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Abstract: The Chaohu Lake Basin (CLB) is the main flow area of the Yangtze River–Huaihe River
Water Transfer Project in Central China. It is important to quantitatively evaluate the water resources
in the CLB and predict their response to future climate change. This study simulated and calibrated
the water yield in the CLB from 2000 to 2019 based on InVEST. We also analyzed the influence
factor on the water yield and predicted the water yield in future years with CMIP6 data. The results
demonstrate that: (1) The InVEST water production module had good applicability in this study
region. There was a strong linear relationship between the simulated water yield and the observed
surface runoff (y = 1.2363x− 8.6038, R2 = 0.868, p < 0.01); (2) The explanatory percentage of interaction
between precipitation and land use/land cover for water yield in 2001, 2008, and 2016 reached 71%,
77%, and 85%, respectively, which were the two dominant factors affecting water yield in the CLB;
and (3) The average annual water yield in the CLB increased under the SSP2-4.5, SSP3-7.0, and
SSP5-8.5 future scenarios with increasing precipitation, increased with 71%, 139.8%, and 159.5%
in 2100 compared with 2040, respectively. The overall trend of water production decreased with
increases in carbon emission intensity.

Keywords: water yield; driving factors; CMIP6; geodetector; Chaohu Lake Basin

1. Introduction

Ecosystems provide freshwater resources for humans and are important for maintain-
ing regional ecosystem functions, populations, and socioeconomic development [1,2]. They
provide basic support for regional water resource management and planning [3]. With
global climate change, population growth, and land use/land cover(LULC) changes due to
human activities, water scarcity and water environment pollution problems are becoming
increasingly prominent [4]. The degradation of ecosystem services is seriously troubling for
human survival and development [5,6]. Climate change directly affects regional rainfall and
evapotranspiration, which further affect the water cycle and vegetation growth status [7].
It will play an important role in the global water cycle and water resource effectiveness
in the coming decades. It is a cutting-edge and topical issue to evaluate ecosystem water
supply capacity in a spatio-temporal way and its response to climate change and human
activities in current hydrology and ecology research. Chaohu Lake is located on the left
bank of the lower Yangtze River in East China. It is one of the five major freshwater lakes
in China. It provides water for industrial and agricultural activities. Additionally, it is
the crucial habitat of migratory birds between the Yangtze River and the Huaihe River.
Chaohu Lake Basin (CLB) is an important part of Hefei’s urban ecosystem, which is the
largest city near Chaohu Lake and a rapidly developing capital city of Anhui Province
with a permanent population of nearly 10 million. The CLB is the main flow area of the
Yangtze River–Huaihe River Water Transfer Project (YHWTP). The quantitative evaluation
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and prediction of water resources in the CLB are significant to water resource allocation,
optimal dispatching of YHWTP, and ecological environmental management in the region.

The evaluation of ecosystem water supply function requires understanding the re-
gional ecosystem’s structure and major processes. This process mainly adopts the estab-
lishment of ecosystem service assessment and optimization model systems to elucidate
the formation and interaction mechanisms of ecosystem water supply services [8,9]. The
model systems include service tradeoffs, change analysis, and scenario prediction [10,11].
In recent years, many scholars have started to conduct watershed water resource evaluation
by establishing models including hydrological models such as the Soil and Water Assess-
ment (SWAT) [12,13], MIKE SHE [14,15], SCS-CN [16,17], and special models for ecosystem
services such as Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) [18],
etc. It has been verified that the SWAT model has obvious advantages at the seasonal
and monthly scales, and the InVEST model is more suitable than the SWAT model in
assessing the water content at the annual scale [19]. The SWAT model required a larger
number of expert skills for the detailed hydrological processes, and it also took longer
to run the model because of the complicated input data. The InVEST model required a
smaller amount of input data for a simplified hydrological process, which made it easier
to be implemented [20]. The InVEST model is a comprehensive model for quantifying
and valuing ecosystem services. It has been applied in the Americas, Africa, and the
Yangtze River Basin in China, and it has achieved good simulation results [21–25]. It is
based on a GIS platform and uses a simplified hydrological model for the evaluation of
ecosystem services. The model was not developed to reproduce empirical observations [26].
It features quantitative ecosystem service functions in the form of maps and facilitates the
use of assessment results for planning, management, and scenario prediction [27]. Studies
by scholars have focused on localized applications of the InVEST model [28,29], including
parameter sensitivity analysis [30,31], dynamic assessment of ecosystem services [32], and
comparative studies with other hydrological models [20,33].

Based on the ecosystem services framework, prediction analysis of future climate
change on regional water resources and water supply capacity is rare. There are only a few
cases. Yang et al. evaluated the impact of future climate change on water supply in a typical
East Asian monsoon basin in South China by coupling the InVEST model and the statistical
downscaling technique model (SDSM), and the results demonstrated an increasing trend in
annual average precipitation and reference evapotranspiration. In particular, the average
annual water yield will increase by 19.3% (33.5%) in the future (2080–2095) under the
RCP2.6 (4.5) scenario [34]. Yan et al. used the nutrient transport (NDR) module of the
InVEST model to quantify the historical state of nonpoint-source nitrogen export in the
Jiulong River Basin in southern China and constructed scenarios using artificial wetlands
to predict the amount of change in nonpoint-source nitrogen export from the Jiulong River
Basin under different land use and climate change scenarios [35].

The above studies assessed the impact of future climate change on regional water
production and quality using the Fifth Coupled Model Comparison Program (CMIP5), a
multi-climate model ensemble that averages results, coupled with InVEST water production
and nutrient retention models. Few studies have used the Coupled Model Intercomparison
Project Phase 6 (CMIP6) to predict water production, and model results have rarely been
validated using measured data. Compared to CMIP5, CMIP6 considers more complex
processes, and many models can bidirectionally couple atmospheric and chemical pro-
cesses [36]. In addition, the RCP scenarios of CMIP5 only consider the goal of achieving
stable CO2 concentrations and corresponding radiative forcing in the next 100 years [37]. It
does not target a specific social development pathway, while the new shared socio-economic
pathway of CMIP6 fully takes this into account, providing more diverse emission scenarios,
which can provide more reasonable simulation results for mitigation adaptation studies
and regional climate prediction [38,39].

Therefore, the research work of this paper focused on the following points. Firstly,
we simulated the spatio-temporal variation of water yield in the CLB in the past 20 years
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by using measured basic data, such as hydrology, meteorology, and land use, and verified
the reliability of the model in this study region with measured statistical data. Secondly,
we elucidated the relationship between annual water yield and geographical factors in
different hydrological years. Lastly, we predicted the spatio-temporal variation trend of
future water yield in the CLB based on CMIP6 climatological model data. The results of
this study will provide further insights into the potential impacts of climate change on the
water supply capacity of ecosystems in the future and provide a basis for decision making
regarding water resource management.

2. Materials and Methods
2.1. Study Region

The Chaohu Lake Basin (CLB) is located between the lower reaches of the Yangtze
River and the Huai River Basin in the Anhui Province of East China (Figure 1). It
ranges between 30◦58′00′′–32◦58′00′′ N and 116◦24′30′′–118◦30′00′′ E, covering an area of
14,203 km2 [40]. Chaohu Lake is one of the five largest freshwater lakes in China. The CLB
consists of the five cities of Hefei, Wuhu, Maanshan, Tongling, and Luan. The topography
of the basin is generally long from east to west, narrow from north to south, high in the
west, and low in the east, with low-lying plains in the middle. The region has rich water
resources. The 33 drainage rivers mainly come from the Dabieshan Mountains, flow from
west to east radially through Chaohu Lake, and then flow together into the Yangtze River
through the Yuxi River.
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Figure 1. The location of the CLB.

