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Abstract: Considering the comparative perspective of the net agricultural carbon effect in China’s
three major functional grain production areas, the Dagum Gini coefficient, kernel density estimation
and Markov chain analysis are used to investigate the spatial disequilibrium and dynamic evolution
characteristics of the net agricultural carbon effect in China from 2000 to 2019. The results show
that the overall net agricultural carbon sink in China is on a fluctuating upward trend, and the net
agricultural carbon sink in the main production areas is higher than that in main marketing areas
and balanced production and marketing areas. There are obvious differences in the net agricultural
carbon sink between different areas, and the differences are expanding; inter-regional differences are
the most significant, with the contribution of intra-regional differences second and the contribution
of intensity of transvariation the least. The kernel density curve shows that the absolute differences
are increasing and that there are gradients and multipolar differentiation within the area. The
Markov transfer matrix reflects that the net agricultural carbon effect in China is highly volatile
and has a strong internal mobility. The probability of upward shift in an area increases when it is
adjacent to a high-level area, and the net carbon effect of agriculture in high-level areas has a strong
stability. Based on this, each area should build on its own comparative advantages and explore
targeted pathways to reducing emissions and increasing sinks in agriculture while strengthening
inter-regional communication and cooperation. It is necessary to build a synergistic mechanism
to enhance the net carbon effect of agriculture, which will ultimately help to achieve the “double
carbon” target.

Keywords: net agricultural carbon effect; spatial disequilibrium; dynamic evolution; functional food
production areas

1. Introduction

Climate change is a global problem facing mankind. The rapid increase in carbon
emissions has intensified the greenhouse effect. Glacier melting, frequent disasters, and
rising temperatures are affecting all aspects of human life. As the world’s second largest
economy and the largest developing country, China has actively joined the global climate
governance initiative, demonstrating its responsible and committed role as a major power.
In September 2020, China made it clear that it would adopt stronger policies and measures
to achieve peak carbon by 2030 and carbon neutrality by 2060, or the “double carbon”
target. In December 2020, China further stated at the Climate Ambition Summit that by
2030, China’s CO2 emissions per unit of GDP would be more than 65% lower than in 2005.
The report of the 20th National Congress of the CPC clearly mentioned that China should
actively and steadily promote carbon peak and carbon neutrality to deal with the global
governance of climate change. However, at present, the control of carbon emissions is
mainly focused on industrial production, which is considered to be the most important
source of greenhouse gas emissions but has little to do with agriculture [1]. In fact, according
to the fifth IPCC assessment report, agricultural production has become the second largest
emission source of greenhouse gases in the world. According to data released by the Food
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and Agriculture Organization of the United Nations (FAO), agricultural production releases
more than 30% of global CO2 emissions, and as a special production sector, agriculture also
has carbon sequestration and sinking properties, but agro-ecosystems can also offset 80%
of the CO2 emissions caused by agriculture. Therefore, under the double carbon objective,
agriculture must reduce emissions, sequester carbon to increase sinks and serve carbon
neutrality. At the same time, an important function of agriculture is ensuring the national
food security. Each functional food production area has different resource endowments,
functional plans and economic structures. Distinctive geographical types of agriculture
have been formed, generating different amounts of carbon sinks, sources and net carbon
sinks [2]. This poses a serious challenge to the coordinated development of low-carbon
agriculture. Many countries have made arrangements for carbon emission and carbon
reduction, and many scholars have explored how to achieve carbon neutrality from the
perspectives of energy utilization, financial support, industrial structure and consumption
habits [3,4]. In view of this, considering the scientific evaluation of the net carbon effect of
Chinese agriculture, this paper accurately grasps its spatial disequilibrium characteristics
and dynamic evolution trends. It is of great practical significance to actively and steadily
promote the realization of the double carbon target.

2. Literature Review

Promoting the transition from high carbon to low carbon should be started from the
two aspects of carbon sink and carbon source [5]. On the one hand, carbon sinks refer
to carbon uptake and are regarded as ecological welfare [6,7]. Piao used atmospheric
inversions and terrestrial carbon models and analysed recent changes in the net land
carbon sink (NLS) and its driving factors [8]. Wang found that vegetation greenness
increased significantly over time, which supported the timing of and increase in terrestrial
carbon sinks in afforestation areas [9]. Wu established a stochastic multi-objective nonlinear
programming model under the framework of socioeconomic ecology that can consider the
carbon sink function of farmland vegetation [10]. Zhu compiled a complete set of forest
inventory data from North America north of Mexico to understand the fate of forest biomass
as a carbon sink and to predict its potential in mitigating climate change [11]. Piao reviewed
the assessments of China’s terrestrial ecosystem carbon sink, with focus on the principles,
frameworks and methods of terrestrial ecosystem carbon sink estimates, as well as the recent
progress and existing problems [12]. Singh believed that the world’s soil has the largest
organic carbon storage in the terrestrial ecosystem. By determining a series of traditional
and emerging agricultural management practices in farmland, Singh emphasized that
knowledge and mechanisms may increase organic carbon storage [13]. Sha proposed an
integrated method of assessing how much more carbon can be sequestered by vegetation
if optimal land management practices are implemented. The proposed method combines
remotely sensed time series of net primary productivity datasets, segmented landscape–
vegetation–soil zones and distance-constrained zonal analysis [14]. Lorenz focused on
scientific understanding of SiC and organic carbon sequestration in agro-ecosystems [15].
Sun calculated the economic value of mariculture carbon sinks based on carbon tax law
and afforestation law [16]. On the other hand, carbon sources refer to carbon emissions and
are seen as undesirable outputs [17,18]. Among them, some scholars discussed agricultural
carbon emissions from a single-dimensional perspective, such as planting [17–20], livestock
and poultry breeding [19–25] and fishery production [26–29]. Some scholars integrated
multidimensional carbon sources for investigation. Johnson argued that ACESs were
mainly derived from intestinal fermentation in livestock, manure management, rice growth
and the arbitrary disposal of agricultural waste [30]. Huang and Zhang et al. estimated the
amount and intensity of agricultural carbon emissions in China from five carbon sources,
agricultural materials, rice planting, soil N2O, livestock and poultry farming and straw
burning and analysed their spatial and temporal characteristics [31,32]. Xiong believed
that agricultural greenhouse gas emissions mainly come from the use of agricultural land
and livestock farming [33,34]. Ghosh considered carbon emissions from three main sectors
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of agriculture, namely agriculture, fisheries and dairy [35]. Cui analysed the regional
differences in and temporal and spatial dynamic evolution of planting industry carbon
emission intensity considering the carbon sink effect and found that China’s planting
industry carbon emission intensity showed a significant disequilibrium distribution when
considering the carbon sink effect [36]. Shan believed that in addition to agricultural
production materials and livestock and poultry breeding, agricultural carbon emissions in
Hubei Province should also include rural living energy consumption and household waste
disposal in the calculation scope [37]. The measurement of agricultural carbon emissions in
the above literature mostly adopts the carbon emission coefficient method.

