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Abstract: Single-image super-resolution (SR) has long been a research hotspot in computer vision,
playing a crucial role in practical applications such as medical imaging, public security and remote
sensing imagery. However, all currently available methods focus on reconstructing texture details,
resulting in blurred edges and incomplete structures in the reconstructed images. To address this
problem, an edge-enhancement-based global attention image super-resolution network (EGAN)
combining channel- and self-attention mechanisms is proposed for modeling the hierarchical features
and intra-layer features in multiple dimensions. Specifically, the channel contrast-aware attention
(CCA) module learns the correlations between the intra-layer feature channels and enhances the
contrast in the feature maps for richer features in the edge structures. The cyclic shift window
multi-head self-attention (CS-MSA) module captures the long-range dependencies between layered
features and captures more valuable features in the global information network. Experiments are
conducted on five benchmark datasets for x 2, x 3 and x 4 SR. The experimental results show that
for x 4 SR, our network improves the average PSNR by 0.12 dB, 0.19 dB and 0.12 dB over RCAN,
HAN and NLSN, respectively, and can reconstruct a clear and complete edge structure.

Keywords: single-image super-resolution; deep learning; global attention; channel contrast-aware attention;
cyclic shift window multi-head self-attention

1. Introduction

The single-image super-resolution (SR) task aims to reconstruct degraded low-resolution
(LR) images into high-resolution (HR) images with the desired edge structure and texture
details. However, the SR is essentially an indeterminate inverse problem where multiple
HR images can be generated from the same LR image. In response, numerous SR methods
have been proposed, ranging from older interpolation [1] and reconstruction methods [2]
to more recent popular learning approaches [3]. Through the ground-breaking introduction
of convolutional neural networks (CNNs) into an SR task, a breakthrough was achieved by
Dong et al., who proposed an SRCNN [4] network containing three convolutional layers.
As a result, CNN-based SR has been widely studied.

The current CNN-based SR networks all use structural cascades or parallelism to
increase the network depth. When the number of network layers continues to deepen,
overfitting is easily caused owing to the large network size, which makes the model
converge slowly or not at all. However, a CNN often needs numerous iterations to generate
an optimal solution. Therefore, the key to improving the overall performance of the network
is automatically filtering effective and stable features from a large number of data and
classifying such features to achieve the mapping of shallow information to deeper layers.
On this basis, Kim et al. proposed a VDSR [5] network containing 20 convolutional layers
using global residual learning. Meanwhile, an adjustable gradient cropping strategy is
applied to accelerate the convergence and avoid a gradient disappearance and explosion.
To reduce the number of parameters in the model, Kim et al. proposed a deep recursive
convolutional network based on a DRCN [6], which shares convolutional parameters across
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layers without introducing additional parameters. To further improve the performance,
Lim et al. proposed an enhanced deep convolutional network (EDSR) [7] by improving the
residual blocks in SRResNet. Zhang et al. proposed a densely connected RDN [8]-based
network to enhance the multi-scale features.

Although significant progress has been made in SR tasks, certain limitations still
exist: (1) The previously proposed networks do not fully utilize the large amount of
low-frequency information and valuable high-frequency information contained in LR
images, resulting in relatively low model performance. (2) The networks proposed in
recent years have mainly focused on designing deeper or wider network architectures for
studying the reconstruction of the texture details. However, this approach increases the
computational burden and reconstructs images with problems such as edge information
loss and visual artifacts, leading to excessive image smoothing. Recent studies have found
that an attention mechanism can effectively preserve the rich information features and
suppress redundant features in LR images, leading to its wide application in SR tasks.
However, existing networks apply an attention mechanism in a single dimension to learn
the correlation between features. Although this procedure enables the CNN to treat each
feature differently in one dimension, features of different depths are treated equally in the
global network; thus, redundant features in the network are not completely suppressed.
Second, a traditional attention mechanism is unable to focus on all high-frequency texture
information present in LR images, resulting in reconstructed images that are still smoothly
blurred at the local edge structures. Therefore, reconstructing clear and comprehensive
edge texture features has always been an important problem of an SR task.