The CLB has a subtropical humid monsoon climate. The average temperature is 16 ◦C,
the highest temperature is 41.3 ◦C, and the lowest temperature is minus 15.7 ◦C. The relative
humidity of the CLB is 76%. The flood season is usually from May to August, and the
average annual rainfall is about 1100 mm [41].
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The study region is greatly affected by strong human disturbance. It is a key develop-
ment and ecological protection zone in China. It is representative and typical to study water
yield under the influence of climate change and rapid economic and social development.

2.2. Data
2.2.1. Model Operation Data

The data required for the water yield simulation model include: annual precipitation,
annual reference evapotranspiration, land use/land cover map, plant available water
content, root-restricting layer depth, watershed and sub-watersheds boundaries. The
source descriptions of the above data are shown in Table 1.

Table 1. Sources of datasets for model running.

Data Items Data Sources

Annual precipitation rasters from 2000
to 2019

Daily dataset of Chinese terrestrial climate information (V3.0), National
Meteorological Science Data Center (NMSDC) (http://data.cma.cn/ (accessed on
8 April 2021))

Annual reference evapotranspiration rasters
from 2000 to 2019

Daily dataset of Chinese terrestrial climate information (V3.0), National
Meteorological Science Data Center (NMSDC) (http://data.cma.cn/ (accessed on
8 April 2021))

Land use and land cover rasters of 2000, 2005,
2010, 2015, 2018

Resource and Environment Science and Data Center (http://www.resdc.cn/
(accessed on 26 March 2021))

Plant available water content
Soil map based Harmonized World Soil Database (v1.2)
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/ (accessed on 6 May 2021))

Root restricting layer depth (Raster)
Soil map based Harmonized World Soil Database (v1.2)
(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/ (accessed on 6 May 2021))

Watersheds and sub-watersheds
Lake-Watershed Science SubCenter, National Earth System Science Data Center,
National Science & Technology Infrastructure of China (http://gre.geodata.cn
(accessed on 29 June 2021))

Daily precipitation observations from 13 meteorological stations (Figure 1) in and
around the study region from 2000 to 2019 were derived from the daily dataset of Chi-
nese terrestrial climate information (V3.0), National Meteorological Science Data Center
(NMSDC). All the observations were quality-controlled, and the data were preprocessed
using ArcMap (v10.8) before model calculation to meet the data format requirements of
the InVEST model, including inverse distance weight interpolation, projection, resampling,
and mask extraction. Annual reference evapotranspiration was calculated using the FAO
Penman–Monteith equation. It was defined as a hypothetical reference crop canopy evapo-
transpiration rate assuming a crop height of 0.12 m, a fixed surface resistance of 70 m/s for
the crop, and an albedo of 0.23 [42]. The modified FAO Penman–Monteith expression is
as follows.

PE =
0.408∆(R n−G) + γ 900

Tmean+273 u2(es−ea)

∆ + r(1 + 0.34u2)
(1)

In the formula, PE represents reference evapotranspiration (mm/d), ∆ represents
the slope of saturated water pressure curve (kPa/◦C), Rn represents surface net radiation
fluxes (MJ/(m·d)), G represents soil heat flux (MJ/(m2·d)), γ represents the wet and dry
meter constant (kPa/◦C), Tmean represents mean daily temperature (◦C), u2 represents
wind speed at 2 m high (m/s), es represents saturated water pressure (kPa), ea represents
actual water pressure (kPa).

The daily observation data used in the above equation were also obtained from the
daily dataset of Chinese terrestrial climate information (V3.0), National Meteorological
Science Data Center (NMSDC). The parameters include the average temperature, maxi-
mum temperature, minimum temperature, relative humidity, sunshine hours, average air
pressure, and average wind speed from 13 meteorological stations in and around the study

http://data.cma.cn/
http://data.cma.cn/
http://www.resdc.cn/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://gre.geodata.cn
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region from 2000 to 2019. The annual reference evapotranspiration raster was preprocessed
with the same process as the annual precipitation.

LULC rasters for 2000, 2005, 2010, 2015, and 2018 were obtained from the Resource
and Environment Science and Data Center. The datasets were based on Landsat remote
sensing images with a spatial resolution of 30 m × 30 m and generated through manual
visual interpretation. The LULC map adopts a two-level classification system, as shown
in Table 2. When the land use raster of one year was not available, we utilized the LULC
in the year closest in time to the above five years. That is, the LULC for 2000, 2005, 2010,
2015, and 2018 were respectively taken to estimate water yields for 2000–2002, 2003–2007,
2008–2012, 2012–2016, and 2017–2019.

Table 2. Classification of LULC and evapotranspiration coefficient (Kc).

LULC Level 1 Type LULC Level 2 Type Kc
Code Name Code Name

1 Cultivated land
11 Paddy field 0.65
12 Dry land 0.65

2 Woodland

21 Forested land 1
22 Bushlands 0.398
23 Sparse woodlands 1
24 Other woodlands 1

3 Grassland
31 High coverage grass 0.65
32 Medium coverage grass 0.65
33 Low coverage grass 0.65

4 Waters

41 Canals 1.2
42 Lakes 1.2
43 Reservoir pits 1.2
46 Beach 1.2

5 Urban and rural areas, industrial and mining, residential land
51 Town land 0.3
52 Rural residential area 0.3
53 Other construction land 0.3

6 Unused land
65 Bare land 0.5
66 Bare rock gravel 0.5

The root-restricting layer depth of the soil was obtained from the Harmonized World
Soil Database (v1.2) with a spatial resolution of 1 km × 1 km. The plant available water
content can be calculated by referring to the formula for estimating the effective water
content of Chinese soils [43] in Equation (2).

ASWC = 54.509− 0.132sand%− 0.003sand%2−0.055silt%− 0.006silt%2−0.738clay%
+0.007clay%2−2.688OM% + 0.501OM%2 (2)

In the formula, sand%, silt%, clay%, OM% represent contents of measured sand, silt,
clay, and organic matter, respectively.

2.2.2. Model Validation Data

The observed annual surface runoff (m3) of the CLB was obtained from the Anhui
Statistical Yearbook on the Anhui Provincial Bureau of Statistics website (http://tjj.ah.
gov.cn/ (accessed on 15 April 2022)). The statistics of natural, annual surface runoff were
converted to watershed units by administrative areas via the face interpolation method.

2.2.3. Factors Data

The driving factors included elevation, slope, aspect, annual vegetation index (NDVI),
LULC, precipitation, reference evapotranspiration (RET), and hydrologic soil group (HSG).

http://tjj.ah.gov.cn/
http://tjj.ah.gov.cn/
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DEM data (30 m × 30 m) were obtained from the Lake-Watershed Science SubCenter,
National Earth System Science Data Center, National Science & Technology Infrastructure
of China. NDVI datasets were obtained from the Resource and Environment Science and
Data Center at a 1 km spatial scale, which is the maximum value of monthly NDVI values
from January to December of each year. The classification of hydrological soil groups in the
CLB was based on the minimum infiltration rate of the soil [44] (Table 3). The minimum
infiltration rate was calculated by referring to the SWAT model user manual [45], as shown
in Equation (3).

X = 1.8

√
20×

(
S
10
×0.03 + 0.002

)
(3)

Table 3. Hydrological soil group division criteria.

