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Abstract: This paper presents a new robust scheduling model for an islanded microgrid (MG) consid-
ering demand response. The model is expressed as a min–max bilevel optimization problem that
tries to minimize the total costs of MG including operation cost of conventional distributed genera-
tors, energy storages, renewable energy sources (RES), cost of load shifting, and interruptible/non-
interruptible load shedding in the worst situation of uncertainties. The uncertainties associated with
renewable power generations and MG demand are modeled via robust optimization method. A
hybrid method based on the genetic algorithm (GA) and mixed-integer programming technique is
utilized to solve the bilevel optimization problem. The proposed model is utilized on a typical MG,
and the outcomes are analyzed to show the effectiveness of the proposed method.

Keywords: demand response; islanded microgrid; scheduling; robust optimization

1. Introduction

The main parts of microgrids (MG) are renewable energy sources (RESs), which are
growing, mainly driven by energy policies and incentives [1–3]. For example, a study by
the International Energy Agency (IEA) showed that the total installed capacity of RESs
in the world will be tripled by 2040, which will produce 41% of the total electricity in the
world [4]. In addition, one of the main benefits of MGs is the capability to work in island
mode to serve the local loads [5,6]. This application is especially helpful in the case of major
events. However, the uncertainties mainly imposed by RESs may affect and reduce the
performance of MGs [7]. Therefore, scheduling of MGs in the islanded mode has great
importance and must also consider the uncertainties.

So far, MG scheduling has been discussed from different viewpoints by several re-
search works. Parhizi et al. [8] provided a comprehensive review of the literature. The
studies in this area focused on (i) grid-connected scheduling of MG, and (ii) scheduling in
islanded conditions. In the grid-tied mode, MG can exchange power with the main grid and
trade energy in the market. Therefore, the objective is usually to maximize the MG owners’
profit [9]. In [9], a robust market-based MG scheduling was presented with the aim of
maximizing the profit of MG owners. Shi et al. [10] presented a stochastic bidding strategy
for MGs to participate in both energy and reserve markets. Liu et al. [11] proposed a hybrid
robust–stochastic model for optimal bidding strategy of MG where the uncertainties in
renewable power generation and day-ahead market tariffs were modeled via scenarios,
while the supply–demand balance in the real-time market was considered using the robust
optimization (RO) method.
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Studies considering islanded MGs usually focused on technical issues such as fre-
quency control, load sharing, load shedding, stability, voltage control, and energy man-
agement [12–16]. However, there are a few research studies that discussed the scheduling
of MGs in island mode. Conti et al. [17] presented a deterministic scheduling model that
uses an evolutionary algorithm to minimize the overall MG’s operating cost and emissions.
Farzin et al. [18] presented a stochastic energy management model during unscheduled
islanding events, initiated by disturbances in the upstream network. In the papers pre-
sented by Lazar et al. [19], Wu et al. [20], and Zia et al. [21], deterministic models for
optimal operation of islanded MGs were proposed that were solved using mixed-integer
programming solvers and evolutionary algorithms such as particle swarm optimization
(PSO). The authors of [22] presented a secondary control of an islanded MG with a PSO to
determine the optimal operation of the biomass and photovoltaic units within an MG. The
authors of [23] used a quantum teaching learning-based optimization method to enhance
energy flow in an MG. In [24], an intelligent decentralized energy management system
(EMS) was presented for an isolated MG to achieve an efficient charging of electric vehi-
cles. The authors of [25] introduced another EMS relying on battery logistics. A tri-stage
scheduling method utilizing a quantum adaptive sparrow search algorithm was introduced
in [26]. Elgamal et al. [27] designed an optimal next-day power schedule in an isolated MG.
The authors of [28] presented a seasonal spinning-reserve schedule for an islanded MG
considering contingency conditions. For islanded multiagent MGs, the authors of [29] used
the peer-to-peer (P2P) management concept to present an energy schedule. Wahid et al. [30]
presented an intelligent control method to share the power among PV-based MG groups
with the management of connected loads. In [31], Kumari used the cuttle fish (CFA) and
crow search (CSA) algorithms to present an optimal schedule for MGs with multiperiod
islanding restrictions. The authors of [32] presented a robust schedule using a two-stage
adaptive robust optimization to minimize the total operation expense of networked MGs
in the worst-case scenario considering uncertainties.

