed the other algorithms in the MAE, RMSE, and R2 on all four datasets,
while the SMAPE on the house3 dataset was slightly inferior to the IncLSTM algorithm,
but better than the remaining algorithms. Specifically, the MAE of AWS-DAIE on the four
datasets was on average 2.40% and 1.16% lower than the two offline algorithms and the
two incremental algorithms, respectively. The RMSE on the four datasets was on average
5.10% and 1.60% lower than the two offline algorithms and the two incremental algorithms,
respectively. The SMAPE of AWS-DAIE on the rest of the datasets except house3 was on
average 4.55% and 2.48% lower than the two offline algorithms and the two incremental
algorithms. SMAPE on house3 was 0.03% higher than IncLSTM, but lower than the other
algorithms. Finally, on the R2 metric, AWS-DAIE improved the R2 on the four datasets by
an average of 11.63% and 4.55% over the two offline algorithms and the two incremental
algorithms, respectively.
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excellent prediction accuracy. As can be seen from these Figure above, the prediction accu-
racy of the incremental learning-based short-term electricity load forecasting algorithms are
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The proposed AWS-DAIE model not only has a significantly better prediction accuracy
than the offline learning-based short-term electric load forecasting model, but also achieves
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Although the AWS-DAIE algorithm had a slightly higher SMAPE on house3 than the
IncLSTM algorithm, on other metrics, the AWS- DAIE algorithm significantly outperformed
the other algorithms on all other metrics, and overall, the AWS-DAIE achieved the most
excellent prediction accuracy. As can be seen from these figures above, the prediction
accuracy of the incremental-learning-based short-term electricity load forecasting algo-
rithms were significantly better than the offline-learning-based short-term electricity load
forecasting algorithms regardless of the dataset. This is because the offline model only uses
historical data to build a prediction model and ignores the new information brought by new
data, which makes the model unable to adapt to the concept drift existing in non-stationary
electricity load data, which also shows that, when predicting non-stationary time series, it is
necessary to update the model when the model does not adapt to the current environment.
The proposed AWS-DAIE model not only had a significantly better prediction accuracy than
the offline-learning-based short-term electricity load forecasting model, but also achieved
a higher prediction accuracy than the other two incremental-learning-based short-term
electricity load forecasting models; this was due to the fact that the proposed AWS-DAIE
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avoids some invalid updates in the process of making short-term electricity load forecasts,
and the incremental updates are more in compliance with the changes in electricity load
distribution patterns, which also proves that the proposed AWS-DAIE model is able to
adapt to conceptual drift in electricity loads in a more timely and accurate manner and
can reflect the changes in electricity loads more effectively. The prediction result graph is
shown in Figure 4.�����������	
���� ��������
����

����	����	��������� �����������!�������������"�#���� $�%�


��������"�#���� $�%�


���&�������������
���� ���
(a) house3

�����������	

��� �������������

����	����	����� ���!�����������"�������������#�$����!%���


��������#�$����!%���


���&������������������ ���
(b) house8�����������	

��� ���������
����

����	����	��������� �����������!�������������"�#���� $�%�


��������"�#���� $�%�


���&��������������
���� ���
(c) house13

�����������	
���� ��������������

����	����	����� ���!�����������"�������������#�$����!%�&�


��������#�$����!%�&�


���'������������������� ���
(d) house25

Figure 4. Graph of prediction results for each algorithm on four household electricity load datasets.

Figure 5 presents the prediction error absolute value result graphs of AWS-DAIE and
other compared algorithms, and Figure 5a–d show the prediction error absolute value
curves of each algorithm on house3, house8, house13, and house25, respectively; the curves
with red dots in the figure represent the proposed AWS-DAIE algorithm’s absolute error
graph. It can be seen from the figure that the absolute prediction error curve of the proposed
AWS-DAIE algorithm was located below the absolute prediction error curve of the other
compared algorithms most of the time, regardless of which dataset it was used on, which
means that the prediction value of the proposed AWS-DAIE was closer to the real observed
value of the electricity load than the other compared algorithms most of the time. It is
not difficult to see that the absolute value curve of the prediction error of AWS-DAIE was
relatively less fluctuating compared with the other algorithms, which further indicates that
the AWS-DAIE algorithm is more stable and reliable than the other compared algorithms
in dealing with the concept drift that occurs in the electricity load. In summary, AWS-DAIE
showed better prediction capability compared to both the offline-learning-based algorithms
and traditional incremental-learning-based algorithms.