Hydrological Soil Group A B C D

Minimum infiltration rate >7.26 3.81–7.26 1.27–3.81 0.00–1.27
Saturated hydraulic conductivity (Ks, mm/h) >180 18–180 1.8–18 <1.8

Soil texture Sandy, loamy, sandy loam Loam, silt loam Sandy clay loam Clay loam, silt clay, sand
clay, silt clay, clay

In the formula, X represents the infiltration rate, Y represents the average particle size
of each soil layer (mm), S represents the sand content (%).

2.2.4. Scenario Mode Data

The CMIP6 data used in this paper were the daily mean temperature and daily pre-
cipitation data for four shared socioeconomic path (SSP) scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP5-8.5), which were simulated by the BCC-CSM2-MR model for the base period
(1950–2014) and future period (2015–2100). To rectify the bias in the General Circulation
Model (GCM) output data [46], we used the daily precipitation and daily mean temperature
grid data (0.25◦ × 0.25◦) from 1961–2014, provided by the China Meteorological Adminis-
tration, with the CMIP6 base period data to calculate the correction factors of precipitation
and temperature. The results of the statistical downscaling correction for the base period of
monthly mean temperature and monthly precipitation in the study region are shown in
Figure 2. The precipitation and temperature of the four SSP scenarios were also rectified.

The daily mean temperature rasters were mainly used to calculate the reference
evapotranspiration under the scenarios. Since the FAO Penman–Monteith equation requires
a large number of input parameters that are not available in CMIP6, this study used
the relatively simple Thornthwaite method [47], which only needs the monthly mean
temperature and takes into account the empirical equation established by the latitude factor
(length of insolation); see Equations (4)–(6).

PEm= 16.0×
(

10Ti
H

)A
(4)

H =
12

∑
i=1

Hi =
12

∑
i=1

(
Ti
5

)1.514
(5)

A = 6.75×10−7H3−7.71×10−5H2+1.792×10−2H + 0.49 (6)

In the formula, PEm represents the monthly potential evapotranspiration (mm/month),
Ti represents the monthly average temperature (◦C), H represents the annual heat index,
A is a constant when Ti ≤ 0 ◦C, the monthly heat index Hi = 0, the monthly possible
evapotranspiration PEm = 0.
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2.3. Framework and Methods

The research framework is shown in Figure 3. The main work of this article was as
follows: (1) We simulated the spatial and temporal variations in water yield for the CLB
over the past 20 years using open data and verified the reliability of the model in this study
region using measured statistical data; (2) We elucidated the relationships between water
yield and meteorological factors, topographic factors, soils, LULC, vegetation cover, and
other factors in different hydrological years; (3) Based on the validated model, we predicted
the spatial and temporal variations in water yield for the CLB under the CMIP6 climate
change mode.

2.3.1. Water Yield Model

The water yield model in InVEST is designed to quantify the relative water yields
of different basins or sub-basins. It calculates the annual water yield of a basin while
taking into account the expected end use of the reservoir for hydropower production [48].
Although the contribution of hydropower generation in the CLB is relatively small [49], the
total annual water production can provide many potential services, including agricultural
irrigation, industrial water use, water supply, and hydropower generation. In this study,
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water production was simulated using the InVEST 3.10.2 software. The set of model
equations is as follows.

YX= (1− AETX
PX

)·PX (7)

AETX
PX

= 1+
PETX

PX
−
[

1+
(

PETX
PX

)ω]1/ω

(8)

PETX= KC(l X)·ETOX (9)

ωX= Z
AWCX

PX
+1.25 (10)

AWCX= Min(rest .layer.depth, root .depth)×PAWC (11)
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In the above formula, YX represents the annual water production of each raster cell x;
AETX represents the annual actual evapotranspiration; PX represents the annual precipi-
tation; PETX represents the reference evapotranspiration; ωX represents the non-physical
parameters of natural climate-soil properties; ETOX represents the reference crop evapo-
transpiration of raster cell x; KC(l X) represents the plant (vegetation) evapotranspiration
coefficient in a specific LULC type in the range [0,1.5]; ωX is an empirical parameter
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with 1.25 as a base; AWCX represents the effective soil water content (mm); Z is the em-
pirical constant, also known as the seasonal constant; PAWC is the plant water content;
rest.layer.depth is the maximum root depth of the soil and root; root.depth is the plant
root depth.

The plant evapotranspiration coefficient (Kc) is strongly influenced by LULC. It is
estimated by referring to the InVEST user guide [27] and the relevant literature from similar
study regions [50], see Table 2. The Z parameter is continuously adjusted according to
the results of the model calibration to make the relative error between the measured and
modeled values as small as possible. The simulated water yield was found to be optimal
when the Z parameter was 10.

2.3.2. Geodetector

The Geodetector software is designed to detect the driving forces of geographic
phenomena by analyzing the spatial distribution characteristics of the phenomena [51].
The core purpose is to explore the strength of the relationship between the independent
and dependent variables [52]. It consists of four main detectors: risk, factor, ecological, and
interaction. In this paper, we used factor detectors and interaction detectors to identify the
driving factors of water production and the interactions between these factors. The model
is as follows.

q = 1−∑L
h=1 Nhσ

2
h

Nσ2 = 1−SSW
SST

(12)

In the formula, h (1, ..., L) is the stratification of variable Y or factor X; Nh and N are
the number of cells in stratification h and the whole area, respectively; σ2

h and σ2 are the
variance of Y values in stratification h and the whole area, respectively. SSW and SST
are, respectively, the within sum of squares and the total sum of squares. q has the value
range [0,1].

The driving analysis of water yield was analyzed using the open-source Geodetector
software (http://www.geodetector.org/ (accessed on 30 June 2022)). Eight indicators were
selected as independent variables, i.e., elevation, slope, aspect, NDVI, LULC, precipitation,
reference evapotranspiration (RET), and hydrologic soil group (HSG). The independent
variables were reclassified into six categories using the natural breakpoint method. By
constructing a 2 km × 2 km fishing grid for the watershed, the information on independent
and dependent variables at the center point of the fishing grid was extracted. The input
datasets included 3470 rows.

3. Results and Discussion
3.1. Water Yield Simulation of CLB from 2000 to 2019
3.1.1. Interannual Variation

The water yield results simulated by the InVEST water yield model were compared
with the measured statistical surface runoff data, and the best prediction model was ob-
tained by continuously adjusting the parameters suited to the study region. The model
calibration results are shown in Figure A1. There was a strong linear relationship be-
tween the annual water production simulated by the water yield model and the ob-
served annual surface runoff from 2000 to 2019. The linear regression fitting equation
was y = 1.2363x − 8.6038 (R2 = 0.868, p < 0.01), and the Pearson correlation coefficient was
0.93. This shows that the simulation of water production using the InVEST model is
appropriate for the CLB.