To offset the power fluctuations, demand-side flexibility is an effective solution [33].
The authors of [34,35] reviewed the flexibility potentials of demand sectors, including
residential, industrial, commercial, and agricultural, to smooth the integration of RESs
into power systems. Electric vehicles can be leveraged as a distributed and fast-response
load in markets to participate in demand response programs for increasing the energy
efficiency, providing frequency regulation services, and gaining economic profits [36–41].
An optimized strategy for participation of a demand response aggregator in both day-ahead
and balancing markets was developed in [42]. An extension of the previous publication
developing a price-maker aggregator to coordinate a large fleet of electric vehicles was pro-
posed to participate in a three-settlement pool-based market [43]. A stochastic optimization
method was presented for the energy market operations considering demand response
in [44] to design an optimal economic schedule for MGs, and the results confirmed the
reduction in operating cost using the proposed method. In [45], a robust control strategy
for demand-side management of multicarrier MGs was proposed that employed the model
predictive control approach to deal with uncertainties. The model was eventually linearized
to attain a mixed-integer linear programming (MILP) problem to be easily solved by com-
mercial solvers. The authors of [46] presented a stochastic multi-objective optimization for
the networked microgrids energy management considering demand response programs. A
summary of the presented research and our proposed model is presented in Table 1.
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Table 1. Taxonomy of related research works.

References Uncertainty
Modeling

Demand Response
Program Solution Method

[17,20,21] - - Metaheuristic
algorithms

[18,19] Stochastic
programming - MILP solver

[25] Information gap
decision theory - Bender

decomposition

[26] Information feedback
mechanism -

Quantum adaptive
sparrow search

algorithm

[27] Stochastic
programming Bat algorithm

[32] Robust optimization - Column and
constraint generation

[44] - 3

Water wave
optimization

algorithm

[45] Robust model
predictive control - MILP solver

[46] Stochastic
programming 3

Multi-objective
compromised

program method

Proposed approach Robust optimization 3 Hybrid GA–MILP

According to the reviewed papers, in islanded mode, MGs try to minimize the total
operation expense to serve the local loads. Thus, in this condition, demand response
programs such as load shifting and prioritized load shedding are more important than the
grid-connected condition due to lack of supply. Furthermore, the scheduling of islanded
MGs should be robust against uncertainties to reduce the negative impacts of unexpected
events. In other words, the islanded MGs should be operated according to the worst case
of uncertainties to be able to supply as much of the load as possible without curtailment.
Therefore, this paper develops a new robust scheduling model for islanded MGs consider-
ing the demand response. This framework enables MG owners to make robust decisions
for operation and development of MGs. The model minimizes the total operating costs of
MGs including operation cost of conventional distributed generators (DGs), energy storage,
RESs, cost of load shifting, interruptible/non-interruptible load shedding in worst-case
situations of uncertainties in demand, and RES production, which are determined using
the RO method. The problem is modeled as a bilevel optimization problem utilizing a
hybrid method based on a genetic algorithm (GA) and an available MILP solver. The main
contributions of the paper can be summarized as follows:

• A novel robust scheduling model is developed for islanded MGs to withstand the
negative impacts of unexpected events.

• The ability of load shedding and load shifting in islanded mode is employed to smooth
the transition.

The remainder of the paper is organized as follows: Section 2 presents the mathemati-
cal formulation of the scheduling of an islanded MG. The proposed solution methodology
is provided in Section 3. Simulation results and discussions are reported in Section 4. Lastly,
the summary and conclusions are presented in Section 5.
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2. Problem Formulation

In this section, we provide the mathematical formulation of the suggested islanded MG
scheduling model illustrated in Figure 1. The islanded MG in this work is a local electrical
grid with dispatchable DGs, wind and solar power production units, battery energy storage
systems, and two types of electrical loads, i.e., interruptible and non-interruptible loads.
The mathematical formulation of the suggested islanded MG scheduling is provided in
this section. The model is a bilevel optimization problem. Herein, the first level determines
the worst-case scenario of uncertainties, and the second level finds the best action to
minimize the MG’s operation expense. It should be noted that, without loss of generality,
the proposed formulation can be extended to multicarrier energy MGs by adding the
constraints for other energy carriers.
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2.1. First-Level Problem

The mathematical formulation of the first-level problem (FLP) is as follows:

max
u∈U, x∈X

Q(x, u), (1)

where u, U and x, X are the index and set of uncertainties and the index and set of decision
variables in the second-level problem (SLP), respectively. In this work, the set U consists
of the production of wind and solar units (Pwt

i,t , Ppv
i,t ) and local loads (PDt), which are

constrained using Equations (2)–(4).