Although the obvious way to compare forecasting performance between algorithms
in a time series forecasting task is based on the forecasting performance evaluation metrics
described above, this does not allow determining whether the differences between model
forecasting performance are significant, which requires the use of other methods, and the
Diebold–Mariano test was chosen for testing in this paper. The Diebold–Mariano test is
essentially a t-test used to assess the relative performance between models. It has been
modified recently, so that the test statistic is based on a single time series of error differences,
d12, defined as follows:

DM12 = d12/σd12 (15)

d12 =
1
N

N

∑
i=1

((e1)
2 − (e2)

2) (16)



Sustainability 2022, 14, 14205 14 of 16

where N denotes the sample size, d12 is the difference in the mean-squared error of the two
models, d12 and σd12 are the mean and standard deviation of d12, respectively, and e1 and e2
are the prediction errors of the two models compared, respectively. In this paper, we chose
the MAPE as the prediction error. In general, a larger DM12 means that Model 1 performs
worse than Model 2, and a positive statistic means that the column model outperforms the
row model.�����������	
���� �����������
����

����	����	������� �����������!������������"����� #�$�


�������"����� #�$�


��%�&����������������
���� ���
(a) house3

�����������	
���� ����������������

����	����	���� ��!�����������"������������#�����!$���


�������#�����!$���


��%�&��������������������� ���
(b) house8�����������	

��� ������������
����

����	����	������� �����������!������������"����� #�$�


�������"����� #�$�


��%�&�����������������
���� ���
(c) house13

�����������	

��� �����������������

����	����	���� ��!�����������"������������#�����!$�%�


�������#�����!$�%�


��&�'���������������������� ���
(d) house25

Figure 5. Absolute value graph of prediction error for each algorithm on four household electricity
load datasets.

As shown in Table 2, the proposed AWS-DAIE model and the rest of the comparison
models were performed in this experiment with the Diebold–Mariano test on all electricity
load data, and it can be seen that DM12 was positive on all four datasets, which means
that the proposed AWS-DAIE outperformed several other algorithms, and the incremental-
learning-based model outperformed the offline-learning-based model.

Table 2. Diebold–Mariano test.

house3 house8 house13 house25

AWS-DAIE AWS-DAIE AWS-DAIE AWS-DAIE

TCN-GRU 6.24 6.22 6.03 7.53
CNN-LSTM-AE 5.66 5.97 6.19 6.71
InEnsemble 2.98 4.20 3.32 3.83
IncLSTM 2.97 3.17 2.97 3.25

5. Conclusions

Deep learning has been widely used in the field of short-term electricity load forecast-
ing, but these batch offline models cannot accommodate the concept drift that exists in
electricity load data, while the prediction accuracy of the models is subsequently reduced.
Regular quantitative update models can adapt to the concept drift to some extent, but there
are a large number of invalid updates, which cannot meet the power system’s real-time
response needs.

The incrementally ensemble short-term electricity load forecasting model based on
sample domain adaptation proposed in this paper can effectively solve the above problems.
The model is able to update the ensemble model incrementally only after detecting the
concept drift of the current electricity load data. Meanwhile, to address the problem that the



Sustainability 2022, 14, 14205 15 of 16

base predictor cannot be adequately trained due to the few concept drift samples, this paper
fully considered the contribution of historical iterations to the construction of the current
base predictor and designed a Tradaboost based on cumulative weighted sampling to better
construct the new base predictor. The electricity loads of four households from the PRECON
dataset were evaluated, and the proposed algorithm achieved higher prediction accuracy
than some current classical offline models, online models, and incremental learning models,
which can effectively capture the trend of electricity load and better meet the needs of
electricity power systems.

Our research considered concept drift in electricity load forecasting, but did not quan-
tify the extent to which concept drift affects the prediction results of the model. In future
work, we will deeply explore and quantify the impact of concept drift on model prediction.
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