After completing the analysis and calculation of the agricultural carbon sink and car-
bon source index system, Popp discussed how to implement carbon offsets in
agriculture [38]. In addition, many scholars have studied the distribution characteris-
tics of agricultural net carbon. Tian measured the net carbon sink of the planting industry
and found that the regional differences were obvious [39]. Chen used ArcGIS visualization
to analyze the change law of the spatial pattern of China’s county-level agricultural net
carbon sink and found that the regional gap is constantly narrowing [40]. Xiong calculated
agricultural carbon emissions and carbon sinks using the data in Hotan Prefecture and
found that the net carbon sink in Hotan Prefecture showed a steady growth trend during
the sample period [41]. Pei analysed the spatial and temporal dynamics of carbon emissions
and carbon sinks in Guangdong Province, southern China, in which the carbon sinks only
calculated forest land and grassland and did not consider farmland [42]. Li used DEA to
calculate the agricultural net carbon sink efficiency in China’s provinces and used kernel
density estimation to analyze the spatial and temporal dynamic evolution process and
found that there is an obvious regional disequilibrium phenomenon in China’s agricultural
net carbon sink efficiency [43]. Weng used methods such as standard deviation ellipse to
find that the net carbon sink in farmland ecosystems in Jiangsu Province presents a spatial
distribution pattern of northwest–southeast [44].

The abovementioned literature has laid a solid foundation for the development of this
paper, but there are also shortcomings. (1) The existing literature on the net carbon effect of
agriculture is mainly from the perspective of geographical location, and there is a lack of
studies that take the net carbon effect of agriculture in food production functional areas
as the object of investigation. (2) The existing literature on carbon sink measurement is
mostly focused on the crop level, while there are fewer studies that include forest land and
grassland in the carbon sink measurement system. (3) The existing literature only gives
a brief description of the current situation of agricultural net carbon effect through descrip-
tive statistical analysis and does not deeply discuss the evolution trend in agricultural net
carbon effect from a spatial perspective. Based on this, this paper will expand and deepen
in the following three aspects: (1) In view of the scale of functional areas of food production,
the three main functional areas of food production, main marketing areas and balanced
production and marketing areas are analysed for the development trends in their agricul-
tural net carbon effects. (2) A checklist of agricultural inputs, paddy methane, agricultural
land use, livestock breeding and biological carbon sequestration is constructed in which
crops, woodlands and grasslands are included in the measurement of biological carbon
sequestration to accurately measure the net carbon sink of Chinese agriculture. (3) With the
help of the Dagum Gini coefficient, the spatial disequilibrium characteristics and dynamic
evolution of China’s agricultural net carbon effect are investigated comprehensively.

The remainder of this paper is organized as follows. Section 3 introduce the research
methods and data processing. In Section 4, the spatial disequilibrium characteristics of the
net agricultural carbon effect are measured and analysed using the Gini coefficient, and
in Section 5, the dynamic evolution of the net agriculture carbon effect is measured using
the kernel density and Markov chain. The conclusions and implications of the paper are
presented in Section 4.
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3. Model Construction and Data Measurement
3.1. Model Construction
3.1.1. Dagum Gini Coefficient and Its Decomposition Method

Dagum proposed a decomposition method based on subsamples. According to this
method, the Gini coefficient can be decomposed into three components: there are the con-
tributions by the intra-regional differences Gw, inter-regional differences Gnb and intensity
of transvariation Gt [45]. This method fully considers the distribution status of subsamples.
It identifies the sources of the regional differences and effectively solves the problem of
the overlaps between the sample data. In particular, the overall Gini coefficient G, the
intra-regional Gini coefficient Gjj and the inter-regional Gini coefficient Gjh are calculated
as follows:

G =

k
∑

j=1

k
∑

h=1

nj

∑
i=1

nh
∑

r=1

∣∣Yji −Yhr
∣∣

2n2Y
(1)

Gjj =

1
2yj

nj

∑
i=1

nh
∑

r=1

∣∣Yji −Yhr
∣∣

nj
2 (2)

Gjh =

nj

∑
i=1

nh
∑

r=1

∣∣Yji −Yhr
∣∣

njnh(Yj + Yh)
(3)

In Formulas (1)–(3), j and h represent different areas, k is the number of areas, n is the
number of provinces in the sample, nj(nh) is the number of provinces in area j(h), Yji(Yhr)

is the net agricultural carbon sink of province i(r) in area j(h) and Y is the overall average of
net agricultural carbon sinks in China. The overall Gini coefficient G is further decomposed
into intra-regional variance contribution Gw, inter-regional variance contribution Gnb and
super-variance density contribution Gt, and all satisfy G = Gw + Gnb + Gt, which are
calculated as follows, respectively:

Gw =
k

∑
j=1

GjjPjSj (4)

Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh(PjSh + PhSj)Djh (5)

Gt =
k

∑
j=2

j−1

∑
h=1

Gjh(PjSh + PhSj)(1− Djh) (6)

Djh =
djh − Pjh

djh + Pjh
(7)

djh =
∫ ∞

0
dFj(y)

∫ Y

0
(Y− x)dFh(x) (8)

Pjh =
∫ ∞

0
dFh(y)

∫ Y

0
(Y− x)dFj(y) (9)

