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Abstract: From a novel quantile perspective, this paper employs nonparametric quantile causality
and quantile connectedness to investigate distributional predictability and spillover effects among
new energy, steam coal, and high-tech under normal and tail conditions. We first identify the quantile
causality: there is a unidirectional causality between the quantile orders 0.1 and 0.4 from technology
high-tech to new energy, indicating that the stock price of technology companies has a predictive
power of the stock prices of new energy companies when the latter is relatively low. Next, in terms
of quantile connectedness, while the risk shocks to the system do not propagate strongly around
the median, there are strong spillover effects in both tails. Moreover, high-tech and new energy
contribute most of the system’s spillovers, and high-tech is the main net shock transmitter to all other
variables. We further find that the strength of spillovers may depend on events such as China’s stock
market rout of 2015 and the COVID-19 pandemic.

Keywords: new energy; steam coal; high-tech; nonparametric causality in quantiles; quantile
connectedness

1. Introduction

The world is facing an energy transition in response to climate change, energy security,
and environmental degradation, with substantial capital reallocated from the fossil fuel
sector to the new energy sector [1,2]. To reach a carbon peak by 2030 and carbon neutrality
by 2060, as proposed by China in September 2020, the transition of China’s energy con-
sumption structure to clean and low carbon is accelerating. In 2021, China’s clean energy
consumption accounted for 25.5 percent of total energy use and the proportion of coal
consumption dropped to 56 percent. The cumulative installed capacity for clean energy
power generation rose to 1.1 billion kilowatts, surpassing the installed capacity of coal
power for the first time, with generation capacity of hydropower, wind, solar and biomass
ranking top worldwide [3].

New energy is of great significance in achieving sustainable development, as the grad-
ual withdrawal of traditional energy should be based on the safe and reliable replacement
of new energy [4]. From the perspective of impact mechanisms, fossil energy and new
energy are alternatives, and market volatility in the traditional fossil energy industry will
significantly impact the development of the new energy industry, especially related to the
investment and return of new energy in the capital market [5]. Additionally, new energy
investments can be significantly boosted due to technological breakthroughs [6]. As a
result, investors tend to view new energy stocks as having a similar risk profile to tech
stocks [6–10]. Given that, we need to explore the linkage between fossil energy, new energy
and high technology and the potential mechanism of their impact.

Our paper expands the literature in several ways. First of all, previous studies have
mostly focused on the oil market. Considering China’s energy consumption structure,
great attention should be paid to the coal market, as coal has dominated the energy market
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for a long time [11–15], as shown in Figure 1. In compliance with the acceleration of
China’s energy transition, the supply and demand situation and price fluctuations of
the coal market are essential determinants of the replacement effect of new energy on
traditional energy. Accordingly, it impacts the stock price of new energy companies. On the
other hand, some research has documented the significant relationship between the stock
prices of new energy and technology companies in China’s financial market. Investors
should pay more attention to the volatility of technology stocks, which are one of the main
contributors to the volatility dynamics of energy companies [16]. The Central Economic
Work Conference proposed that it is necessary to tackle the critical problems of green and
low-carbon technologies according to the actual national conditions of the coal-dominated
energy structure and promote the optimal combination of coal and new energy in the
process of China’s energy transition. The core of the low-carbon economy is low-carbon
energy technology, which is based on the efficient and clean utilization of traditional fossil
energy and the replacement of new energy. Following the 21st conference of the parties
(COP21)–Paris Climate Agreement of 2015 and China’s clear carbon-neutral timetable in
2020, exploring the information flow among coal, new energy, and high-tech returns helps
identify the correlation structure of risk contagion, and we bring coal, new energy, and
high-tech into a unified framework.
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Figure 1. Energy consumption structure in China. (Source: National Bureau of Statistics).

Secondly, the crucial characteristics of tail risk transmission may be concealed in
the model using traditional conditional mean estimation [17]. Especially in recent years,
COVID-19 has superimposed political crises, and uncertainty events have increased. Under
extreme circumstances, market connections will be significantly strengthened [18]. In
this context, we are interested in the causal relationship between the three in different
quantiles. What is the magnitude and direction of the spillover effect between them? Is
there a big difference between median and tail overflow? To address these still unexplored,
we employ the nonparametric quantile causality test to measure the causal relationship at
different quantiles and extend mean-based connectedness to upper and lower quantiles to
define overflow networks under extreme conditions. We provide solid evidence for the
predictability and extreme risk spillovers of coal, new energy, and high-tech under normal
and tail conditions.