The interannual variations in the simulated water yield and the observed statistical sur-
face runoff data from 2000 to 2019 were shown in Figure 4. In terms of temporal changes, the
model simulations showed consistent changes in the observed statistical runoff. The water
yield from 2000 to 2019 in the CLB showed a fluctuating increasing trend, with three peaks
in 2003, 2010, and 2016. The modeled water yields were, respectively, 130.43 × 108 m3,
114.72 × 108 m3, 191.98 × 108 m3, and the observed runoffs were, respectively, 131.70 ×
108 m3, 69.93 × 108 m3, and 158.25 × 108 m3. The two lowest values were in 2001 and 2019;

http://www.geodetector.org/


Sustainability 2022, 14, 14080 10 of 19

the modeled water yields were, respectively, 38.68 × 108 m3 and 39.82 × 108 m3, and the
observed runoffs were, respectively, 46.72 × 108 m3 and 45.94 × 108 m3.
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The model simulation results were overall slightly higher than the statistical data
results, probably because the InVEST water yield model assumes that all water yields from
each raster reach the basin outlet via subsurface runoff or surface runoff, while the observed
statistical surface runoffs were monitored by hydrological stations and did not include a
subsurface runoff component. Dong et al. used the SCS-CN model to estimate surface
flow production in this study region, and they obtained the average values of surface
runoff in the CLB from 2002 to 2006 as 1167.11 mm, 1363.57 mm, 946.05 mm, 1066.16 mm,
and 1036.72 mm, respectively [53]. In this paper, the simulated annual water yield in the
CLB showed relatively lower results, which respectively were 703.07 mm, 927.84 mm,
473.63 mm, 597.36 mm, and 530.50 mm from 2002 to 2006. However, the interannual trend
was consistent with them as well as the annual precipitation change.

3.1.2. Spatial Variation

The annual average water yield of the sub-basin in the CLB from 2000 to 2019 is shown
in Figure 5. The annual average water yield depth of the CLB was 633.8 ± 183.0 mm.
The spatial distribution pattern indicated that the water yield was generally higher in the
south than in the north. The Hangbu River Basin and the Yuxi River Basin contributed the
highest amount of water yield at 686.2 mm and 669.1 mm, respectively. The differences
in water yield in the sub-basins, except the Chaohu Lake water body, were not significant,
probably because the use of regional and multi-year averages smoothed out the differences
between annual and regional water yields. The spatial distribution of water yields from
2000 to 2019 was similar to the spatial distribution of annual mean precipitation, which was
higher in the three southern sub-basins and lower in the northern sub-basins. The results
of the qualitative analysis indicated that precipitation had a particularly strong effect on
water yield.
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3.2. Driving Factors Analysis

In this paper, we selected three typical years with the highest, lowest, and median
water yields during the 20-year period, which were 2001, 2008, and 2016. We studied the
driving factors of spatial variation in water yield in the CLB using Geodetector.

3.2.1. Univariate Analysis

Table 4 shows that the independent variables of the factors explained the spatial
differentiation in the water yield of the CLB. By comparing the q-value and the p-value of
each factor in the three years, the results show that the q-value of precipitation in 2016 was
largest when the water yield was greatest. This explained 44% the spatial variation in the
water yield of the CLB (p < 0.05). Secondly, the LULC and reference evapotranspiration,
respectively, accounted for 36% and 17% (p < 0.05); the other factors accounted for little. The
LULC explained 46% of the spatial variation in the water yield in 2001 (p < 0.05), followed
by precipitation, with an explanatory percentage of 25%. The q-value of the LULC in 2008
was much higher than that of the other factors, followed by the vegetation index, which,
respectively, accounted for 63% and 17% (p < 0.05).

Table 4. q-value and p-value of Geodetector factor detection.

Statistics Year Elevation Slope Aspect HSG AET Precipitation RET NDVI LULC

q-value
2001 0.04 0.02 0.06 0.05 0.25 0.16 0.13 0.46 0.04
2008 0.02 0.01 0.10 0.12 0.10 0.05 0.17 0.63 0.02
2016 0.03 0.02 0.07 0.08 0.44 0.17 0.11 0.36 0.03

p-value
2001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2008 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2016 0.60 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The above analysis showed that, among the eight driving factors selected in this paper,
LULC and precipitation had a greater impact on the water yield of the CLB, meaning they
are the dominant natural factors affecting the water yield of the CLB, followed by the
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vegetation index and reference evapotranspiration. The topographic and soil factors had
the least influence on water yield in the CLB.

3.2.2. Interaction Analysis

The interaction detector assessed whether every two independent variables acting
together increased or decreased the explanatory percentage of the dependent variable.
Table 5 shows that the interaction between the LULC and precipitation had the highest
q-values: 0.71, 0.77, and 0.85. The explanatory percentage of the interaction between the two
variables for water yield in 2001, 2008, and 2016 reached 71%, 77%, and 85%, respectively.
The interaction between all factors enhanced the influence of the single factor on water
yield in the CLB, showing a bi-enhancement and nonlinear enhancement relationship.
The interaction between LULC and precipitation further increased its influence on water
yield. The interaction detection results were consistent in different hydrological years. This
indicates that the water yield spatial differentiation in the CLB was not caused by a single
factor, but by the combined effect of different influencing factors.

Table 5. Results of geographic detector factor interaction.

Year Factors Elevation Slope Aspect HSG Precipitation RET NDVI LULC

2001

Elevation 0.04
Slope 0.07 0.02
Aspect 0.11 0.09 0.06
HSG 0.09 0.08 0.12 0.05
Precipitation 0.27 0.27 0.31 0.34 0.25
RET 0.20 0.18 0.21 0.25 0.29 0.16
NDVI 0.17 0.16 0.16 0.19 0.32 0.28 0.13
LULC 0.51 0.48 0.47 0.51 0.71 0.62 0.51 0.46

2008

Elevation 0.02
Slope 0.05 0.01
Aspect 0.13 0.12 0.10
HSG 0.16 0.15 0.21 0.12
Precipitation 0.11 0.13 0.21 0.26 0.10
RET 0.08 0.07 0.17 0.23 0.11 0.05
NDVI 0.19 0.19 0.23 0.25 0.33 0.25 0.17
LULC 0.66 0.64 0.64 0.65 0.77 0.70 0.67 0.63

2016

Elevation 0.03
Slope 0.04 0.02
Aspect 0.11 0.08 0.07
HSG 0.11 0.10 0.15 0.08
Precipitation 0.45 0.46 0.50 0.54 0.44
RET 0.22 0.19 0.22 0.28 0.48 0.17
NDVI 0.15 0.12 0.14 0.17 0.56 0.28 0.11
LULC 0.40 0.37 0.36 0.42 0.85 0.51 0.39 0.36

The terrain of the CLB is high in the southwest and low in the northeast, generally
inclined toward Chaohu Lake, with 75% of it being below 50 m in height. There are
mountains in the southwest, hills and shallow mountains in the northeast, and plains in the
southeast and along Chaohu Lake (Figure 1). The topographic factors, including elevation,
slope, and aspect, accounted for little of the water production changes, mainly due to
the flat terrain conditions. The forest ecosystem stands are relatively singular in the CLB.
The soil and water conservation capacity is low. At present, more than 100 km2 of pure
artificial poplar forest is aging. The capacity of carbon sink, soil, and water conservation
has gradually weakened [54]. The NDVI and LULC factors, which are influenced by
human activities, affected more spatial variations in the water yield. In the practice of
river watershed resource management, we should consider different characteristics of the
driving factors, as these driving factors interact to enhance the effects. We should implement
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scientific water resource allocation plans that match the regional natural conditions and
effects of human activities to avoid unreasonable or strong man-made interference on land
use, thus enhancing the pressure of regional water resource systems.

3.3. Spatial and Temporal Variations in Water Yield under Future Climate Change
3.3.1. Trend Analysis of Annual Precipitation and Annual Reference Evapotranspiration

Figure 6 reflects the trends of annual precipitation and annual reference evapotranspi-
ration for the four scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 for three future
years. The annual precipitation in this study region had a decreasing trend under the SSP1-
2.6 scenario, with 23.2% and 34.0% decrease in precipitation in 2070 and 2100, respectively,
compared with 2040. In contrast, the annual precipitation under three scenarios, SSP2-4.5,
SSP3-7.0, and SSP5-8.5, had an increasing trend. Under the SSP2-4.5 scenario, the precip-
itation in 2070 and 2100 increased, respectively, by 3.8% and 31.3% compared with 2040.
Under the SSP3-7.0 scenario, the precipitation in 2070 and 2100 increased, respectively, by
45.6% and 62.5%. Under the SSP8-8.5 scenario, the precipitation in 2070 and 2100 increased,
respectively, by 32.5% and 68.1%.
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Figure 6. Changes in annual precipitation and annual reference evapotranspiration under SSP scenarios.