In Formula (4), Pj = nj/n is the number of provinces in the n area as a percentage of the
country, and Sj = njYj/nY, j = 1, 2, · · · , k. Djh in Formulas (5) and (6) are the interactions
of the net agricultural carbon effect between different areas. In Formulas (7) and (8), djh
and Pjh denote the mathematical expectation of the sum of all sample values of yji > yhr
and yji < yhr in areas j and h, respectively. Fj(Fh) is the cumulative density distribution
function for area j(h) in Formula (9).
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3.1.2. Kernel Density Estimation Method

Kernel density estimation is a nonparametric estimation method that uses continuous
density function curves to describe the distribution patterns of random variables. It is
commonly used to analyse the dynamic characteristics of the spatiotemporal distribution of
random variables [46]. The kernel density estimator is given by the following Formula (10).
Xi represents the net agricultural carbon sink in each province, x is the mean net agricultural
carbon sink, N is the number of observations in the evaluation area, h is the bandwidth
and K(•) is the kernel density function. Based on the existing literature, this paper uses the
Gauss kernel function for estimation, and the kernel function is Formula (11).

f (x) =
1

Nh

N

∑
i=1

K(
Xi − x

h
) (10)

K(x) =
1√
2π

exp
(
−x2

2

)
(11)

3.1.3. Markov Chain Analysis

(1) Traditional Markov chain analysis. The traditional Markov chain is an analysis
method that reflects the probability of a random variable moving to a low or high level over
time in the form of a transfer probability matrix and predicts the liquidity and evolution
trend within the system. In the analysis, t corresponds to each period, and the finite states
correspond to the number of states of the random variable. The net agricultural carbon sink
is divided into four levels: low, medium-low, medium-high and high. In turn, a transfer
probability matrix (as in Table 1) is obtained, so that the state transfer probability matrix
can reveal the state evolution trend in the net carbon effect of agriculture in China.

Table 1. Markov chain state transfer probability matrix (N = 4).

ti/ti+1 1 2 3 4

1 P11 P12 P13 P14
2 P21 P22 P23 P24
3 P31 P32 P33 P34
4 P41 P42 P43 P44

(2) Spatial Markov chain analysis. In order to examine the influence of spatial factors
on the probability of state transfer, the spatial lag was incorporated into the traditional
Markov chain analysis [47]. The spatial weight matrix (spatial adjacency matrix) is first
set, and then the traditional transfer probability matrix is decomposed into four transfer
conditional probability matrices. The spatial transfer probabilities of net agricultural
carbon sinks from periods to low levels or to high levels are considered under the influence
of different levels of neighbours (low, medium-low, medium-high and high; Table 2),
thus revealing the influence of spatial factors on the transfer trends in net agricultural
carbon effects.

3.2. Data Measurement

Agriculture, as a special production sector, shows the dual attributes of carbon sink
and carbon source in its participation in the carbon cycle. While considering the dual
attributes, the net carbon effect of agriculture in this study is essentially the net carbon sink
of agriculture. In other words, the net agricultural carbon sink is the difference between
the agricultural carbon sink and the agricultural carbon source, where the system and
methods for measuring the agricultural carbon sink and the agricultural carbon source are
as follows.
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Table 2. Spatial Markov chain state transfer probability matrix (N = 4).

Lag Type ti/ti+1 1 2 3 4

1

1 P11 P12 P13 P14
2 P21 P22 P23 P24
3 P31 P32 P33 P34
4 P41 P42 P43 P44

2

1 P11 P12 P13 P14
2 P21 P22 P23 P24
3 P31 P32 P33 P34
4 P41 P42 P43 P44

3

1 P11 P12 P13 P14
2 P21 P22 P23 P24
3 P31 P32 P33 P34
4 P41 P42 P43 P44

4

1 P11 P12 P13 P14
2 P21 P22 P23 P24
3 P31 P32 P33 P34
4 P41 P42 P43 P44

Agricultural carbon sink is the amount of organic carbon absorbed and fixed by crops,
forest trees and grasslands through photosynthesis during the growth cycle. The agricul-
tural carbon sink (Ca) is equal to the sum of the crop carbon sink (Ca1) and the woodland
and grassland carbon sink (Ca2). That is, Ca = (Ca1 + Ca2). The specific calculations of crop,
forest and grassland carbon sinks are shown in Formulas (12) and (13). In Formula (12),
Ca1 is the crop carbon sink, k is the number of crop species, Cai is the carbon sink of the
crop i, Li is the amount of carbon required to be absorbed by the crop i to synthesise
a unit of organic matter, Wi is the average water content, Yi is the economic yield and Hi
is the economic coefficient. The carbon sinks of crops are mainly calculated for 15 species
such as rice, wheat, maize, beans, potatoes and sugar beet. The carbon uptake coefficient,
water content and economic coefficient of crops were selected with reference to the study
by Tian [48]. In Formula (13), Ca2 is the carbon sink of woodland and grassland, m is the
woodland or grassland (m = 1, 2), Sm is the area of the land type m and αm is the carbon
sequestration coefficient of the land type m. Referring to the study by Zhou, the carbon
sequestration coefficients of woodland and grassland were 3.81 t/hm2 and 0.91 t/hm2,
respectively [49].

Ca1 =
k

∑
i

Cai =
k

∑
i

Li × (1−Wi)×
Yi
Hi

(12)

Ca2 =
m

∑
i=1

Sm×αm (13)

Agricultural carbon sources are the greenhouse gases released into the atmosphere
from agricultural production activities. Four categories of carbon sources were selected:
agricultural inputs, methane from rice fields, agricultural land use and livestock farming.
Among them, agricultural inputs include fertilizers, pesticides, agricultural films, agri-
cultural diesel and irrigation. The methane emissions from rice fields and nitrous oxide
emissions from crop cultivation can damage the soil surface layer. Greenhouse gas emis-
sions of methane and nitrous oxide are generated from the gastrointestinal fermentation
of livestock and poultry during livestock farming and from manure emissions. Livestock
species include cattle, horses, pigs, sheep and poultry, and their emission coefficients refer
to the study by Tian [48]. In Formula (14), Ce is the total amount of agricultural carbon
sources. Ci is the amount of carbon sources generated by the consumption of sources i.
ξi is the emission coefficient for a particular type of carbon source. Ti is the total amount
of a particular type of carbon source. To facilitate aggregation and analysis, CH4 and
N2O emissions were converted to standard carbon, with 1 kg CH4 and 1 kg N2O equiv-



Sustainability 2022, 14, 13975 7 of 18

alent to 6.8182 kg C and 81.2727 kg C, respectively. The data used in this study include
31 provincial administrative areas in China. In view of the availability of data, Hong Kong,
Macao and Taiwan were not included in this study. The data were obtained from the China
Statistical Yearbook, China Rural Statistical Yearbook and China Agricultural Yearbook
in previous years. Individual missing data were linearly interpolated using values from
neighbouring years.