The rest of the article is structured as follows. We summarize the related literature
in Section 2. Sections 3 and 4 outline the method and data and descriptive analysis. In
Section 5, we introduce and discuss the empirical results, while the conclusion is reported
in Section 6.
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2. Literature Review

Recent related studies are summarized in Table 1. Numerous studies have explored the
relationship between oil prices and clean energy [19–22]. Hamoudeh et al. [19] examined the
causal relationship between oil price gains and volatility and five clean energy stock indices,
showing that during and before the COVID-19 pandemic, only in normal market conditions
will the oil return lead to the return of the renewable energy stock index. Clean energy stock
returns cannot predict oil returns under any market conditions. Geng et al. [22] analyzed
the dynamic impact of oil price changes on eight European clean energy companies’ stock
returns from a microscopic perspective. Another part of the literature not only focuses on
oil but also examines the relationship between fossil fuels and clean energy [2,5,9,23,24].
Umar et al. [2] found a weaker volatility link between clean energy stocks and fossil fuel
markets and contagion effects between energy markets during crises, such as the Global
Financial Crisis, oil crisis, and the COVID-19 pandemic crisis. Sun et al. [9] believed that coal
plays a dominant role in China’s energy structure, and it is unreasonable to replace fossil
fuels with oil. Using the Divisia price synthesis method to combine oil, coal, and natural
gas into a comprehensive price index resulted in a similar conclusion: the price of fossil
energy only accounts for a small part of the fluctuation of the share price of new energy
companies. Wen et al. [23] have different views, arguing that the dynamics of spillovers
between China’s new energy and fossil fuel stock are significant but asymmetric. To
identify asymmetry and extreme information spillovers, Xia et al. [5] constructed a positive
and negative return network and value at risk (VaR) network. In the VaR connectedness
network, oil and coal contribute the most to the change of China’s renewable energy returns,
and the contribution of fossil energy price change to renewable energy income has high
volatility with time. In addition, due to the long-term dominance of coal in China’s energy
structure, Lin and Chen [11] explored the dynamic links and spillover effects between the
carbon market, the coal market, and the new energy stock market to obtain the conclusions
that the coal market and new energy stock market have high volatility persistence and a
two-way spillover effect. Gu et al. [12] empirically studied the time-varying co-movement
relationship between China’s steam coal price and clean energy stock index at the sectoral
level. It was considered that there is a significant bi-directional volatility spillover between
the steam coal market and clean energy.

Cost reduction brought about by technological progress is the inherent driving force
for the sustainable development of the new energy industry. Henriques and Sadorsky [25]
developed one of the scarce studies that consider the impact of oil price movements and
technology stock prices on alternative energy stock prices, and a large body of literature has
expanded on this issue [6,7,26–29]. Specifically, Maghyereh et al. [30] and Zhang et al. [31]
focused only on clean energy technology rather than high technology, and chose the
FTSE ET50 index to represent the clean energy technology market instead of the Arca 100.
Sadorsky [7] and Zhang and Du [8] considered new energy companies’ share prices more
correlated with tech stocks than oil prices. Managi and Okimoto [27] and Bondia et al. [28]
considered possible structural transitions in the system, and Tiwari et al. [26] further
considered tail dependencies under state transitions. Fahmy [29] argued that in the period
post-Paris Agreement, for clean energy assets with strong nonlinear asymmetric persistence,
technology stock prices are the best regime driver, while the influence of oil prices is entirely
absent. Shahbaz et al. [32] showed that there is a causal relationship between the price
change distribution centers of stocks, crude oil, and clean energy using nonparametric
quantile causality. Under the bear market and bull market, the prediction ability between
stock price and technology stock price is more vital. Qu et al. [33] showed that there is
only a tiny amount of evidence to support the dramatic volatility spillover from oil to
new energy sources, suggesting that crude oil should not be used as a bellwether for new
energy volatility in China. China’s high-tech sector and low-carbon notion are the main
contributors to the volatility spillover of new energy.
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Table 1. Summary of literature among new energy, steam coal, and high-tech.

Author(s) Period Variables Modeling The Main Results

Umar et al., 2022
[2]

Jan 1, 2004 to Dec
31, 2020 (Daily)

Clean energy, oil,
natural gas, gas oil,

and fuel oil

Baruník and
Krehlík

Weak volatility connections among clean
energy stocks and fossil fuel markets,
contagion effects between the energy
markets increase in the crisis periods.

Xia et al., 2019 [5] Apr 2008 to Jul
2019 (Daily)

Renewable energy,
oil, natural gas,

electricity, coal, and
carbon

VaR network

The electricity market behaves as the
major contributor to the changes of

renewable energy returns in the return
connectedness network, while oil and coal

contribute most to the changes of
renewable energy returns in the VaR

connectedness network.

Nasreen et al.,
2020 [6]

Dec 2000 to
Jun 2017

Clean energy,
technology, and

crude oil

Wavelet coherency,
Baruník and

Krehlík, DCC

Returns of technology stocks appear to be
the main source of volatility transmission.

Sadorsky, 2012 [7] Jan 2001 to Dec
2010 (daily)

Clean energy,
technology, and

crude oil

Multivariate
GARCH

The stock prices of clean energy
companies correlate more highly with

technology stock prices than with
oil prices.

Zhang and Du,
2017 [8]

Jul 2011 to
Dec 2015

New energy,
technology, and

coal and oil index
TVP-SV-VAR

New energy correlate more highly with
high technology stock than with coal and

oil stock prices.

Sun et al., 2019 [9] Jul 2010 to Dec
2016 (monthly)

Technology, carbon
futures, China’s
new energy, and
Divisia index (oil,

coal and
natural gas)

VAR, Divisia
price synthesis

Compared with Divisia fossil energy price
index, the dynamic relationship between
technology index and new energy stock

prices is more significant.