Pwt
i,t ≤ Pwt

i,t ≤ Pwt
i,t . (2)

Ppv
i,t ≤ Ppv

i,t ≤ Ppv
i,t . (3)

PDt ≤ PDt ≤ PDt. (4)
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2.2. Second-Level Problem
2.2.1. Objective Function

The mathematical representation of Q(x, u) in Equation (1) is as follows:

Q(x, u) = min
x∈X

∑
t∈T

ρsh
t PSt

+ ∑
t∈T

(
∑

i∈NDG
AiWi,t + BiPDG

i,t + Ii,tCSi + Fi,tCDi + ∑
i∈RE

Ci Mi,t

+ ∑
i∈BAT

αi + βi

(
Pch

i,t + Pdis
i,t

)
+ ρNIL

t PNIL
t + ρIL

t PIL
t

)
,

(5)

where X =
{

PSt, PDG
i,t , Pch

i,t , Pdis
i,t , SOCi,t, PNIL

t , PIL
t , Wi,t, Ii,t, Fi,t, Zch

i,t , Zdis
i,t

}
is the set of

SLP decision variables.

2.2.2. Constraints

The first constraint of SLP is the equality of supply and demand:

∑
i∈NDG

PDG
i,t + ∑

i∈BAT

(
Pdis

i,t − Pch
i,t

)
+ PSt − PS′t + PIL

t + PNIL
t

= PDt − ∑
i∈RE

(
Pwt

i,t + Ppv
i,t

)
; ∀t ∈ T,

(6)

PSt = PS′t+h ; ∀t ∈ T, (7)

0 ≤ PSt ≤ PSmax ; ∀t ∈ [e, e + n− 1], (8)

PSt = 0 ; ∀t /∈ [e, e + n− 1], (9)

PSt = PSt′ ; ∀t, t′ ∈ [e, e + n− 1], (10)

where, Equation (6) is the power balance constraint considering load shifting. Equation (7)
gives the amount of load that shifts from t to t + h. Equations (8)–(9) enforce the shiftable
load limitations. The PSt is the amount of load that would be cut in the time interval
t ∈ [e, e + n− 1], and PS′t+h is the amount of load that would be added in the time interval
t ∈ [e + h, e + h + n− 1]. Equation (10) ensures that the same amount of load is shifted
during the shifting interval t ∈ [e, e + n− 1]. For example, assume that we are going to shift
a maximum of 200 kW of the load (PSmax = 200 kW) from interval t ∈ [18, 20] to interval
t ∈ [22, 24], i.e., e = 18, n = 3, and h = 4. For instance, the optimization may obtain a
solution that 120 kW of load at each of t = 18, t = 19, and t = 20 is cut and transferred
to each of t = 22, t = 23, and t = 24. Note that, in the model, PSmax is introduced
as input data.

In the above equations, the demand shift occurs only once during the scheduling time
frame. Moreover, we considered only one load with one shifting time interval. However,
the model can be easily extended to consider multiple loads with multiple shifts during a
day and different shifting time intervals for different loads since shifting time intervals and
shiftable loads are considered in the model as input data.

Other constraints of the SLP are the technical limits of conventional DGs, energy
storage systems, and load curtailment, as described below.

(1) Conventional DG constraints: Technical constraints of conventional DG units
include the upper and lower generation limits (Equation (11)), ramp-up and ramp-down
constraints (Equations (12) and (13)), minimum up/down time constraints (Equations
(14)–(17)), and the constraints to ensure that the status binary variables (W, I, F) work
without any conflicting situation (Equations (18)–(20)).