Ce = ∑ Cei = ∑ ξiTi (14)

4. Typical Factual Analysis of Net Carbon Effect of Agriculture
4.1. Analysis of the Measurement of Net Carbon Sinks in Agriculture

Table 3 presents the results of the net agricultural carbon sinks for some years for the
whole country and for the three major functional grain production areas. As can be seen
from Table 3, the overall trend of net agricultural carbon sinks in China is clearly increasing,
and this analysis is consistent with the results of Jiang (2016) [50]. However, the level of net
agricultural carbon sinks nationwide is only lower than that of the main grain producing
areas, but it is much higher than that of the main marketing areas. Among them, the net
agricultural carbon sinks in the main production areas, balanced production and marketing
areas, main marketing areas and main grain-marketing areas declined in descending order.
Specifically, the three provinces with the highest net agricultural carbon effect within the
main grain producing areas are Henan, Heilongjiang and Inner Mongolia, with averages of
5.2080, 4.9796 and 4.3220, respectively. The top three provinces in terms of net agricultural
carbon sinks within the main grain-producing areas were Guangxi, Xinjiang and Yunnan,
with averages of 4.3701, 3.2667 and 2.7931, respectively.

Table 3. Estimated results of some years of agricultural net carbon sinks in China’s provinces and
three major grain production areas.

Province 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2019

Hebei 2.2836 2.2651 2.2974 2.6946 2.8029 2.9194 3.1741 3.2544 3.4441 3.6376 3.7428
Inner Mongolia 3.3065 3.4664 3.5070 3.7941 4.0887 4.2974 4.6310 4.9232 4.9848 5.8091 5.9421

Liaoning 1.0362 1.4330 1.5796 1.6730 1.7039 1.6407 1.9764 1.6184 1.9727 2.1501 2.4353
Jilin 1.7736 2.3895 2.5812 2.8022 2.8925 2.8404 3.3107 3.4789 3.6235 3.6097 3.8628

Heilongjiang 3.0953 3.4792 3.4405 4.1722 4.4984 5.1252 5.7149 6.1569 5.9596 7.4000 7.5056
Jiangsu 2.4231 2.3628 2.4111 2.5732 2.6297 2.7064 2.8550 3.0031 2.9510 3.1441 3.2906
Anhui 2.2080 2.4386 2.5076 2.7621 2.8637 2.8909 3.0526 3.1964 3.1214 3.6214 3.7091
Jiangxi 1.6508 1.6164 1.6784 1.8579 1.9135 1.9355 2.0483 2.1024 2.0877 2.1835 2.2107

Shandong 3.6536 3.1530 3.5532 4.1168 4.4286 4.2783 4.4650 4.5589 4.6801 5.3158 5.4187
Henan 3.8275 3.9740 4.0135 5.1348 5.4572 5.4088 5.5576 5.6529 5.8887 6.6996 6.873
Hubei 2.2801 2.0653 2.2029 2.2085 2.2932 2.4061 2.5410 2.7081 2.6291 2.8534 2.8675
Hunan 2.4262 2.1966 2.2824 2.3811 2.4528 2.5954 2.7428 2.7486 2.7637 2.8575 2.941
Sichuan 3.2586 3.0725 3.1608 2.9857 3.2271 3.3890 3.4797 3.5721 3.6966 3.9967 4.1378

Average value of main
production areas 1.9513 1.9863 2.0571 2.2394 2.3850 2.4313 2.6081 2.6759 2.7052 2.9557 3.0405

Beijing 0.1336 0.0775 0.0762 0.1252 0.1394 0.1306 0.1222 0.0830 0.0753 0.0690 0.0641
Tianjin 0.1163 0.1425 0.1450 0.1479 0.1428 0.1482 0.1491 0.1545 0.1703 0.1891 0.2074

Shanghai 0.1264 0.0922 0.0858 0.0814 0.0735 0.0763 0.0805 0.0710 0.0631 0.0716 0.0675
Zhejiang 1.1167 0.8857 0.8235 0.7654 0.7638 0.7573 0.7488 0.7471 0.7767 0.6876 0.7138

Fujian 0.7911 0.7311 0.7202 0.6387 0.6372 0.6407 0.6351 0.6610 0.6546 0.6066 0.6261
Guangdong 1.9956 1.8157 1.6791 1.5679 1.5261 1.7224 1.8248 1.7806 1.8589 1.8472 1.9213

Hainan 0.3043 0.3144 0.3422 0.2631 0.3587 0.2952 0.3391 0.3125 0.2186 0.2025 0.1497
Average value of main

marketing areas 1.8092 1.8612 1.9298 2.1430 2.2708 2.3073 2.4867 2.5474 2.5692 2.8185 2.8992

Shanxi 0.8073 0.8246 1.0043 0.9770 1.0111 1.0397 1.1977 1.2488 1.2118 1.3011 1.2680
Guangxi 2.6369 3.3626 3.5957 4.2653 5.0089 4.5974 5.055 5.0349 4.8177 4.932 5.0651

Chongqing 0.7933 0.7488 0.7735 0.572 0.7957 0.8503 0.8600 0.8858 0.9233 0.9099 0.9363
Guizhou 1.1345 1.0115 1.0173 0.9803 1.0426 1.0753 1.0872 1.1534 1.1876 1.1889 1.2072
Yunnan 2.2443 2.4119 2.5436 2.5672 2.7131 2.6974 3.0868 3.2103 2.9934 3.1769 3.2202