Lin and Chen,
2019 [11]

Nov 2013 to Jul
2017 (daily)

Beijing carbon
emission allowance,

new
energy, and coal

DCC, BEKK
The coal market and the new energy

market have higher volatility persistence
and bi-directional spillover effects.

Gu et al., 2020 [12] Jan 2008 to
Feb 2019

Coal, stock,
environmental

protection, and five
clean energy sectors

VAR-DCC-GARCH
Significant bi-directional volatility

spillover between the steam coal market
and the clean energy stocks.

Janda et al., 2022
[16]

May 2012, to Jul
2021 (Daily)

Oil, Chinese and
U.S. clean energy
and technology

CCC, DCC and
ADCC

China technology is the best asset to
hedge Chinese clean energy stocks.

Hammoudeh et al.,
2021 [19]

Oct 2010 to Sep
2020 (Daily)

Oil, and renewable
energy (five
sub-sectors)

Nonparametric
causality

Oil returns cause the renewable returns
during normal market conditions.

Renewable energy sectoral stock returns
have no predictive power of oil returns.

Geng et al., 2021
[22]

Sep 2009 to Jun
2019 (weekly)

Oil, and eight
European clean

energy companies

DCC, Asymmetric
Connectedness

Information interdependence for crude oil
returns and clean energy companies’

returns remains at a relatively high level,
bad news on information connectedness is

greater than that of good news.

Wen et al., 2014
[23]

Aug 2006 to Sep
2012

China’s new energy,
and coal and

oil index
Asymmetric BEKK

The dynamics of new energy/fossil fuel
stock spillover are found to be significant

and asymmetric.
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Table 1. Cont.

Author(s) Period Variables Modeling The Main Results

Tiwari et al., 2021
[26]

Dec 2000 to Jun
2017 (daily)

Clean energy,
technology, and

crude oil

Dependence-
switching

copula

Asymmetric dependence structure under
the positive correlation regimes, while a
symmetric dependence under negative

correlation regimes.

Managi and
Okimoto, 2013

[27]

Jan 2001 to Feb
2010 (weekly)

Clean energy,
technology, crude

oil, and interest rate

Markov-switching
VAR

There was a structural change in late 2007,
a positive relationship between oil prices

and clean energy prices after
structural breaks.

Bondia et al., 2016
[28]

Jan 2003 to Jun
2015 (weekly)

Clean energy,
technology, crude

oil, and interest rate

Threshold
cointegration tests

The stock prices of alternative energy
companies are impacted by technology

stock prices, oil prices and interest rates in
the short run, there is no causality

running towards prices of alternative
energy stock prices in the long run.

Fahmy, 2022 [29] Jan 2009 and
Dec 2019

Clean energy,
technology, and

crude oil

Exogenous STR
model

Oil price has a stronger asymmetric
persistence on the cycle of clean energy

assets pre-Paris Agreement. In the period
post Paris Agreement, Technology stock

prices are the best regime drivers for clean
energy assets with strong nonlinear

asymmetric persistence.

Maghyereh et al.,
2019 [30]

Jan 2001 to Feb
2018 (Daily)

Oil, clean energy,
and clean energy

technology

Wavelet,
DCC-GARCH

Significant bidirectional return and risk
transfer from oil and technology to the
clean energy market in the long term.

Zhang et al., 2020
[31]

Jan 2006 to Dec
2018 (monthly)

Oil, clean energy,
and clean energy

technology

Wavelet-based
quantile-on-

quantile,
Causality-in-

quantiles

Strong predictability of the oil price
shocks for the stocks in the long run.

Shahbaz et al.,
2021 [32]

Mar 2005 to May
2021 (Daily)

Clean energy,
technology, light

crude oil, and stock

Granger causality,
Quantile regression

Clean energy markets react to crude oil
and stock markets depending on the

market regime.

Qu et al., 2021
[33]

Jan 2011 to Mar
2016

(5-min)

New energy,
high-tech,

low-carbon notion,
andcrude oil

Diebold and Yilmaz
High-tech and low-carbon are main

contributors to the volatility spillover of
new energy.

From the literature review above, it was found that scholars have carried out many
beneficial explorations of the coal market, new energy market and high-tech market. How-
ever, there are still some areas that need to be improved. Compared with the existing
literature, the contributions of this paper are through two distinct channels. First, most of
the current research focuses on the crude oil market. Given China’s coal-dominated energy
structure, this paper expands the depth of analysis by incorporating coal, new energy, and
high technology into a unified framework. Moreover, most of the research methods in the
existing relevant literature can only reflect their time-varying characteristics and linkage
relationship under normal market conditions. From the perspective of quantiles, using
the nonparametric quantile Granger causality test and quantile connectedness model, we
judge the qualitative causality and quantitative spillover degree of the coal market, new
energy market, and high-tech market in different market conditions, which broadens the
perspective of analyzing the problem.
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3. Methodology
3.1. Nonparametric Quantile Causality Testing