PDG
i,minWi,t ≤ PDG

i,t ≤ PDG
i,maxWi,t; ∀i ∈ NDG, t ∈ T. (11)

PDG
i,t+1 − PDG

i,t ≤ RUP
i ; ∀i ∈ NDG, t ∈ T. (12)
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PDG
i,t − PDG

i,t+1 ≤ RDN
i ; ∀i ∈ NDG, t ∈ T. (13)

k−1

∑
t=k−TUP

i

Wi,t ≥ TUP
i Fi,k ; ∀k = UFi + 1, . . . , 24− TDN

i + 1. (14)

UFi

∑
t=1

Wi,t ≥ UFi. (15)

k−1

∑
t=k−TDN

i

(1−Wi,t) ≥ TDN
i Ii,k ; ∀k = DFi + 1, . . . , 24− TUP

i + 1. (16)

DFi

∑
t=1

Wi,t ≥ 0. (17)

24

∑
t=k

Wi,t − Ii,k ≥ 0 ; ∀k = DFi + 1, . . . , 24− TUP
i + 1. (18)

24

∑
t=k

1−Wi,t − Fi,k ≥ 0 ; ∀k = UFi + 1, . . . , 24− TDN
i + 1. (19)

Wi,t −Wi,t−1 − Ii,t + Fi,t = 0 ; ∀i ∈ NDG, t ∈ T. (20)

(2) Energy storage constraints: The technical constraints of energy storage devices are
power constraints (Equations (21)–(23)) and energy constraints (Equations (24) and (25)).

0 ≤ Pch
i,t ≤ Pch

i,maxZch
i,t ; ∀i ∈ BAT, t ∈ T. (21)

0 ≤ Pdis
i,t ≤ Pdis

i,maxZdis
i,t ; ∀i ∈ BAT, t ∈ T. (22)

Zch
i,t + Zdis

i,t ≤ 1 ; ∀i ∈ BAT, t ∈ T. (23)

SOCi,t+1 = SOCi,t +
ηchPch

i,t dT

EBATmax

−
Pdis

i,t dT

ηdisEBATmax

; ∀i ∈ BAT. (24)

SOCmin
i ≤ SOCi,t ≤ SOCmax

i ; ∀i ∈ BAT, t ∈ T. (25)

(3) Interruptible and non-interruptible load curtailment limits: In this work, we as-
sume that there are two types of loads: interruptible (controllable) and non-interruptible
(non-controllable) [47,48]. The non-interruptible load is a kind of load that the MG owner
tries not to curtail. In contrast, the interruptible load in this work refers to a load that can
be curtailed with a reasonable price according to a contract between the MG owner and
the consumer [47,48]. Equations (26) and (27) limit the amount of load curtailment for
interruptible and non-interruptible loads.

0 ≤ PIL
t ≤ PIL

t,max ; ∀t ∈ T. (26)

0 ≤ PNIL
t ≤ PNIL

t,max ; ∀t ∈ T. (27)

2.2.3. Computational Complexity

The proposed second-level problem of MG scheduling is an MILP optimization prob-
lem. Generally, MILP problems can be easily solved using commercial solvers such as
CPLEX to reach the guaranteed optimal solution. However, the size of MILP problems
limits the computational performance of such solvers. Therefore, Table 2 illustrates the
computational complexity of the proposed MILP problem as a function of the number
of constraints and variables. In this table, nT , nD, and nB represent the number of time
intervals, number of dispatchable DGs, and number of battery energy storage systems in
the MG, respectively.



Sustainability 2022, 14, 14194 7 of 17

Table 2. Dimension of the proposed MILP formulation.

No. of constraints 1 + nT(5 + 11nD + 6nB)
No. of continuous variables 1 + nT(3 + nD + 3nB)

No. of binary variables 3nD + 2nB

3. Solution Technique

The proposed model for scheduling of islanded MG is categorized as a bilevel opti-
mization problem. In the model, the FLP is maximized over the set of uncertain parameters
U, while the SLP is minimized over the set of operation variables X. Several methods have
been proposed to solve this kind of problem, which usually use Karush–Kuhn–Tucker
(KKT) conditions or a strong duality technique to reformulate the original bilevel prob-
lem [49,50]. Since, the SLP is a nonconvex and MILP problem, the mentioned methods
could not be utilized in this paper. Thus, the hybrid iterative method using GA and an MILP
solver, which was presented in [9], is utilized in this paper to solve the proposed model.
The reason for choosing GA over other evolutionary algorithm is that the GA is a more
mature evolutionary algorithm than others to which a toolbox in the MATLAB is assigned.