Tibet 1.7234 1.7719 2.2928 2.3006 2.3005 2.3360 2.3469 2.3526 2.3508 2.3852 2.3853
Shaanxi 1.1180 1.0818 1.1852 1.1989 1.3219 1.3430 1.386 1.3768 1.4253 1.4195 1.4629
Gansu 0.8151 0.8809 0.9408 0.9037 0.9254 1.0765 1.1986 1.2500 1.2333 1.3443 1.3643

Qinghai 0.7079 0.7234 0.8709 0.8877 0.9294 0.9278 0.9168 0.9466 0.9683 0.9596 0.9669
Ningxia 0.2164 0.2653 0.2671 0.2971 0.3015 0.3358 0.3484 0.3510 0.3446 0.3766 0.2984
Xinjiang 2.1825 2.2739 2.4856 2.6958 3.1247 3.2388 3.6943 3.8345 3.9745 4.6030 4.5716

Average value of
balanced areas 1.7733 1.8158 1.9124 2.0509 2.1887 2.2330 2.3993 2.4620 2.4772 2.7019 2.7650
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4.2. Spatially Disequilibrium Analysis of the Net Carbon Effect of Agriculture

(1) Overall intra-regional and inter-regional differences. The above analysis reveals
that there are large spatial differences in the net carbon effect of agriculture in China.
To further reveal the magnitude of the spatial variation and the trajectory of its sources,
this section uses the Dagum Gini coefficient and its decomposition method to conduct
a measurement analysis. Figure 1 portrays the trends in the overall, intra-regional and
inter-regional differences in the net carbon effect of agriculture in China. As can be seen
from Figure 1, the overall difference in the net carbon effect of agriculture in China over the
sample period shows an upward trend. Its Gini coefficient slowly increased from 0.3648 in
2000 to 0.4353 in 2019, with an average annual increase of 0.93%, which indicates that the
overall difference in the net carbon effect of agriculture in China has been expanding [51].
In terms of intra-regional difference, the difference in the net agricultural carbon effect
within the main grain-marketing areas is the largest, with a mean Gini coefficient of 0.5158,
and it shows a trend of decreasing before increasing over the sample period, but the value
at the beginning of the sample period is significantly lower than that at the end. The
difference within the balanced production and marketing area is the second largest, with
a mean of 0.3637 and a fluctuating upward trend with an average annual increase of
1.08%. The main grain-producing areas had the smallest intra-regional difference, with
a mean of 0.1833 and a slow upward trend, with an average annual increase of 1.00%. In
terms of inter-regional differences, the largest were found between the main producing
areas and the main marketing areas. Its Gini coefficient had a mean of 0.7073 and was on
a fluctuating upward trend, rising from 0.6031 in 2000 to 0.7750 in 2019, with an average
annual increase of 1.33%. The inter-regional difference between the main marketing area
and the balanced area is the second highest, with a mean Gini coefficient of 0.5953. The
inter-regional difference between the main production area and the balanced area is the
smallest, with a mean of 0.3740. The inter-regional differences between the main marketing
area and the balanced area and between the main production area and the balanced area,
although there are differences in the magnitude and timing of the increases, are generally
consistent with the trend of inter-regional differences between the main production and
marketing areas. Li also proposed that there were big differences in agricultural carbon
emission and carbon sink: The eastern region has a lower average net carbon sink, while its
agricultural carbon emissions have been falling, and its net agricultural carbon sink has
been rising [52].
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Figure 1. Trends in overall, intra-regional and inter-regional difference in the net carbon effect
of agriculture.
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(2) Sources of differences and their contribution. To further explore the sources of
differences in the net carbon effect of agriculture, the overall difference was decomposed
into intra-regional differences, inter-regional differences and hyper-variance density ac-
cording to the Dagum coefficient and its decomposition method. Figure 2 presents the
trend of differences in the contribution of sources of differences in the net carbon effect
of agriculture in China. As can be seen from Figure 2, inter-regional differences are the
most important source of overall differences in the net carbon effect of agriculture in China,
with a mean contribution rate of 68.05%. The contribution rate of inter-regional differences
decreased significantly in 2003, while those showed a slow upward trend overall in the rest
of the years, with an average annual increase of 0.10%. Therefore, synergistically improving
the net carbon sink levels in the main grain-producing and marketing areas and narrowing
the inter-regional differences are the keys to synergistically improving the net carbon effect
of agriculture in the three major functional grain-producing areas [53]. The contribution
of intra-regional differences was the second highest, with a mean of 23.69% that did not
change significantly during the sample period. The contribution of hypervariable density is
smaller, with its mean of 8.26%, which indicates that the cross-regional crossover of outliers
among the three major functional food production areas is low, and its trend of change is in
contrast to the contribution of inter-regional differences.
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5. Analysis of the Evolution of the Distribution Dynamics of the Net Carbon Effect
in Agriculture
5.1. Time Evolution Based on Kernel Density Estimation

In order to characterize the time-varying process of the absolute differences in the net
agricultural carbon effect across areas, the Gauss kernel function was used to estimate its
kernel density, which is shown in Figure 3. The kernel density was then estimated using
the Gauss kernel function to illustrate the dynamic evolution of the net agricultural carbon
effect in China through its distribution location, distribution trend and distribution exten-
sibility. For the country as a whole, the right-skewed distribution of the net agricultural
carbon effect in the 31 provinces of China is gradually becoming more pronounced in terms
of distribution position. This indicates that the net agricultural carbon sink in high-level
areas is increasing, and the number of areas is also increasing. In terms of distribution, the
overall kernel density curve shows a decreasing peak and increasing width, indicating that
the absolute differences in the net agricultural carbon effect in China are increasing. In
particular, the sample period is characterised by multiple peaks, implying a certain gradient
of differences in the net carbon effect of agriculture in China. Gao examined agricultural
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total factor productivity from the perspective of carbon sink and proposed that the three
regions showed a decreasing development trend from the east to the west. The agricultural
development in the central region has spread more via Eastern science and technology,
while the growth was slower in the western region with less spillover [54]. In terms of the
extension of the distribution, the overall kernel density shows a right trailing phenomenon
over time. This indicates that the gap between China’s net agricultural carbon sink and the
average has widened, with the capacity of areas with high net agricultural carbon sinks
increasing faster, while the carbon sink capacity of areas with low net agricultural carbon
sinks has decreased.
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From Figure 4, the distribution of the net agricultural carbon effect in the main food-
producing areas shows an overall rightward trend and a progressively more right-skewed
distribution. This indicates that the net agricultural carbon sink in the area has increased
over the sample period, with the numbers of high-value areas and the provinces increasing.
In terms of the distribution, the peak of the kernel density curve of the net agricultural
carbon effect in the area is decreasing, while there is a widening trend and the rate of
widening is increasing, with the characteristic of one main peak and many side peaks. It
means that the absolute difference in the net agricultural carbon effect between provinces
within the main grain-producing areas is increasing, and there is a certain gradient of
difference. In terms of distribution extension, the overall kernel density shows a right-
trailing phenomenon over time, indicating a gradual concentration of net agricultural
carbon sinks in higher-value areas and a possible polarization trend in the future [55].