Our methodology is twofold. We first apply the nonparametric quantile causality
test that was developed by Balcilar et al. [34]. This methodology combines the approach
of the kth order nonparametric causality of Nishiyama et al. [35] and the framework of
nonparametric causality in quantiles of Jeong et al. [36]. The Granger test is based on the
idea that if x is a cause of y, but y is not a cause of x, then the past value of x can help
predict the future value of y, but the past value of y cannot help predict the future value of
x. Therefore, following Nishiyama et al. [35] and Jeong et al. [36], the Granger causality in
quantile can be defined as the non-causality of yt by xt in the τth quantile with regard to
the lag vector of

{
yt−1, ···, yt−p,, xt−1,, · · · , xt−p

}
, which can be verified if:

Qτ

{
yt
∣∣yt−1,, ···, yt−p,, xt−1,, · · · , xt−p

}
= Qτ

{
yt
∣∣yt−1,, ···, yt−p

}
(1)

On the other hand, xt causes yt in the τth quantile with respect to the lag vector of{
yt−1, ···, yt−p,, xt−1,, · · · , xt−p

}
if:

Qτ

{
yt
∣∣yt−1,, ···, yt−p,, xt−1,, · · · , xt−p,

}
6= Qτ

{
yt
∣∣yt−1,, ···, yt−p

}
(2)

where Qτ{yt·} is the τth conditional quantile of yt depending on t.
Let us define the following vectors Yt−1 =

(
yt−1,, ···, yt−p

)
, Xt−1 =

(
xt−1,, ···, xt−p

)
and

Zt = (Xt, Yt). Also, Fyt|Zt−1
(yt|Zt−1) and Fyt|Yt−1

(yt|Yt−1) denote the conditional distribution
functions of yt given Zt−1 and Yt−1, respectively. If we define Qτ(Zt−1) = Qτ(yt)|Zt−1 and
Qτ(Yt−1) = Qτ(yt)|Yt−1 , then we obtain Fyt|Zt−1

{Qτ(Zt−1)|Zt−1 } = τ with probability
one. In this line, the hypothesis of causality in quantiles presented in Equations (3) and (4)
can be expressed as:

H0 : P
{

Fyt |Zt−1
(Qτ(Yt−1)|Zt−1) = τ

}
= 1 (3)

H1 : P
{

Fyt |Zt−1
(Qτ(Yt−1)|Zt−1) = τ

}
< 1 (4)

To obtain a metric measure for the practical implementation of the causality-in-quantile
test, Jeong et al. [36] used distance measure J = {εtE(εt|Zt−1) fz(Zt−1)}, where εt represents
the regression error term and fZ(Zt−1) is the marginal density function of Zt−1. The
regression error εt emerges based on the null in (5), which can only be true if and only if
E[1{yt ≤ Qτ(Yt−1)|Zt−1}] = τ, where 1{·} is an indicator function. Jeong et al. [36] specify
the distance function as follows:

ĴT =
1

T(T − 1)h2p ∑T
t=p+1 ∑T

s=p+1,s 6=t K
(

Zt−1 − Zs−1

h

)
ε̂t ε̂s (5)

K(·) is the kernel function with bandwidth h, T is the sample size, ε̂t is the unknown
regression error estimate, and its expression is:

ε̂t = 1
{

yt ≤ Q̂τ(Yt−1)
}
− τ (6)

Q̂τ(Yt−1) is an estimate of the τth conditional quantile of yt, given Yt−1. Below, we
estimate Q̂τ(Yt−1) using the nonparametric kernel method as: Q̂τ(Yt−1) = F̂yt |Yt−1

(τ|Yt−1),
where F̂yt |Yt−1

(τ|Yt−1) is the Nadaraya–Watson kernel estimator given by:

F̂yt |Yt−1
(τ|Yt−1) =

∑T
s=p+1,s 6=t L

(
Yt−1−Yt−s

h

)
1(ys ≤ yt)

∑T
s=p+1,s 6=t L

(
Yt−1−Yt−s

h

) (7)

where L(·) is the kernel function and h is the bandwidth.
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Balcilar et al. [34] developed a two-stage test to observe mean and variance causality
between variables. Using the method of Nishiyama et al. [35], the assumptions of higher-
order quantile causality are as follows:

H0 : P
{

Fyk
t |Zt−1

(Qτ(Yt−1)|Zt−1) = τ
}
= 1 (8)

H1 : P
{

Fyk
t |Zt−1

(Qτ(Yt−1)|Zt−1) = τ
}
< 1 (9)

We apply k = 1 to test the first-order moment mean causality between steam coal, new
energy, and high-tech markets.