According to this algorithm, first, the GA randomly determines a set of values for the
wind and solar power production and the load on the basis of Equations (2)–(4). Then, the
MILP solver solves Equations (5)–(27), aimed at minimizing the total cost. In the next step,
GA sorts the objective functions of MILP for each individual value of Pwt

i,t , Ppv
i,t , and PDt.

Then, a new population is generated for Pwt
i,t , Ppv

i,t , and PDt using the selection, mutation,
and crossover functions of GA. Again, the MILP solver solves the SLP for new values of
Pwt

i,t , Ppv
i,t , and PDt. Lastly, these steps repeated until the maximum iteration number of GA

is reached. The flowchart of the solution algorithm is provided in Figure 2, and the steps
are described below [9].

1. Initialization:

a. Get the input data including lower and upper bound of wind and photovoltaic
generation, and load demand.

b. Set the initial population for wind and photovoltaic power generation, and load
demand using Equations (2)–(4).

c. Set the iteration counter for GA v = 1.

2. Solving SLP: Solve the SLP (Equations (5)−(27)) for each individual of the population.
3. GA algorithm:

a. Calculate the fitness function of Equation (1) using the results of the SLP for
each individual.

b. Generate new population using crossover, mutation, and selection operators
while considering Equations (2)–(4).

4. Convergence checking:

a. If the maximum number of iterations is reached, stop the algorithm.
b. If not, increase the iteration counter of GA v = v + 1, and go back to step 2.
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4. Simulation Results

The numerical results of the proposed model on a typical MG [9,10] are presented
in this section. This MG consisted of four conventional DGs, three wind units, two solar
units, and one energy storage system. The detail data for the generation units and the
hourly forecasted data of local load, as well as wind and solar power outputs, can be found
in [9,10]. It was assumed that only 30% of the load was interruptible with an interruption
cost of 330 cents/kWh. Furthermore, the penalty for interruption of remaining loads was
3000 cents/kWh. It should be mentioned that the scheduling problem was solved for 24 h.

4.1. Deterministic Model Results

In this section, the results of the proposed scheduling scheme without considering
uncertainties is reported for two cases: (i) no load shifting allowed; (ii) maximum of
120 kW of the load at time intervals [18,20] can be shifted for 4 h (i.e., PSmax = 120 kW,
n = 3, e = 18, and h = 4). To do this, the Equations (5)–(27) were executed in the GAMS
environment and solved using the CPLEX solver. Table 3 shows the summary of the
scheduling results. Furthermore, Figure 3 presents the hourly production of MG resources.
According to the results, the expected costs of scheduling are k$ 167 and k$ 90 without and
with load shifting, respectively. As can be seen, shifting 105 kW of load in hours 18, 19,
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and 20 to hours 22, 23, and 24 decreased the total scheduling cost for 46%. Moreover, it
decreased the load curtailment by about 66%.

Table 3. The deterministic scheduling model’s results.

Without Load Shifting With Load Shifting

Non-renewable DG production 8698 kWh 8961 kWh
Renewable DG production 3557 kWh 3557 kWh

Energy storage charging 235 kWh 235 kWh
Energy storage discharging 235 kWh 235 kWh

Interruptible load curtailment 400 kWh 136 kWh
Non-interruptible load curtailment 0 0

Load shifting 0 315 kWh
Total MG cost k$ 167 k$ 90
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Figure 3. The hourly production of MG resources for the deterministic model.

4.2. Robust Model Results

The results of the proposed robust scheduling model (Equations (1)–(27)) are presented
in this section. It was assumed that the uncertain parameters could vary from 95% to 105%
of their forecasted values. The model was solved using the method described in Section 3.
The number of chromosomes, population size, and maximum number of iterations for GA
were assumed to be 72, 150, and 100, respectively. Moreover, we considered the maximum
iteration as the stopping criterion and the Gaussian function for GA mutation. Table 4
illustrates the results for cases with and without consideration of load shifting, similar to
the previous section. Furthermore, Figure 4 presents the hourly production of MG resources
for the robust model. According to the results, the costs of scheduling in the worst-case
situation are k$ 272 and k$ 174 without and with load shifting, respectively. As can be seen,
shifting 110 kW of load in hours 18, 19, and 20 to hours 22, 23, and 24 decreased the total
scheduling cost by about 36%. Moreover, it decreased load curtailment by about 46%.