As can be seen from Figure 5, the kernel density curve of the net carbon effect in
the main grain-marketing area does not show an obvious rightward shift in terms of
distribution location, which indicates that the net carbon effect of agriculture in this area
does not change much. However, in terms of the distribution trend, the peak of the
kernel density curve shows a decreasing trend, while there is a widening trend with the
characteristic of one main peak and one side peak, and the side peaks have lower values.
It indicates that the unevenness of the net agricultural carbon effect among the provinces
within the main grain-marketing area is increasing, showing a certain trend in dispersion.
In terms of the extension of the distribution, there is a right-trailing phenomenon in the
later part of the sample examination, which implies that the net agricultural carbon effect
within the main grain-marketing areas has polarised over time.



Sustainability 2022, 14, 13975 11 of 18

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 
Figure 3. National overall net agricultural carbon effect kernel density distribution. 

From Figure 4, the distribution of the net agricultural carbon effect in the main food-
producing areas shows an overall rightward trend and a progressively more right-skewed 
distribution. This indicates that the net agricultural carbon sink in the area has increased 
over the sample period, with the numbers of high-value areas and the provinces increas-
ing. In terms of the distribution, the peak of the kernel density curve of the net agricultural 
carbon effect in the area is decreasing, while there is a widening trend and the rate of 
widening is increasing, with the characteristic of one main peak and many side peaks. It 
means that the absolute difference in the net agricultural carbon effect between provinces 
within the main grain-producing areas is increasing, and there is a certain gradient of dif-
ference. In terms of distribution extension, the overall kernel density shows a right-trailing 
phenomenon over time, indicating a gradual concentration of net agricultural carbon 
sinks in higher-value areas and a possible polarization trend in the future [55]. 

 
Figure 4. Kernel density distribution of the net carbon effect of agriculture in major food-producing 
areas. 

As can be seen from Figure 5, the kernel density curve of the net carbon effect in the 
main grain-marketing area does not show an obvious rightward shift in terms of distribu-
tion location, which indicates that the net carbon effect of agriculture in this area does not 
change much. However, in terms of the distribution trend, the peak of the kernel density 
curve shows a decreasing trend, while there is a widening trend with the characteristic of 
one main peak and one side peak, and the side peaks have lower values. It indicates that 
the unevenness of the net agricultural carbon effect among the provinces within the main 
grain-marketing area is increasing, showing a certain trend in dispersion. In terms of the 
extension of the distribution, there is a right-trailing phenomenon in the later part of the 

Figure 4. Kernel density distribution of the net carbon effect of agriculture in major food-producing areas.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 18 
 

sample examination, which implies that the net agricultural carbon effect within the main 
grain-marketing areas has polarised over time. 

 
Figure 5. Kernel density distribution of the net carbon effect of agriculture in the main food market-
ing areas. 

As can be seen from Figure 6 below, the net carbon effect of agriculture in the bal-
anced production and marketing areas shows a rightward shift in terms of distribution 
that indicates that the net carbon sink of agriculture in this area is increasing. In terms of 
distribution dynamics, the peak of the nuclear density curve has decreased, and its peak 
decreased more in the pre-sample period. The one main peak, many side peaks feature is 
obvious, and the side peaks are all low. However, as time passes, the peak of the kernel 
density curve of the net carbon effect of agriculture in the balanced production and mar-
keting areas does not drop significantly in the later part of the sample. This implies that 
the absolute differences in the net agricultural carbon effect between provinces within the 
main grain-marketing areas were increasing and showing some dispersion in the early 
part of the sample but that the degree of absolute differences decreased in the late part of 
the sample. In the field of the extension of the distribution, similar to the development of 
the main grain-marketing area, the balanced areas show a right-trailing phenomenon at 
the end of the sample, which means that provinces with higher levels of net agricultural 
carbon sinks coexist with provinces with lower levels within the balanced production and 
marketing areas. 

 
Figure 6. Kernel density distribution of the net carbon effect of agriculture in balanced production 
and marketing areas. 

  

Figure 5. Kernel density distribution of the net carbon effect of agriculture in the main food
marketing areas.

As can be seen from Figure 6 below, the net carbon effect of agriculture in the balanced
production and marketing areas shows a rightward shift in terms of distribution that
indicates that the net carbon sink of agriculture in this area is increasing. In terms of
distribution dynamics, the peak of the nuclear density curve has decreased, and its peak
decreased more in the pre-sample period. The one main peak, many side peaks feature
is obvious, and the side peaks are all low. However, as time passes, the peak of the
kernel density curve of the net carbon effect of agriculture in the balanced production and
marketing areas does not drop significantly in the later part of the sample. This implies
that the absolute differences in the net agricultural carbon effect between provinces within
the main grain-marketing areas were increasing and showing some dispersion in the early
part of the sample but that the degree of absolute differences decreased in the late part of
the sample. In the field of the extension of the distribution, similar to the development of
the main grain-marketing area, the balanced areas show a right-trailing phenomenon at
the end of the sample, which means that provinces with higher levels of net agricultural
carbon sinks coexist with provinces with lower levels within the balanced production and
marketing areas.
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5.2. State Evolution Based on Markov Chain Analysis