3.2. Quantile Connectedness

As indicated earlier, we qualitatively consider the predictability of the steam coal,
new energy, and high-tech markets at different quantiles. Next, we employ the quantile
connectedness approach proposed by Ando et al. [17] to identify how the strength and
duration of spillovers between these markets will change under extreme upward and
downward market movements. The approach answers the question of how much of the
future uncertainty associated with variable i can be attributed to idiosyncratic shocks
coming from variable j as the shock size varies [17]. We first estimate the quantile vector
autoregression, QVAR(p):

yt = µ(τ) +
p

∑
j=1

Φj(τ)yt−j + εt(τ) (10)

yt and yt−j are k× 1 dimensional endogenous variable vectors, τ stands for quantile, p
represents the lag length of the QVAR model, Φj(τ) is a k× k dimensional QVAR coefficient
matrix, and εt(τ) demonstrates the k × 1 dimensional error vector, which has a k × k
dimensional variance–covariance matrix, Σ(τ). Converting QVAR(p) to QVMA(∞) is the

key to variance decomposition, and we utilize Wold’s theorem: yt = µ(τ) +
∞
∑

i=1
Ψi(τ)Et−i.

Then, the H-step ahead generalized forecast error variance decomposition (GFEVD)
of Koop et al. [37] and Pesaran and Shin [38] is calculated, which illustrates the impact a
shock in variable j has on variable i:

φ
g
ij(h) =

Σ(τ)−1
ii ∑H−1

h=0

(
e′iΨh(τ)Σ(τ)ej

)2

∑H−1
h=0

(
e′iΨh(τ)Σ(τ)Ψh(τ)′ei

) (11)

This normalisation φ̃
g
ij(h) =

φ
g
ij(h)

∑k
j=1 φ

g
ij(h)

, ei represents a zero vector with unity on the

ith position. Therefore,
N
∑

j=1
φ̃

g
ij,t(h) = 1 and

N
∑

i,j=1
φ̃

g
ij,t(h) = k. Using the GFEVD, we can

construct connectedness indices, described in Table 2.

Table 2. The connectedness indices.

Meaning Index and Calculation

Measuring the connectedness across all markets Total ( TSt(h) =
(

∑N
i,j=1,i 6=j φ̃

g
ij,t(h)

)
/N × 100 )

Measuring the total connectedness from others Directional (FROMi←·,t(h) = ∑N
j=1,i 6=j φ̃

g
ij,t(h)× 100 )

Measuring the total connectedness to others Directional (TOi→·,t(h) = ∑N
j=1,i 6=j φ̃

g
ji,t(h)× 100)

Measuring the net connectedness from market i to others Net (NETi,t = TOi→·,t(h)− FROMi←·,t(h))
Measuring the net connectedness between i and j Net pairwise (NPij,t =

(
φ̃

g
ji(h)− φ̃

g
ij(h)

)
× 100)
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4. Data and Descriptive Analysis

Zhengzhou Commodity Exchange launched the steam coal futures contract on 18 June
2013. The marketization of China’s steam coal market enables the supply and demand of
steam coal to be reflected through its price, thereby making it a suitable proxy to measure
the coal market [11,39]. To account for the performance of the new energy market, we relied
on the CSI Mainland New Energy Index. The index selects 50 samples with large-scale and
relatively profitable new energy businesses from the securities of listed companies in the
Shanghai and Shenzhen markets involving new energy production, new energy storage,
and new energy vehicles. China technology ETF is a benchmark for high tech that tracks
110 leading technology companies listed in China [16]. Given the availability of steam
coal futures data, the sample interval is from 26 September 2013 to 14 March 2022, and
the daily closing price data of each index extracted from the Wind database with codes
“ZC.CZC,” “CQQQ.P,” and “000941.CSI,” respectively, in which the return is calculated by
the first-order logarithmic difference.

Figure 2 shows the price and return trend of steam coal, new energy and high-tech.
Note that the red line in each graph represents the price series and the blue line stands
for the return series. Specifically, for the steam coal market, it is evident that the price of
steam coal will soar and fluctuate sharply at the beginning of 2021. According to Kilian [40],
coal prices are inherently determined by the following factors: (i) fundamentals of the
coal market, such as coal supply and demand; and (ii) coal market-specific factors such as
speculation and spillovers. There are two key channels to drive changes in China’s coal
prices. In recent years, the global trend of “de-coalification” has led to a decline in the
elasticity of global coal supply. After the epidemic, due to the recovery of the manufacturing
industry, the demand for electricity and coal surged. Supply and demand are unbalanced
and prices have risen. In addition, from the perspective of spillovers, the price of bulk
commodities such as oil and natural gas has risen, and the fuel substitution in the crude oil
market and the market contagion in the international coal market have also driven up the
price of coal to a certain extent [13]. Moreover, there are some speculative factors, which
together promote the rise of the price of coal. Regarding the new energy market, the yield
of the new energy market fluctuated sharply in 2015, which is consistent with the timeline
of the Chinese stock crash in 2015 and the Paris Climate Agreement of 2015. Possibly due
to the government’s favorable policies on new energy, the stock price of new energy has
risen sharply since the end of 2018. In September 2020, China proposed a carbon-neutral
timetable, and favorable policies for new energy were introduced intensively, vigorously
developing wind power, photovoltaics, and promoting energy innovation, and the price of
new energy continues to rise. In addition, the price of high-tech reached a high point in
early 2018 and early 2021, and the price fluctuation was relatively stable.
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Table 3 gives the descriptive statistics of the data. To be specific, from the standard
deviation, the returns of steam coal, high-tech and new energy stocks have similar fluctu-
ations, and the skewness and kurtosis coefficients indicate that all the data deviate from