Sustainability 2022, 14, 14194 10 of 17

Table 4. The results of the robust scheduling model.

Without Load Shifting With Load Shifting

Non-renewable DG production 9334 kWh 9664 kWh
Renewable DG production 3198 kWh 3198 kWh

Energy storage charging 159 kWh 108 kWh
Energy storage discharging 174 kWh 132 kWh

Interruptible load curtailment 740 kWh 400 kWh
Non-interruptible load curtailment 0 0

Load shifting 0 330 kWh
Total MG cost k$ 272 k$ 174
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Figures 5 and 6 represent the worst situation of uncertainties for cases with and
without considering load shifting, respectively. As can be observed in the figures, the worst
situation of wind and solar resources was close to the lower bound most of the time, while
it was near the upper bound for the load. The results show that wind outputs had the
most distance between the forecasted and worst situation most of the times for both cases.
However, the forecast of solar output was more accurate than other uncertainties. The
reason is that solar units did not generate energy for at least one-third of a day.
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Furthermore, the fitness graph with and without load shifting cases is shown in
Figure 7. As can be seen, the proposed model converged in fewer than 15 iterations.
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Additionally, evolutionary algorithms such as GA may not reach the global optimal solution
with one run due to their random starting nature. Therefore, we ran the proposed model
several times with a different population size and maximum number of iterations. Table 5
shows the statistical results of running the GA-MILP model with and without load shifting.
As can be seen, the standard deviation of running the model was really low, indicating that
the utilized GA-MILP method could reach the optimal solution most of the time.
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Table 5. The statistical total costs of the robust scheduling model.

Without Load Shifting With Load Shifting

Minimum value k$ 257 k$ 169
Maximum value k$ 272 k$ 174

Mean value k$ 268 k$ 172
Standard deviation 0.66% 0.26%

4.3. Results Verification and Sensitivity Analysis

In this section, the results of the proposed model were analyzed to make sure that
the determined GA values for the uncertainties were the true worst-case situation. For
this purpose, 10,000 scenarios for uncertain parameters were randomly generated in the
range of 95% to 105% of the forecasted values. Moreover, the objective values of the
heuristic worst case (i.e., wind and PV set to minimum and load to maximum bound)
are reported along with the deterministic and robust schedules. Table 6 presents the min,
max, and mean values of the objective function for generated scenarios. As can be seen,
the maximum objective value of generated scenarios was k$ 241, which is less than the
value of the objective function in the robust model. In other words, the obtained values for
the uncertainties using our method led to worse situations than the generated scenarios.
Additionally, the mean value of the generated scenarios was close to the value of the
objective function in deterministic model. Furthermore, the objective values of the heuristic
worst-case situation were close to those of the robust schedules.
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Table 6. The verification results of generated scenarios.

Without Load Shifting With Load Shifting

Objective values of
generated scenarios

Minimum k$ 137 k$ 49
Mean k$ 190 k$ 92

Maximum k$ 241 k$ 139

Deterministic objective value k$ 167 k$ 90

Heuristic worst-case objective value k$ 268 k$ 171

Robust objective value k$ 272 k$ 174

In addition, a sensitivity analysis on the uncertainties was performed to determine
which of the uncertain parameters had the most impact on the scheduling problem. Ac-
cordingly, three cases were considered in which only one of the uncertain parameters could
vary between 95% and 105% of its forecasted values:

• Case1: Production of wind and photovoltaic units was equal to forecasted values, and
the load could vary between 95% and 105% of its forecasted values.

• Case2: Production of wind unit and the load was equal to forecasted values, and the
solar unit production could deviate between 95% and 105% of its forecasted values.

• Case3: Production of the solar unit and the load was equal to forecasted values, and
the wind unit production could vary between 95% and 105% of its forecasted values.