The annual reference evapotranspiration in the study region under the four scenarios
increased each year. It increased by 4.3% in 2070 and 13.2% in 2100 under SSP1-2.6; 7.9% in
2070 and 6.9% in 2100 under SSP2-4.5; 8.9% in 2070 and 18.3% in 2100 under SSP3-7.0; and
8.6% in 2070 and 27.0% in 2100 under SSP5-8.5. Annual reference evapotranspiration is
correlated with temperature. The scenario with higher carbon emissions, which predicted
higher atmospheric carbon dioxide (CO2) concentrations, included a higher estimation of
annual reference evapotranspiration.

In addition to SSP1-2.6, the precipitation and evapotranspiration in the CLB increased
under climate change scenarios, which was consistent with the results of Li [55] and
Zhang [56] et al. regarding the Changbai Mountain Basin and the Upstream Basin of the
Miyun Reservoir in China using the BCC-CSM2-MR model. Under global warming of
1.5 ◦C, 2 ◦C, and 3 ◦C, the average estimated total precipitation in China will increase by
5.3%, 8.6%, and 16.3% compared with current global warming. The total precipitation and
heavy precipitation in the south of the Yangtze River Basin and near 40◦ N will increase to
a notable degree [57].

3.3.2. Trend Analysis of Annual Water Yield

The annual precipitation and annual reference evapotranspiration data for the future
scenarios were substituted into the InVEST model to obtain the water yield of the CLB
for the four scenarios for the three future years. The mean values for each sub-basin were
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calculated, as shown in Figure 7. Under the SSP1-2.6 scenario, the annual water yield
decreased with decreasing annual precipitation for the three years, and the total annual
water yield in 2070 seemed to be roughly equivalent to the average results from 2000 to
2019. The differences in water yield in 2070 and 2100 compared to 2040 for each sub-basin
were not significant, except for Chaohu Lake. The reductions ranged from 35.8% to 39.5%
in 2070 and 57.6% to 62% in 2100, compared to 2040.
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Under the SSP2-4.5 scenario, the annual water yield increased with the increase in
annual precipitation in the three years, especially in the Pai River Basin and Nanfei River
Basin in the northern CLB, which are located in the megalopolis of Hefei, with an average
increase of 5.6% and 71.0% in 2070 and 2100 compared to 2040. In the south, the Baishitian
River Basin and the Yuxi River Basin had the smallest increase in water production. The
Hangbu River Basin and the Yuxi River Basin had higher water production due to their
larger areas, with predicted values of 32.4 × 108 m3 and 40.3 × 108 m3 in 2100 under the
SSP2-4.5 scenario, respectively.

Under the SSP3-7.0 and SSP5-8.5 scenarios, the average increase reached 108.5% and
139.8% in 2070 and 85.9% and 159.5% in 2100 compared with 2040, with annual water
production increasing with annual precipitation in all three years. The spatial differences
in the increases over the sub-basins were consistent with the pattern of SSP2-4.5, with
greater increases in the northern sub-basins than in the southern sub-basins. SSP3-7.0,
which represents the moderate baseline results produced by the energy systems model,
was used in conjunction with SSP5-8.5 (worst-case scenario) to simulate global warming
trends without climate policy intervention. The increase in water yield was significantly
higher than SSP2-4.5, in which social vulnerability and radiative forcing are moderate.

In addition, a longitudinal comparison in Figure 7 reflected the impact of different
carbon emission scenarios on water production. Under the four scenarios of SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5, the total water production in the CLB in 2040 would be
134.8 × 108 m3, 63.5 × 108 m3, 37.2 × 108 m3, and 30.2 × 108 m3; in 2070, the total water
production would be 80.8 × 108 m3, 63.0 × 108 m3, 76.4 × 108 m3, and 52.7 × 108 m3; in
2100, the total water production would be 54.8 × 108 m3, 100.9 × 108 m3, 87.6 × 108 m3,
and 73.8 × 108 m3. With an increase in carbon emission intensity, the overall trend of water
production decreased, and the spatial divergence was greater in the northern sub-basin
than in the southern sub-basin.

The CLB is affected by an intergrade subtropical monsoon climate situated between
subtropical and warm temperate zones. The spatial and temporal distribution of rainfall
in the region is uneven, and it is concentrated in summer. There is much intense rainfall,
often resulting in flood disasters. Chaohu Lake has a wide water surface and slow flow
rate, which are the characteristics of a typical plain lake at the lower reaches of the Yangtze
River. It has a growing water supply and takes in drainage from large provincial cities. At
the same time, due to the extension of the water exchange cycle caused by the construction
of a sluice at the mouth of the lake in 1962, the water purification capacity of the lake was
reduced. There is great pressure on the quality and quantity of the water resources of the
CLB, especially in the northern watershed, due to a high degree of urbanization and sharp
conflicts between population and land.

3.4. Limitations

The three main inputs of the InVEST water yield model are LULC, climatic factors,
and soil parameters, which can influence the water yield by changing the hydrological
cycle. The results of this paper showed that climatic factors had a strong influence on
water production in the CLB. Therefore, we assumed that inputs other than precipitation
and reference evapotranspiration would remain constant in all future scenarios, and we
quantified the impact of future climate change on water yield in the CLB. The prediction of
future land use changes in the CLB is subject to uncertainty, as land use changes in the CLB
are mainly derived from government investment and sector-driven policy demands rather
than a natural demand for land from socioeconomic development [58]. The shortcoming of
this study was that we could not accurately simulate water changes with high-frequency
variability characteristics using the InVEST model, so the interaction between future LULC
changes and climate change was not considered. In addition, the results showed an opposite
trend between SSP1-2.6 and other SSPs, which were decided by the input precipitation
that was derived from the climate model. The use of a single climate model in this study
increased the uncertainty of the simulation results in driving the hydrological model, and
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an ensemble-based multi-climate model should be used to improve the simulation accuracy
and spatial resolution by overcoming the limitation of relying on a single data source.

4. Conclusions

In this study, we evaluated the applicability of the InVEST water yield model in a
typical lake basin in the middle and lower reaches of the Yangtze River in China. Then,
we quantified the driving factors of water yield and their interactions using a new spatial
statistical method (Geodetector). Furthermore, we analyzed the effects of future climate
changes in precipitation and temperature on water yield in the CLB by applying CMIP6
climate model data to the InVEST model:

(1) The results showed that the water yield simulated using the InVEST model had good
applicability in this study region. There was a strong linear relationship between
the simulated water yield and the measured surface runoff (y = 1.2363x − 8.6038,
R2 = 0.868, p < 0.01), and the Pearson correlation coefficient was 0.93. The annual
average water yield depth in the CLB from 2000 to 2019 was 633.8 ± 183.0 mm, which
was generally higher in the south than in the north;

(2) The results of the Geodetector analysis showed that the explanatory percentage of
interaction between the precipitation and LULC for water yield in 2001, 2008, and
2016 reached 71%, 77%, and 85%, respectively, and these were the two dominant
factors affecting water yield in the CLB;

(3) The results of water yield simulations based on downscale-corrected BCC-CSM2-MR
model data showed that the average annual water yield in the CLB increased with
increasing precipitation under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, and it
declined under the SSP1-2.6 scenario. The average annual water yield increased by
5.6%, 108.5%, and 85.9% in 2070 compared with 2040 under the SSP2-4.5, SSP3-7.0,
and SSP5-8.5 scenarios, and it increased by 71%, 139.8%, and 159.5% in 2100 compared
with 2040 under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The overall trend of
the water yield decreased with increases in carbon emission intensity.