Sustainability 2022, 14, 14176 9 of 16

the normal distribution. The JB statistic further confirms this deviation from the normal
distribution, and market returns reject the normal distribution assumption at the 1% signifi-
cance level; therefore, quantile analysis is essential. When the variables exhibit non normal
distribution, the standard unit root cannot capture complete information in one case where
stationary time series may have unit roots in one or more quantiles [19]. To this end, we
use the quantile unit root test developed by Koenker and Xiao [41] and Galvao [42] to test
for the existence of a unit root at all distribution levels for the series. As shown in Table 4,
at the 5% confidence level, the test statistic is less than the critical value, the null hypothesis
of the unit root will be rejected, and the variable is stationary in different quantiles so that
we can carry out quantile causality analysis.

Table 3. Descriptive statistics and unit root.

Mean Max Min Std.Dev. Skewness Kurtosis Jarque-Bera ADF

Coal 0.021 11.44 −18.629 1.914 −1.292 * 17.804 * 19365.0 * −6.623 *
New energy 0.059 7.168 −9.828 1.975 −0.654 * 6.259 * 1057.6 * −12.887 *
High-tech 0.014 9.203 −11.6 1.802 −0.358 * 6.179 * 910.6 * −12.935 *

Note: JB denotes the Jarque–Bera statistic for normality, ADF test indicates the unit root test result, and * indicates
statistical significance at the 1% level.

Table 4. Unit root test in quantiles.

τ
Coal New Energy High-Tech

α(τ) T-Stat α(τ) T-Stat α(τ) T-Stat

0.05 0.086 −8.462 0.212 −7.475 0.227 −12.551
0.10 0.082 −15.935 0.134 −15.629 0.203 −16.889
0.15 0.046 −29.073 0.115 −22.746 0.146 −19.127
0.20 0.025 −39.420 0.097 −29.200 0.076 −25.608
0.25 0.020 −48.665 0.048 −36.549 0.048 −31.648
0.30 0.004 −55.148 0.018 −40.423 0.042 −36.087
0.35 −0.004 −63.372 −0.004 −47.970 0.020 −40.186
0.40 0.009 −66.118 −0.007 −50.903 −0.003 −49.137
0.45 0.003 −68.948 0.002 −51.778 −0.010 −46.189
0.50 0.003 −68.053 −0.011 −53.763 −0.003 −47.259
0.55 0.003 −67.890 −0.004 −52.082 −0.025 −46.413
0.60 0.001 −64.674 −0.014 −48.765 −0.009 −45.048
0.65 −0.005 −58.725 −0.036 −45.933 0.013 −38.796
0.70 −0.013 −54.399 −0.039 −41.464 0.005 −38.366
0.75 0.003 −45.676 −0.056 −37.131 −0.014 −35.884
0.80 0.014 −35.805 −0.029 −32.376 −0.006 −33.076
0.85 0.028 −25.387 −0.022 −29.464 −0.001 −29.649
0.90 −0.013 −22.414 −0.013 −22.795 −0.026 −25.764
0.95 −0.039 −14.557 −0.064 −15.816 −0.100 −19.923

Note: This table presents the results of the quantile unit root test for quantile orders τ = 0.05, ..., 0.95. We test the
null hypothesis of the unit root H0: β(τ) = 1. The null hypothesis is rejected at the quantile τ order when the
t-statistic is lower than the 5% critical value (CV).

5. Empirical Results and Discussion
5.1. Causality-Quantile Results

We performed a nonparametric quantile Granger causality test on a grid of 200 quan-
tiles between 0.01 and 0.99 to test qualitative causality at different quantiles for steam
coal, new energy, and high technology. The results are shown in Figure 3, which plots
the different test statistics at the considered quantile orders. It can be observed that a
unidirectional causality running from high technology to new energy between the quantile
orders 0.1 and 0.4, indicating that the stock price of technology companies predicts the stock
prices of new energy companies when the latter is relatively low. This is probably due to
the fact that with the continuous expansion of domestic new energy investment and market
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scale, and the further strengthening of technology research and development, the capital
market not only focuses on the concept of new energy but also on its technological content.
Thus, new energy investors may need to consider high-tech shocks in their decisions,
and policymakers need to formulate feasible economic policies considering the impact of
high-tech shocks.
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Figure 3. Nonparametric quantiles causality in means. (a) New energy ; Coal; (b) New
energy ; High-tech; (c) Coal ; New energy; (d) Coal ; High-tech; (e) High-tech ; New energy;
(f) High-tech ; Coal.