Table 7 shows the results of the above cases. As can be seen, cases 1 and 2 had the
highest and lowest objective values, respectively. In other words, the uncertainties in load
and production of the solar unit had the greatest and least impact on the model. This is
obvious since no solar power was available in at least one-third of the day. Furthermore, the
values of objective functions for case 2 and the deterministic model were almost the same.

Table 7. The objective values of cases 1–3.

Without Load Shifting With Load Shifting

Case 1 k$ 246 k$ 149
Case 2 k$ 191 k$ 89
Case 3 k$ 209 k$ 105

5. Summary and Conclusions

In this paper, a robust scheduling model was proposed for islanded MGs considering
load shifting. The uncertainties in local load and power production of wind and solar
resources were captured using a robust optimization method. The obtained bilevel MILP
optimization problem was solved using a hybrid method based on the GA and a typical
MILP solver. The results of applying the represented model on a typical low-voltage MG
were reported, and a sensitivity analysis on uncertainties was provided. The results demon-
strated that load shifting could reduce the total cost of scheduling in all cases. Moreover,
the results elaborated that the worst case occurred when the renewable DG generations
were the lowest while the load took the highest values. Moreover, it was shown that the
uncertainties in load and solar output power had the greatest and least effect on MG cost.

The proposed scheduling model in this paper could be developed and extended for
multicarrier energy MGs. Moreover, another future direction would be to propose a suitable
linearization and convex relaxation approach to combine both FLP and SLP to improve the
computational performance and accuracy of the proposed model.
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Nomenclature

Symbol Description
t, t′, k Indices of time intervals
i Index of generation units
T Set of time intervals
NDG Set of conventional DG units
RE Set of renewable DG units
BAT Set of energy storage

Parameters and Constants

Parameters Description

Pwt
i,t , Pwt

i,t
Power production’s lower and upper limits in wind unit i at time interval t,
respectively

Ppv
i,t , Ppv

i,t
Power production’s lower and upper bound in each solar unit i at time
interval t, respectively

PDt, PDt Lower and upper bound of load profile at hour t, respectively
Ai, Bi Cost function parameters of conventional DG unit i
CSi, CDi Start-up and shut-down expenses of conventional DG unit i, respectively
αi, βi Cost function parameters of energy storage i
Ci Fixed cost of renewable generator i
ρsh

t Cost of shifting load at time interval t
ρIL

t Cost of load curtailment for interruptible load at time interval t
ρNIL

t Penalty of load shedding for non-interruptible load at time interval t
PSmax Maximum allowable load shifting
PDG

i,max, PDG
i,min Upper and lower generation limits of conventional DG unit i

RUP
i , RDN

i Ramp-up and ramp-down bounds for conventional DG unit i
TUP

i , TDN
i Minimum up and minimum down time of conventional DG unit i

UFi, DFi
Required up and required down time of conventional DG unit i at the
beginning of the horizon, respectively

Pch
i,max, Pdis

i,max Limits on charge and discharge of energy storage unit i, respectively
SOCmax

i , SOCmin
i Upper and lower state of charge of energy storage unit i, respectively

ηch, ηdis Charge and discharge efficiency of energy storage units, respectively
EBATmax Installed capacity of energy storage devices
dT Duration of each time interval t, e.g., 1 h

PIL
t,max, PNIL

t,max
Maximum allowable load curtailment for interruptible and
non-interruptible loads at time interval t, respectively

n The maximum number of sequential hours that the load can be shifted
h The shifting hours for shiftable loads
e The beginning hour to shift the load
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Functions and Variables

Variables Description
PDt Power demand at hour t
Pwt

i,t , Ppv
i,t Power production of wind and photovoltaic unit i at hour t

W, I, F Commitment status (start-up and shutdown) of DGs
PDG

i,t Generated power of conventional DG unit i at time interval t
Pch

i,t , Pdis
i,t Energy storage charge and discharge ratio i at time interval t, respectively

SOCi,t State of charge of storage unit i

Zch
i,t , Zdis

i,t
Binary variables denoting charging and discharging status of energy storage
unit i at time interval t, respectively

PIL
t , PNIL

t
Load curtailment for interruptible and non-interruptible loads
at time interval t, respectively

PSt The amount of shifted load at time interval t
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