To address these problems, this paper proposes an SR network (EGAN) based on a
global attention mechanism. Among global attention mechanisms, channel contrast-aware
attention (CCA) and cyclic shift window multi-head self-attention (CS-MSA) are key to
learning the correlation between intra-layer features and hierarchical features. Inspired
by 2DDCT, channel attention is based on global average pooling aggregating global fea-
tures, which are described in frequency domain space with all low- and high-frequency
components. Global average pooling can only aggregate the lowest frequency component
information in the frequency domain space. Therefore, CCA represents global features as
the sum of global average pooling and global standard deviation and enhances the contrast
of the feature map to aggregate more high-frequency features. In addition, considering
that the correlation between hierarchical features is ignored by using channel attention
only, the proposed CS-MSA is applied between hierarchical features to learn long-distance
dependencies in global features. Unlike traditional non-local self-attention, CS-MSA simul-
taneously balances the problems of high computational complexity and the inability to
interact with information between windows through window attention and circular shift
operations. The main contributions of this research are as follows:

e In this paper, a global attention SR network (EGAN) with joint channel- and self-
attentive mechanisms is constructed. The network is capable of exploring correlations
between features in terms of intra-layer feature channels and space and between
hierarchical feature locations. Experimental results show that the network in this paper
outperforms current state-of-the-art networks in most cases with lower complexity.

e  As channel attention results in the loss of a large number of high-frequency features
present in low resolution, this paper introduces a global adaptive enhancement algo-
rithm to propose channel contrast-aware attention. The contrast of the feature map is
enhanced based on global average pooling combined with global standard deviation
to effectively aggregate valuable high-frequency features of LR images.

e  Since existing methods ignore the correlation between hierarchical features, this paper
proposes cyclic shift window attention to consider the correlation between hierarchical
features to learn the long-range dependencies in global features. Meanwhile, the
introduced cyclic shift and window attention methods effectively solve the problem of
the large computational complexity of non-local self-attention.
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The remainder of the paper is organized as follows: In Section 2, the main focus is
on reviewing current state-of-the-art SR methods with widely used attention mechanisms.
In Section 3, the overall structure and theoretical rationale of the proposed method are
elaborated. In Section 4, the dataset, experimental setup and evaluation metrics are first
detailed, followed by a quantitative and qualitative comparison of the results of the pro-
posed method with state-of-the-art methods. In Section 5, the paper is summarized with an
outlook.

2. Related Work

SR can be broadly divided into two main categories: traditional methods and deep
CNN-based methods. Due to the powerful learning ability of CNNSs, the traditional
methods have been outperformed by their CNN-based counterparts. In this section, we
survey representative works on CNN-based SR and attention-based SR.

2.1. Deep CNN-Based Networks

In recent years, CNN-based SR methods have been successfully applied to various
tasks and have shown excellent performance. SR can be classified into three main categories
according to its implementation: interpolation, reconstruction and learning methods. CNNs
have been widely studied due to their strong nonlinear representation capability. Dong
et al. [4] first explored the use of three convolutional layers for SR and achieved better
results than traditional methods, which laid the foundation for subsequent research. Since
then, various fine structures have been proposed, such as residual network structures,
iterative inverse projection structures and dense network structures. More and more
variant structures have been proposed for application in SR, such as VDSR [5], DRCN [6],
EDSR [7] and RDN [8]. Although these methods have achieved good performance, the
parameters increase dramatically with the network depth. In addition, these methods treat
all features equally, hindering the ability of the network to discriminate between different
types of features (low- and high-frequency features).

2.2. Attention-Based Networks

An attention mechanism can enable CNNs to focus on valuable regions of feature infor-
mation and suppress redundant information [9,10]. In recent years, attention mechanisms
have been widely used in various computer vision tasks [11,12], significantly improving
the performance of networks in various tasks. Hu et al. first proposed the channel attention
network (SENet) [9], which significantly improved the feature representation capability of
the network by modeling the correlation between feature channels. Wang et al. proposed a
non-local block [13] to compute the response of a location to the information of all positions.
In SR research, numerous works based on attention mechanisms have been proposed to
further improve SR performance. Zhang et al. proposed a deep residual channel-based
attention network (RCAN) [14] to learn correlations between features in the channel dimen-
sion. Dai et al. proposed a higher-order channel attention (SOCA) [15], which employed
second-order feature statistics to learn more discriminative feature expressions. Niu et al.
proposed a new holistic attention network (HAN) [16] to model the holistic interdependen-
cies between layers, channels and locations. Mei et al. combined non-local spatial attention
with sparse representation and proposed a non-local sparse attention network (NLSN) [17].

Although these methods have achieved significant improvements over CNN-based SR
methods, they still have certain limitations: (1) the global averaging pooling operation used
in channel attention aggregates only the lowest frequency components under the frequency
domain space; (2) traditional non-local networks [13] need to compute the similarity matrix
between query feature mappings and key mappings on a pixel-by-pixel basis and thus
obtain the long-distance dependencies between all pixels in the feature space; (3) the
attention mechanism, as a plug-and-play module at any location in the network, is treated
as a locally independent operation that ignores correlations between hierarchical features.
To address the above issues, this paper proposes a global attention network that calculates
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the importance between intra-layer features and layered features among feature channels,
spaces and locations and combines local contrast and window attention to address the
shortcomings of channel attention and non-local attention.

3. Methods

In this section, the overall structure of EGAN is first detailed, and then CCA and
CS-MSA are explored in detail.