The causality is not significant from new energy to high-tech, so new energy does
not improve high-tech forecasts. Bondia et al. [28] indicated that alternative energy prices
are impacted by technology stock prices and oil prices in the short run, while there is no
causality running towards prices of alternative energy stock prices in the long run. Our
research confirms no causality running towards new energy market under any market
conditions. Besides, the causality direction presented in row 2 of Figure 3 shows that the
null hypothesis cannot be rejected, indicating that none of the considered coal Granger
causes the high-tech or new energy. This result implies that the coal has no predictive
power in the system, considering all quantiles of the distribution. Such results are novel
compared to prior studies and probably are of great interest to investors in the coal market.
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5.2. Quantile Connectedness Results

This section, regarding the quantile connectedness, measures the quantitative de-
gree of the interaction between steam coal, new energy and high-tech under different
quantiles. Table 5 presents the spillover results for the 0.5 quantile, as well as the 0.05
and 0.95 quantiles corresponding to extreme market conditions. First, the 0.5 quantile
can be used as a reference to compare the upper and lower tail connectedness results.
On the 0.5 quantile, the total spillover between markets is minimal, only 11.41%, mainly
contributed by the spillover between high-tech and new energy, and the spillover between
new energy and high-tech is larger than that of new energy and steam coal market. This
evidence suggests that the steam coal market should not be used as a weather vane for new
energy fluctuations, since it is most affected by its own fluctuations, accounting for 97.84%,
and has a weaker ability to transmit shocks to other markets. These results are in accor-
dance with the findings in previous studies that Chinese high tech is the main contributor
to the volatility spillover of new energy [8,29,33]. Moreover, they are in line with the fact
that big tech companies are major buyers of new energy and pioneers in important new
technologies and materials. Large tech companies can facilitate the rollout of other key
new energy technologies, including green hydrogen, long-term energy storage, advanced
nuclear and geothermal energy. Although leading tech companies consume relatively little
energy, due to their large financial footprints, coupled with their enormous cultural and
scientific influence, big tech companies can play a key role in the new energy transition [43].
The quantile connectedness allows us to capture the network of connectedness associated
with extreme large positive and negative shocks, i.e., shocks in the 95th and 5th percentiles
of the size distribution of shocks, which is more useful and informative than concentrating
on the median quantile only [44]. We find that the value of the connectedness measure
was greater than the value of the median quantile for both the left and right tails of the
conditional distribution. On the 0.95th and 0.05th quantile, the total spillovers between
markets are 53.24% and 54.91%, respectively, the connectedness strength of the left tail is
more significant in comparison, and both are much higher than the median level of 11.41%.
Specifically, at the 0.05th quantile (downward), the impact of new energy on steam coal
and high-tech markets is 24.12% and 32.45%, respectively. At the 0.95th quantile (up),
the impact of new energy on steam coal and high-tech markets is 23.19% and 31.04%,
respectively. The contribution of new energy to other markets (to) and from other markets
is more substantial than the median, consistent with claims that financial contagion can
occur under extreme market conditions [2,33,44]. This result suggests that risk shocks do
not propagate strongly at the median, but have strong spillover effects in both tails [17]. If
considering the difference of spillover and inflow received by each market, the steam coal
market is the net recipient in the high and low quantiles, with a weak ability to transmit
shocks and vulnerability to external shocks. In the low quantile, high technology is the
main net transmitter, while in the high quantile, the net transmission effect of new energy
is further enhanced.

To further illustrate the time-varying structure of connectedness strength at different
quantiles, Figure 4 provides a graphical summary of the time-varying results of the to-
tal dynamic connectedness. The warmer the hue, the higher the connectedness strength.
The connectedness is very strong for both spills below the 0.2 quantile and above the
0.8 quantile, showing a significant time-varying tail dependence, and the overall connected-
ness strength appears symmetric. Reboredo and Ugolini [24] also showed that the impact of
energy prices on renewable energy prices is symmetric, so extreme increases and decreases
in energy prices have similar effects on stock prices. Geng et al. [22] had different views,
arguing that the earnings of oil and clean energy companies have an apparent asymmetry
in information connectedness, which indicates a significant leverage effect, and the impact
of bad news on information connectedness than good news. The 0.5 quantile corresponds
to the total average connectedness of the whole cycle, and these important characteristics
of shock risk transmission are masked in the model using traditional conditional mean
estimation [45]. Through the dynamic total connectedness map, the evidence is obvious,
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i.e., the total connectedness has a significant value in a specific time interval (around 2016),
which corresponds to the timeline of China’s stock market crash. A plausible explanation
is that a milestone in the scientific and political process of global climate governance was
reached in December 2015, the Paris Agreement, which reaffirmed the goal of limiting
global temperature rise to 2 degrees and proposed efforts to achieve the 1.5-degree target.
In November 2016, the Paris Agreement entered into force. As a contracting party to
the Paris Agreement, China responded positively. Specifically, in October 2016, the State
Council issued the “13th Five-Year Plan for Controlling Greenhouse Gas Emissions,” which
proposed to accelerate the development of non-fossil energy, optimize the use of fossil
energy, and strengthen low-carbon technological innovation. The 13th Five-Year Plan
(2016–2020) further emphasizes the importance of developing renewable energy as part of
the upgrading of the national energy structure. The development of renewable energy is
the main focus of the work while promoting new technologies to improve the efficiency and
cleanliness of traditional energy. The government will further support the development
of hydropower, wind energy, solar energy and nuclear energy projects [46]. Fahmy [29]
found that investors’ awareness of climate risk and attention to green investment was rising
after the Paris Agreement. Clearly, this increased awareness may have impacted the link
between clean energy prices and coal and technology stock prices. Additionally, the total
connectedness is statistically significant from late 2019 to 2021. This result may be related
to the COVID-19 pandemic that began in late 2019 when various markets were affected
to some extent due to a sudden halt in economic activity and an extreme global recession.
The increase in connectedness during the COVID-19 pandemic is also consistent with the
financial contagion and asymmetric price adjustment hypotheses, which predict faster
spillovers of bad news across markets [47]. At the same time, in September 2020, China
put forward the goal of carbon peak and carbon neutrality, which also provides important
guidance for accelerating the green and low-carbon transformation after the domestic
epidemic. This indicates the fact that connectedness is highly dependent on events.