The results of this study will help to understand the potential impact of future climate
change on the water supply in the region. The general increase trend of watershed water
yield will probably cause more flood and urban water logging, the decline of wetland
vegetation, and geological disaster. Managers should pay attention to these issues and
develop a comprehensive plan accordingly.

The water yield model of InVEST based on a simplified hydrological process was
further proved accurate on an annual scale in our study, which can be generalized to other
regions for evaluating water resources under multi scenarios, such as climate change and
intensive land development. It is useful for researchers and managers who are short of
sufficient expertise and time. The framework and methods used in the study can be able to
apply in the further prediction of annual water production changes in the short or medium
term, in response to LULC and climate change.

Author Contributions: Conceptualization, T.Z. and H.X.; methodology, T.Z. and Q.G.; validation,
T.Z., Q.G. and Q.W.; formal analysis, T.Z. and Q.G.; investigation, H.X.; resources, T.Z. and Q.W.;
data curation, T.Z., C.Z. and Z.C.; writing—original draft preparation, T.Z., Q.G. and H.X.; writing—
review and editing, T.Z., H.X. and Q.W.; visualization, Y.Y. and H.H.; supervision, H.X.; project
administration, T.Z.; funding acquisition, T.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Natural Science Research Project of University in Anhui
Province, grant number KJ2019A0763 and KJ2020JD07; the Natural Science Foundation of Anhui
Province, grant number 2108085QD151; the Science and Technology Program of Hubei Provincial
Education Department, grant number Q20182803, the Research Fund of Anhui Jianzhu University,
grant number 2018QD27.

Institutional Review Board Statement: Not applicable.



Sustainability 2022, 14, 14080 17 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: The meteorological data from 2000 to 2019 were obtained from the
daily dataset of Chinese terrestrial climate information (V3.0), National Meteorological Science Data
Center (NMSDC) (http://data.cma.cn/ (accessed on 8 April 2021)); the LULC rasters and NDVI
were obtained from the Resource and Environment Science and Data Center (https://www.resdc.cn/
(accessed on 26 March 2021)); the soil map was obtained from the Harmonized World Soil Database
(v1.2) (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-
soil-database-v12/en/ (accessed on 6 May 2021)); the observed annual surface runoff was obtained
from the Anhui Statistical Yearbook on the Anhui Provincial Bureau of Statistics website (http:
//tjj.ah.gov.cn/ (accessed on 30 June 2022)); the DEM, watersheds and sub-watersheds boundaries
were obtained from the Lake-Watershed Science SubCenter, National Earth System Science Data
Center, National Science & Technology Infrastructure of China (http://gre.geodata.cn (accessed on
29 June 2021)); the CMIP6 data were obtained from the World Climate Research Programme (WCRP,
https://esgf-data.dkrz.de/search/cmip6-dkrz/ (accessed on 25 July 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 21 
 

Author Contributions: Conceptualization, T.Z. and H.X.; methodology, T.Z. and Q.G.; validation, 

T.Z., Q.G., and Q.W.; formal analysis, T.Z. and Q.G.; investigation, H.X.; resources, T.Z. and Q.W.; 

data curation, T.Z., C.Z., and Z.C.; writing—original draft preparation, T.Z., Q.G., and H.X.; writ-

ing—review and editing, T.Z., H.X., and Q.W.; visualization, Y.Y. and H.H.; supervision, H.X.; 

project administration, T.Z.; funding acquisition, T.Z. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was supported by the Natural Science Research Project of University in 

Anhui Province, grant number KJ2019A0763 and KJ2020JD07; the Natural Science Foundation of 

Anhui Province, grant number 2108085QD151; the Science and Technology Program of Hubei 

Provincial Education Department, grant number Q20182803, the Research Fund of Anhui Jianzhu 

University, grant number 2018QD27. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement:  Not applicable. 

Data Availability Statement: The meteorological data from 2000 to 2019 were obtained from the 

daily dataset of Chinese terrestrial climate information (V3.0), National Meteorological Science Da-

ta Center (NMSDC) (http://data.cma.cn/ (accessed on 8 April 2021)); the LULC rasters and NDVI 

were obtained from the Resource and Environment Science and Data Center 

(https://www.resdc.cn/ (accessed on 26 March 2021)); the soil map was obtained from the Harmo-

nized World Soil Database (v1.2) (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/ (accessed on 6 May 2021)); the observed annu-

al surface runoff was obtained from the Anhui Statistical Yearbook on the Anhui Provincial Bu-

reau of Statistics website (http://tjj.ah.gov.cn/ (accessed on 30 June 2022)); the DEM, watersheds 

and sub-watersheds boundaries were obtained from the Lake-Watershed Science SubCenter, Na-

tional Earth System Science Data Center, National Science & Technology Infrastructure of China 

(http://gre.geodata.cn (accessed on 29 June 2021)); the CMIP6 data were obtained from the World 

Climate Research Programme (WCRP, https://esgf-data.dkrz.de/search/cmip6-dkrz/ (accessed on 

25 July 2022)). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Scatter plot fitting of simulated water yield and measured runoff. 
Figure A1. Scatter plot fitting of simulated water yield and measured runoff.

References
1. Liu, S.; Yin, Y.; Liu, X.; Cheng, F.; Yang, J.; Li, J.; Dong, S.; Zhu, A. Ecosystem Services and Landscape Change Associated with

Plantation Expansion in a Tropical Rainforest Region of Southwest China. Ecol. Model. 2017, 353, 129–138. [CrossRef]
2. Ping, L.; Zheng, X.; Chen, J.; Zhang, Q.; Li, J.; Bo, W. Characteristic Analysis of Ecosystem Service Value of Water System in

Taiyuan Urban District Based on LUCC. Int. J. Agric. Biol. Eng. 2016, 9, 153–165.
3. Fu, B.J.; Zhou, G.Y.; Bai, Y.F.; Song, C.C.; Xie, G.D. The Main Terrestrial Ecosystem Services and Ecological Security in China. Adv.

Earth Sci. 2009, 24, 571–576.
4. van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global Water Scarcity Including

Surface Water Quality and Expansions of Clean Water Technologies. Environ. Res. Lett. 2021, 16, 024020. [CrossRef]
5. MA (Millennium Ecosystem Assessment). Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005.
6. Le Maitre, D.C.; Milton, S.J.; Jarmain, C.; Colvin, C.A.; Saayman, I.; Vlok, J.H. Linking Ecosystem Services and Water Resources:

Landscape-Scale Hydrology of the Little Karoo. Front. Ecol. Environ. 2007, 5, 261–270. [CrossRef]
7. Tao, F.; Zhang, Z. Dynamic Responses of Terrestrial Ecosystems Structure and Function to Climate Change in China. J. Geophys.