(1) Traditional Markov chain analysis. The net agricultural carbon sinks of 31 provinces
in China were classified into 4 classes: low, medium-low, medium-high and high; the state
transfer probability matrix of the net agricultural carbon effect in China during the sample
period was calculated separately; and the results are shown in Table 4. As can be seen
from Table 4, the elements on the main diagonal are the probabilities that the type of net
agricultural carbon effect in each province remains constant, reflecting the stability of the
evolution of the net agricultural carbon effect occurring in that province. The elements
outside the diagonal of the matrix indicate the probability that the type of net agricultural
carbon effect will change for different classes. As the time span increases, the probability
values on the diagonal for all types of provinces, except for the high-level areas, show
a gradual decline. For example, the probabilities on the main diagonal decreased from
P11 = 89.47%, P22 = 87.50% and P33 = 76.97% in the T = 1 period to P11 = 85.00%,
P22 = 77.50% and P33 = 39.17% in T = 5. The probabilities on the nondiagonal line of
P12 = 10.53%, P23 = 11.18% and P34 = 22.37% in period T = 1 increased to P12 = 15.00%,
P23 = 12.00% and P34 = 58.33% in period T = 5, respectively. This means that the state of
the net agricultural carbon effect in each province is highly volatile and has strong internal
mobility in its evolution. The probability of the upward shift of the net agricultural carbon
effect at each level is greater than the probability of the downward shift, which reflects
that the net agricultural carbon effect still has a positive trend: for example, P12 = 10.53%
> P21 = 1.32% and P23 = 11.18% > P32 = 0.66% for T = 1 and P12 = 15.00% > P21 = 2.50%
and P23 = 20.00% > P32 = 2.50% in T = 5. In addition, the probability of shifting the net
carbon effect of agriculture to neighbouring classes in each province is greater than that
of leapfrogging, indicating that the improvement of the net carbon effect of agriculture is
a gradual process and it is difficult to achieve leapfrogging in the short term. At the same
time, there is a possibility that the net carbon effect of agriculture will converge to a high
level. The probability of maintaining stability in the high-level provinces remains above
95% in the period of times 1–5, and its probability of P44 = 96.99% in the period of T = 1 is
lower than that of P44 = 98.10% in T = 5. It indicates that the net carbon effect of agriculture
in the high-level provinces is stable and self-reinforcing, with an increasing tendency to
concentrate in the dominant areas [56].
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Table 4. Traditional Markov transfer probability matrix for the net carbon effect of agriculture.

Time Span Category Low Medium-Low Medium-High High

T = 1

Low 0.8947 0.1053 0.0000 0.0000
Medium-low 0.0132 0.8750 0.1118 0.0000
Medium-high 0.0000 0.0066 0.7697 0.2237

High 0.0000 0.0000 0.0301 0.9699

T = 2

Low 0.8750 0.1250 0.0000 0.0000
Medium-low 0.0069 0.8542 0.1389 0.0000
Medium-high 0.0000 0.0139 0.6806 0.3056

High 0.0000 0.0000 0.0317 0.9683

T = 3

Low 0.8676 0.1324 0.0000 0.0000
Medium-low 0.0074 0.8382 0.1544 0.0000
Medium-high 0.0000 0.0147 0.5441 0.4412

High 0.0000 0.0000 0.0336 0.9664

T = 4

Low 0.8672 0.1328 0.0000 0.0000
Medium-low 0.0156 0.7969 0.1875 0.0000
Medium-high 0.0000 0.0234 0.4688 0.5078

High 0.0000 0.0000 0.0268 0.9732

T = 5

Low 0.8500 0.1500 0.0000 0.0000
Medium-low 0.0250 0.7750 0.2000 0.0000
Medium-high 0.0000 0.0250 0.3917 0.5833

High 0.0000 0.0000 0.0190 0.9810

(2) Spatial Markov chain analysis. Given that the traditional Markov chain approach
assumes that areas are independent of each other, the issue of spatial correlation is ig-
nored. This section incorporates spatial lag into the traditional Markov chain analysis
to determine whether the net agricultural carbon effect in the neighbouring area affects
the net agricultural carbon effect transfer in the area. Table 5 presents the results of the
significance tests for the spatial Markov shift probabilities for different time periods. The
results show that the Q statistic is significant at 1%, which reveals the existence of a spatial
effect in the dynamic evolution of the net agricultural carbon effect in China [57]. In other
words, the transfer of the net agricultural carbon effect in one area will be influenced by the
net agricultural carbon effect in its surrounding areas. Wu proposed that the agricultural
carbon offset rate had a significant positive spillover effect, while the agricultural carbon
sequestration capacity of different regions showed the evolution characteristics of mutual
promotion and synergistic improvement [58].

Table 5. Spatial Markov transfer probability significance test results.

Duration Value Q Degree of Freedom p

1 81.6837 4 0.0000
2 94.7185 4 0.0000
3 112.4287 4 0.0000
4 119.3027 3 0.0000
5 130.2360 2 0.0000

Spatial geographical factors influence the dynamic evolution of the distribution of the
net agricultural carbon effect in China, and the results are shown in Table 6. From Table 6, it
can be seen that the transfer of net agricultural carbon effect does not exist in isolation but
is influenced by the net agricultural carbon effect in the surrounding areas. The probability
of shifting varies under different net agricultural carbon effects. Without considering the
geospatial pattern, P12 = 10.53% in T = 1. This reveals that the net agricultural carbon
effect in the area is influenced by changes in neighbouring areas. The spillover effect
on the transfer of net agricultural carbon effect to neighbouring areas varies under the
influence of geospatial patterns of different net agricultural carbon effects. For example,



Sustainability 2022, 14, 13975 14 of 18

P12/2 = 23.53% < P12/3 = 33.33% < P12/4 = 1.00% in T = 1 and P12/2 = 29.63% < P12/3 =
57.14% < P12/4 = 1.00% in T = 5, suggesting that the probability of upward shifts in the
province increases when the area is in close proximity to a high-level neighbour. This means
that areas with a greater net agricultural carbon effect have “demonstration behaviour”
and “imitation behaviour” for the surrounding areas [53]. In addition, the net carbon
effect of agriculture in high-level areas is also more stable under the influence of different
levels of neighbours, which is consistent with the results of traditional Markov analysis.
Du also verified that there was a significant spatiotemporal correlation characteristic of
carbon neutrality, so local governments should adopt energy-saving and emission reduction
measures from nearby local governments with a better performance [59].