Table 5. Directional spillovers.

0.5 Coal New Energy High-Tech FROM Others

Coal 97.84 0.98 1.18 2.16
New energy 1.23 83.52 15.26 16.48
High-tech 1.52 14.07 84.4 15.6
TO others 2.75 15.05 16.44 TCI

NET 0.59 −1.43 0.84 11.41
0.05
Coal 47.28 26.45 26.27 52.72

New energy 24.12 43.42 32.45 56.58
High-tech 24.71 30.73 44.55 55.45
TO others 48.84 57.19 58.72 TCI

NET −3.88 0.61 3.27 54.91
0.95
Coal 48.97 25.97 25.06 51.03

New energy 23.19 45.77 31.04 54.23
High-tech 23.42 31.04 45.53 54.47
TO others 46.61 57.01 56.11 TCI

NET −4.42 2.78 1.64 53.24

Next, we focus on net directional results (Results are based on a 200-day rolling-
window QVAR model with lag length of order 1 (BIC) and a 20-step-ahead forecast. How-
ever, our results are robust to other choices of the forecast horizons and window length.
Those results are available on request). The warmer shadows on these graphs indicate
that the market is a net transmitter. We note that in general, the net spillover effect of
high technology is the strongest, and the spillover in the low quantile is higher than that
in the high quantile, and the upper tail and lower tail are asymmetric. Over two time
intervals (around 2016, mid-2018 to early 2020), the net transmission of high technology
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has increased significantly under various market conditions, which provides empirical
evidence that high tech is more likely to become a net transmitter during the stock panic
and crisis. Most of the time, the color of steam coal is colder, and the net transmission
effect of steam coal is the weakest in the three markets, which is roughly the continuous net
receiver of shocks in the whole sample period, especially under extreme market conditions.
New energy varies over time between transmitter and receiver roles, and the transmission
of new energy is mainly traced to the extreme quantile region.
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6. Conclusions

China’s energy transition should be based on the basic national conditions of coal
dominance and further promote the optimal combination of coal and new energy, in which
technological progress is the key. In order to deeply explore the correlation between coal,
new energy and high-tech, this paper studies the risk transmission direction and spillover
effect of the three under normal and tail conditions from the quantile perspective. First,
from the results of quantile causality, steam coal has no prediction ability in the system.
High-tech is the Granger causality of new energy between the quantiles of 0.1 and 0.4,
which shows that high technology is predictive when new energy prices are low. Secondly,
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the quantile connectedness results show that the bi-directional risk spillover of high-tech
and new energy is significantly higher than that of steam coal and new energy at different
quantile levels, and high-tech has a substantial risk output capacity. In addition, we
find that the total system spillovers increased significantly during the financial crisis or
market overheating.

Our empirical results have reference value for investors and policymakers. The price
of steam coal is not the critical factor affecting the share price of new energy. Investors can
create hedging opportunities by taking advantage of the weak links between the steam
coal market, new energy and high-tech. High technology is predictable for new energy in
the low quantile, which helps investors understand the transmission mechanism of high
technology in the new energy stock market and establish prediction models related to
different market conditions. In addition, the research results on the extreme connectivity
measurement of the upper and lower tails provide a subtle perspective on the importance
of tail risk transmission. Furthermore, from the perspective of time-varying characteristics,
in such events as China’s stock market crash in 2015 and the COVID-19 pandemic, the total
spillover between markets has intensified. Therefore, to deal with the adverse impact of the
epidemic on the development of new energy, the government needs to take countercyclical
measures and provide financial support to reduce the impact of COVID-19 on energy
innovation and speed up the progress in key technology areas.

Considering the similar power supply structure dominated by coal power between
China and emerging economies such as India and Chile, these conclusions may be useful
to those countries that are highly dependent on the coal market and have low development
of high-tech. These countries need to make great efforts in technological progress and
policy formulation. Strengthening green technology cooperation and investment will also
be the focus of China and these countries to jointly build new energy-related international
infrastructure under the Belt and Road initiative [48].

In terms of limitations of this paper, due to the heterogeneity of investors, this work
can be expanded by using quantile frequency connectedness [49] to expand the scope of
time investment. Furthermore, the three markets system can be expanded to include the
raw material market, such as crucial metals (rare earths, etc.). The price of fossil energy
affects the cost of raw materials in the metal industry, and metals are the critical raw
materials for developing new energy [50]. Risk transmission between these markets is
another possible avenue of research.
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