Res. 2010, 115, G03003. [CrossRef]

http://data.cma.cn/
https://www.resdc.cn/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://tjj.ah.gov.cn/
http://tjj.ah.gov.cn/
http://gre.geodata.cn
https://esgf-data.dkrz.de/search/cmip6-dkrz/
http://doi.org/10.1016/j.ecolmodel.2016.03.009
http://doi.org/10.1088/1748-9326/abbfc3
http://doi.org/10.1890/1540-9295(2007)5[261:LESAWR]2.0.CO;2
http://doi.org/10.1029/2009JG001062


Sustainability 2022, 14, 14080 18 of 19

8. Nedkov, S.; Campagne, S.; Borisova, B.; Krpec, P.; Prodanova, H.; Kokkoris, I.P.; Hristova, D.; Le Clec’h, S.; Santos-Martin, F.;
Burkhard, B.; et al. Modeling Water Regulation Ecosystem Services: A Review in the Context of Ecosystem Accounting. Ecosyst.
Serv. 2022, 56, 101458. [CrossRef]

9. Boumans, R.; Costanza, R.; Farley, J.; Wilson, M.A.; Portela, R.; Rotmans, J.; Villa, F.; Grasso, M. Modeling the Dynamics of the
Integrated Earth System and the Value of Global Ecosystem Services Using the GUMBO Model. Ecol. Econ. 2002, 41, 529–560.
[CrossRef]

10. Schägner, J.P.; Brander, L.; Maes, J.; Hartje, V. Mapping Ecosystem Services’ Values: Current Practice and Future Prospects. Ecosyst.
Serv. 2013, 4, 33–46. [CrossRef]

11. Benra, F.; De Frutos, A.; Gaglio, M.; Alvarez-Garreton, C.; Felipe-Lucia, M.; Bonn, A. Mapping Water Ecosystem Services:
Evaluating InVEST Model Predictions in Data Scarce Regions. Environ. Model. Softw. 2021, 138, 104982. [CrossRef]

12. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven,
A.; van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

13. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water
Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524,
733–752. [CrossRef]

14. Ma, L.; He, C.; Bian, H.; Sheng, L. MIKE SHE Modeling of Ecohydrological Processes: Merits, Applications, and Challenges. Ecol.
Eng. 2016, 96, 137–149. [CrossRef]

15. Torres, M.A.; Nikolskii, I.; Martínez Miranda, M.E.; Martínez, M.R. Evaluación Hidrológica de La Cuenca Del Río Teapa,
Utilizando El Modelo MIKE-SHE. Tecnol. Y Cienc. Del Agua 2018, 9, 130–146. [CrossRef]

16. Singh, P.K.; Gaur, M.L.; Mishra, S.K.; Rawat, S.S. An Updated Hydrological Review on Recent Advancements in Soil Conservation
Service-Curve Number Technique. J. Water Clim. Chang. 2010, 1, 118–134. [CrossRef]

17. Verma, R.K.; Verma, S.; Mishra, S.K.; Pandey, A. SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from
Large Rainfall Events. Water Resour. Manag. 2021, 35, 2149–2175. [CrossRef]

18. He, F.; Jin, J.; Zhang, H.; Yuan, L. The Change of Ecological Service Value and the Promotion Mode of Ecological Function in
Mountain Development Using InVEST Model. Arab. J. Geosci. 2021, 14, 510. [CrossRef]

19. Zhang, H.; Feng, J.; Zhang, Z.; Liu, K. Regional spatial management based on supply-demand risk of ecosystem services—A case
study of the Fenghe River watershed. Int. J. Environ. Res. Public Health 2020, 17, 4112. [CrossRef]

20. Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing Two Tools for Ecosystem Service Assessments Regarding
Water Resources Decisions. J. Environ. Manag. 2016, 177, 331–340. [CrossRef]

21. Butsic, V.; Shapero, M.; Moanga, D.; Larson, S. Using InVEST to Assess Ecosystem Services on Conserved Properties in Sonoma
County, CA. Calif. Agric. 2017, 71, 81–89. [CrossRef]

22. Kim, S.; Jung, Y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests 2020, 11, 804.
[CrossRef]

23. Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST Habitat Quality Module in Spatially Vulnerability
Assessment of Natural Habitats (Case Study: Chaharmahal and Bakhtiari Province, Iran). Environ. Monit. Assess. 2020, 192, 487.
[CrossRef] [PubMed]

24. Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A New Approach to Modeling the Sediment Retention Service (InVEST 3.0):
Case Study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [CrossRef]

25. Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem Services as a Resilience Descriptor in Habitat Risk Assessment Using
the InVEST Model. Ecol. Indic. 2020, 115, 106426. [CrossRef]

26. Scordo, F.; Lavender, T.; Seitz, C.; Perillo, V.; Rusak, J.; Piccolo, M.; Perillo, G. Modeling Water Yield: Assessing the Role of Site and
Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model. Water 2018, 10, 1496.
[CrossRef]

27. Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.;
et al. InVEST 3.11.0.post56+ug.gfa89dd9 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The
Nature Conservancy, and World Wildlife Fund. 2020. Available online: https://naturalcapitalproject.stanford.edu/software/invest
(accessed on 15 January 2022).

28. Peng, L.-C.; Lin, Y.-P.; Chen, G.-W.; Lien, W.-Y. Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem
Services: A Case Study of Chinan Catchment, Taiwan. Water 2019, 11, 867. [CrossRef]

29. Liu, R.; Niu, X.; Wang, B.; Song, Q. InVEST Model-Based Spatiotemporal Analysis of Water Supply Services in the Zhangcheng
District. Forests 2021, 12, 1082. [CrossRef]

30. Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China:
Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [CrossRef]

31. Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST
Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [CrossRef]

32. Yang, X.; Chen, R.; Meadows, M.E.; Ji, G.; Xu, J. Modelling Water Yield with the InVEST Model in a Data Scarce Region of
Northwest China. Water Supply 2020, 20, 1035–1045. [CrossRef]

33. Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST Models to Determine Hydrological Ecosystem Service
Spatial Patterns, Priorities and Trade-Offs in a Complex Basin. Ecol. Indic. 2020, 112, 106089. [CrossRef]

http://doi.org/10.1016/j.ecoser.2022.101458
http://doi.org/10.1016/S0921-8009(02)00098-8
http://doi.org/10.1016/j.ecoser.2013.02.003
http://doi.org/10.1016/j.envsoft.2021.104982
http://doi.org/10.13031/2013.42256
http://doi.org/10.1016/j.jhydrol.2015.03.027
http://doi.org/10.1016/j.ecoleng.2016.01.008
http://doi.org/10.24850/j-tyca-2018-04-06
http://doi.org/10.2166/wcc.2010.022
http://doi.org/10.1007/s11269-021-02831-5
http://doi.org/10.1007/s12517-021-06869-y
http://doi.org/10.3390/ijerph17114112
http://doi.org/10.1016/j.jenvman.2016.03.012
http://doi.org/10.3733/ca.2017a0008
http://doi.org/10.3390/f11080804
http://doi.org/10.1007/s10661-020-08460-6
http://www.ncbi.nlm.nih.gov/pubmed/32621254
http://doi.org/10.1016/j.scitotenv.2015.04.027
http://doi.org/10.1016/j.ecolind.2020.106426
http://doi.org/10.3390/w10111496
https://naturalcapitalproject.stanford.edu/software/invest
http://doi.org/10.3390/w11040867
http://doi.org/10.3390/f12081082
http://doi.org/10.1016/j.landurbplan.2018.10.011
http://doi.org/10.1016/j.scitotenv.2016.06.227
http://doi.org/10.2166/ws.2020.026
http://doi.org/10.1016/j.ecolind.2020.106089


Sustainability 2022, 14, 14080 19 of 19

34. Yang, D.; Liu, W.; Xu, C.; Tao, L.; Xu, X. Integrating the InVEST and SDSM Model for Estimating Water Provision Services in
Response to Future Climate Change in Monsoon Basins of South China. Water 2020, 12, 3199. [CrossRef]

35. Yan, Y.; Guan, Q.; Wang, M.; Su, X.; Wu, G.; Chiang, P.; Cao, W. Assessment of Nitrogen Reduction by Constructed Wetland Based
on InVEST: A Case Study of the Jiulong River Watershed, China. Mar. Pollut. Bull. 2018, 133, 349–356. [CrossRef]

36. Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?
Adv. Atmos. Sci. 2020, 37, 1119–1132. [CrossRef]

37. Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs Scenarios to Project the Future
Dynamic Variations of Water-Soil-Carbon-Biodiversity Services in Central Asia. Ecol. Indic. 2021, 129, 107936. [CrossRef]

38. Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Change Res. 2019,
15, 445–456.