Table 6. Spatial Markov transfer probability matrix for the net carbon effect of agriculture.

T = 1 Low Medium-
Low

Medium-
High High T = 5 Low Medium-

Low
Medium-

High High

Low

Low 0.9901 0.0099 0.0000 0.0000

Low

Low 1.0000 0.0000 0.0000 0.0000
Medium-low 0.0000 0.8333 0.1667 0.0000 Medium-low 0.5000 0.3333 0.1667 0.0000
Medium-high 0.0000 0.0000 0.4545 0.5455 Medium-high 0.0000 0.2000 0.0000 0.8000

High 0.0000 0.0000 0.0000 1.0000 High 0.0000 0.0000 0.0000 1.0000

Medium-
low

Low 0.7647 0.2353 0.0000 0.0000

Medium-
low

Low 0.7037 0.2963 0.0000 0.0000
Medium-low 0.0000 0.7872 0.2128 0.0000 Medium-low 0.0000 0.6216 0.3784 0.0000
Medium-high 0.0000 0.0256 0.9487 0.0256 Medium-high 0.0000 0.0323 0.4839 0.4839

High 0.0000 0.0000 0.0313 0.9688 High 0.0000 0.0000 0.0400 0.9600

Medium-
high

Low 0.6667 0.3333 0.0000 0.0000
Medium-

high

Low 0.4286 0.5714 0.0000 0.0000
Medium-low 0.0192 0.9231 0.0577 0.0000 Medium-low 0.0000 0.9250 0.0750 0.0000
Medium-high 0.0000 0.0000 0.8548 0.1452 Medium-high 0.0000 0.0000 0.6250 0.3750

High 0.0000 0.0000 0.0000 1.0000 High 0.0000 0.0000 0.0000 1.0000

High

Low 0.0000 1.0000 0.0000 0.0000

High

Low 0.0000 1.0000 0.0000 0.0000
Medium-low 0.0213 0.9149 0.0638 0.0000 Medium-low 0.0000 0.8378 0.1622 0.0000
Medium-high 0.0000 0.0000 0.5500 0.4500 Medium-high 0.0000 0.0000 0.0645 0.9355

High 0.0000 0.0000 0.0682 0.9318 High 0.0000 0.0000 0.0286 0.9714

6. Conclusions and Recommendations

This paper used the Dagum Gini coefficient, kernel density estimation and Markov
chain analysis to reveal the spatial disequilibrium characteristics of the net agricultural
carbon effect in China and its dynamic evolution trends on the basis of constructing and
measuring the net agricultural carbon sink of Chinese provinces. The conclusions are
made as follows. First, the overall net carbon sink of Chinese agriculture is low but shows
a fluctuating upward trend. The net agricultural carbon sinks in the main grain-producing
areas, the main marketing areas and the balanced production and marketing areas are
decreasing in order. The three provinces with the highest net agricultural carbon sinks in
the main grain-producing regions are Henan, Heilongjiang and Inner Mongolia. The top
three provinces in the main grain-marketing area are Guangdong, Zhejiang and Fujian. The
top three provinces in the balanced production and marketing areas are Guangxi, Xinjiang
and Yunnan. There are significant differences in net agricultural carbon sinks between
different areas. Second, the overall difference in the net carbon effect of agriculture in China
is increasing. The inter-regional difference is the most significant source of its difference,
with intra-regional differences making the next largest contribution and hypervariable
density making a smaller contribution. In terms of inter-regional differences, the largest are
between the main production areas and the main marketing areas. In terms of intra-regional
differences, the greatest difference in the net agricultural carbon effect is found within the
main grain-marketing areas. Third, the right-skewed distribution of the kernel density
curve of the net agricultural carbon effect in China gradually becomes more pronounced.
The net agricultural carbon sinks in the high-value areas continues to rise, and the peak of
the kernel density curve is decreasing and increasing in width and shows a certain degree
of rightward trailing, showing that the absolute difference in the net agricultural carbon
effect in China is expanding, and there is a certain gradient difference and multi-polar
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differentiation trend within areas. Fourth, the evolution of the state of the net agricultural
carbon effect in China is highly volatile and has strong internal mobility. The probability of
upward shift of the net agricultural carbon effect at each level is greater than the probability
of downward shift. In addition, the evolution of the state of the net carbon effect of
agriculture in China is influenced by spatial and geographical factors. The probability of
an upward shift increases when the area is located next to a high level. Under the influence
of different levels of neighbours, the net carbon effect of agriculture in high level areas is
still more stable.

Based on the conclusions, the following recommendations are put forward. Firstly,
according to the actual situation of the level of net carbon sinks in agriculture in different
areas, corresponding initiatives to reduce emissions and increase sinks should be planned
in accordance with local conditions. Based on their own comparative advantages, each area
should formulate targeted emission reduction and sink enhancement plans and explore
different low-carbon development paths for agriculture. Secondly, in view of the obvious
spatial unevenness and gradient differences in the development of net carbon sinks in
agriculture, cooperation and exchange between areas in reducing emissions and increasing
sinks in agriculture need to be strengthened. Efforts should be made to narrow the gap in
the net carbon effect of agriculture between the main food-producing areas and the main
marketing areas. Investment in the development of low-carbon agriculture in the main
food marketing areas can be increased to fully explore its endogenous potential. Thirdly, as
the evolution of the net agricultural carbon sinks is influenced by spatial and geographical
factors, it is necessary to pay attention to the spatial correlation in the development of net
agricultural carbon sinks, cultivate the mechanism of competition and interaction between
areas, strengthen cross-regional exchanges and cooperation and gradually form a number
of replicable and typical models. This way, it will promote the synergistic enhancement of
the net carbon effect of agriculture and narrow the differences in its regional development.

We compared the estimation of net carbon effect with that of other studies and found
that it was consistent with the research conclusion of Cao et al. (2022) [60]. However, the
key factors that affect the temporal and spatial differentiation of agricultural net carbon
effect and how to make the net carbon effect of each region gradually converge to a high
and stable level and gradually narrow its regional gap are two major issues that need to be
discussed and resolved in the future.
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