39. Yazdandoost, F.; Moradian, S.; Izadi, A.; Aghakouchak, A. Evaluation of CMIP6 Precipitation Simulations across Different
Climatic Zones: Uncertainty and Model Intercomparison. Atmos. Res. 2021, 250, 105369. [CrossRef]

40. Guo, B.; Jin, X.; Fang, Y.; Zhou, Y. Evaluation of Sustainable Regional Development Combining Remote Sensing Data and
Ecological Constraints: A Case Study of Chaohu Basin, China. Sustainability 2020, 12, 9836. [CrossRef]

41. Wen, M.; Zhang, T.; Li, L.; Chen, L.; Hu, S.; Wang, J.; Liu, W.; Zhang, Y.; Yuan, L. Assessment of Land Ecological Security and
Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018. Sustainability 2021, 13, 358. [CrossRef]

42. Widmoser, P. A Discussion on and Alternative to the Penman-Monteith Equation. Agric. Water Manag. 2009, 96, 711–721.
[CrossRef]

43. Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of Available Soil Water Capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [CrossRef]
44. Feng, J.; Wei, W.; Feng, Q. The Runoff Curve Number of SCS-CN Method in Loess Hilly Region. Acta Ecol. Sin. 2021, 41,

4170–4181.
45. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B. Soil and Water Assessment Tool Input/Output File Documen-

tation. Version 2009. 2011. Available online: https://swat.tamu.edu/docs/ (accessed on 15 December 2021).
46. Hamadalnel, M.; Zhu, Z.; Gaber, A.; Iyakaremye, V.; Ayugi, B. Possible Changes in Sudan’s Future Precipitation under the High

and Medium Emission Scenarios Based on Bias Adjusted GCMs. Atmos. Res. 2022, 269, 106036. [CrossRef]
47. Xu, C.-Y.; Singh, V.P. Evaluation and Generalization of Temperature-Based Methods for Calculating Evaporation. Hydrol. Process.

2001, 15, 305–319. [CrossRef]
48. Fu, B.; Wang, Y.K.; Xu, P.; Yan, K.; Li, M. Value of Ecosystem Hydropower Service and Its Impact on the Payment for Ecosystem

Services. Sci. Total Environ. 2014, 472, 338–346. [CrossRef]
49. Zhang, Z.; Gao, J.; Gao, Y. The Influences of Land Use Changes on the Value of Ecosystem Services in Chaohu Lake Basin, China.

Environ. Earth Sci. 2015, 74, 385–395. [CrossRef]
50. Ma, L.; Sun, R.; Kazemi, E.; Pang, D.; Zhang, Y.; Sun, Q.; Zhou, J.; Zhang, K. Evaluation of Ecosystem Services in the Dongting

Lake Wetland. Water 2019, 11, 2564. [CrossRef]
51. Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134.
52. Su, Y.; Li, T.; Cheng, S.; Wang, X. Spatial Distribution Exploration and Driving Factor Identification for Soil Salinisation Based on

Geodetector Models in Coastal Area. Ecol. Eng. 2020, 156, 105961. [CrossRef]
53. Dong, W.; Cheng, X.; Zhang, Q.; Zhao, Y.; Han, P. Application of SCS-CN Model Estimating Surface Runoff to Chaohu Lake Basin.

Bull. Soil Water Conserv. 2012, 32, 174–177+187. [CrossRef]
54. Xie, S.; Zhu, H.; Tang, X.; Guo, J. Ecological Protection and Restoration of Mountain-river-forest-farmland-lake-grassland System

in Chaohu Lake Basin. Available online: https://kns.cnki.net/kcms/detail/32.1356.TV.20220610.1347.002.html (accessed on
10 July 2022).

55. Li, Z.; Cao, Y.; Duan, Y.; Jiang, Z.; Sun, F. Simulation and Prediction of the Impact of Climate Change Scenarios on Runoff of
Typical Watersheds in Changbai Mountains, China. Water 2022, 14, 792. [CrossRef]

56. Zhang, J.; Ma, S.; Song, Y. Hydrological and Water Quality Simulation and Future Runoff Prediction under CMIP6 Scenario in the
Upstream Basin of Miyun Reservoir. J. Water Clim. Chang. 2022, 13, 2505–2530. [CrossRef]

57. Zhu, H.; Jiang, Z.; Li, L. Projection of Climate Extremes in China, an Incremental Exercise from CMIP5 to CMIP6. Sci. Bull. 2021,
66, 2528–2537. [CrossRef]

58. Fan, S.; Liu, Y.; Cheng, C.; Zhang, H.; Yu, R.; Lv, J. Land Use Change and Driving Mechanism in Rapid Urbanization Region-A
Case Study at Chaohu River Basin. Bull. Soil Water Conserv. 2017, 37, 253–260. [CrossRef]

http://doi.org/10.3390/w12113199
http://doi.org/10.1016/j.marpolbul.2018.05.050
http://doi.org/10.1007/s00376-020-9289-1
http://doi.org/10.1016/j.ecolind.2021.107936
http://doi.org/10.1016/j.atmosres.2020.105369
http://doi.org/10.3390/su12239836
http://doi.org/10.3390/su13010358
http://doi.org/10.1016/j.agwat.2008.10.003
http://doi.org/10.1007/BF02873101
https://swat.tamu.edu/docs/
http://doi.org/10.1016/j.atmosres.2022.106036
http://doi.org/10.1002/hyp.119
http://doi.org/10.1016/j.scitotenv.2013.11.015
http://doi.org/10.1007/s12665-015-4045-z
http://doi.org/10.3390/w11122564
http://doi.org/10.1016/j.ecoleng.2020.105961
http://doi.org/10.13961/j.cnki.stbctb.2012.03.018
https://kns.cnki.net/kcms/detail/32.1356.TV.20220610.1347.002.html
http://doi.org/10.3390/w14050792
http://doi.org/10.2166/wcc.2022.389
http://doi.org/10.1016/j.scib.2021.07.026
http://doi.org/10.13961/j.cnki.stbctb.2017.02.038

	Introduction 
	Materials and Methods 
	Study Region 
	Data 
	Model Operation Data 
	Model Validation Data 
	Factors Data 
	Scenario Mode Data 

	Framework and Methods 
	Water Yield Model 
	Geodetector 


	Results and Discussion 
	Water Yield Simulation of CLB from 2000 to 2019 
	Interannual Variation 
	Spatial Variation 

	Driving Factors Analysis 
	Univariate Analysis 
	Interaction Analysis 

	Spatial and Temporal Variations in Water Yield under Future Climate Change 
	Trend Analysis of Annual Precipitation and Annual Reference Evapotranspiration 
	Trend Analysis of Annual Water Yield 

	Limitations 

	Conclusions 
	Appendix A
	References