3.1. Network Structure

The overall network structure of this paper, shown in Figure 1, consists of shallow fea-
ture extraction (SFE), deep feature extraction (DFE) and image reconstruction (IR) modules.
Given a degraded LR image 'R € R3*H*W where H and W are the height and width of
the LR image, respectively, the shallow features Fy & REXH*W are first extracted, where C
is the number of intermediate feature channels after expansion, denoted as Hgrp.
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Figure 1. Overall structure of the proposed EGAN network.

Fo = Hsre (ILR) @

where F is transmitted sequentially to the depth feature extraction module, containing N
residual groups (RG). One of the RGs is marked as Hpg.

Fi :HRG(Fi—l) s.t. i=1,2,...,N (2)

where F; € REXHXW ig the output feature of the i-th RG. Thus, except for Fy, which is
the final output of the module, all other output features are intermediate. Next, the global
features of the network are further weighted, and this process is applied using CS-MSA,
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which is denoted as Hes_wsa. The module first fuses all intermediate output features,
denoted as Hjc.
F, = Hcs-msa(Hic(concat(Fy, By, ..., FN))) ®)

where F, € RNCXHXW g the weighted fusion feature. The fusion of the features F|

and Fy is achieved through a 1 x 1 convolution layer compression channel, and then
using the subpixel convolution, the final HR image 178 € R3*H*W denoted as Hpg, is
reconstructed.

MR = Hg(concat(Fr, Fy)) 4)

3.2. Channel Contrast-Aware Attention

Channel attention [9] uses a global average pooling operation to fuse the global infor-
mation in the channel field and capture valuable regions in the global information through
a gating mechanism; this approach helps the network express the global information of the
image. However, calculations from the frequency domain show that a global averaging
pooling operation is equivalent to the lowest frequency component of the two-dimensional
discrete cosine transform (2DDCT) [18]. Specifically, given size C x H x W of the input
feature X, the 2DDCT yields:

Z ZW 1XZ”lcos(rrh/H(z—|—1/2))cos(7rw/H(]'—i—1/2))

5
sthG{Ol ,H-1},w € {0,1,..., W -1} ©)

where cos(rth/H (i +1/2))cos(tw/H(j +1/2)) is the basis function of the 2DDCT, and
2 € RHXW is the spectrum of the 2DDCT. Conversely, its two-dimensional inverse
discrete cosine transformer (2DIDCT) yields:

X,%ﬁu: f;olzw 0 zjdcos(nrh/H(z—|—1/2))cos(7‘cw/H(1—|—1/2)) (6)

st.i € {0,1,...,H—-1},j € {0,1,...,W -1}
Expanding the above equation yields:

2d ) 2d pl/j ,
XM = fg Bo](wL fOSB -+ fH 1311{ LW-1 @)

where B , is the basis function of 2DDCT. For Formula (5), when & and w are equal to
Zero, applymg them provides:

= Y XY X cos(n0/ H(i +1/2)) cos(n0/ H(j +1/2)) = gap (™) ®)

where f&% can be expressed as the lowest frequency component of 2DDCT and is pro-
portional to the global average pooling result. Finally, bringing the above equation into
Equation (7) yields:

X?f = gap (XM)HWBS,JO + f(ﬁBSﬁ +.F fﬁd—1,W—1Bg71,w71 ©)

From the above equation, it can be concluded that the global averaging pooling
operation retains only the lowest frequency components in the frequency domain space
and discards all high-frequency components. Therefore, the CCA module is introduced to
retain the valuable high-frequency information in LR images.

The overall structure of a CCA module is shown in Figure 2, where the contrast-aware
operation H,) is used to replace the global average pooling. Specifically, CCA combines
a local contrast enhancement algorithm [19] with a global average pooling operation to
enhance the contrast of a feature map. It is assumed that given a feature map X of size
H x W, X(i,]) is a point in the image, and a local window of size (2n 4+ 1) x (2n+1) is
delineated with (i, j) as the center, and n is the radius of the window. The low-frequency
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information in the local area can be represented by the local mean value, expressed as

follows: .
C N i+n j+n
Ly(i,j) = m k=i dmim=j—n x(k,m) (10)
HxWxC 1xX1xC 1X1x%C 1x1x%C HXWxC

C

-qj Ix1x—
p

Hep| —» '-.%: w, | —"m —[w,] 1"5__--355-47%"

Figure 2. Overall structure of the channel contrast-aware attention module.

High-frequency information for local areas is represented by subtracting the low
frequencies from the original map as follows:

The enhanced feature map consists of the amplified high-frequency information added
to the low-frequency information, and the amplification factor is the contrast gain G. f(i, j)
is defined as the enhanced feature map, expressed as follows:

fij) = La(i,j) + G x Hx (i, f) (12)

where G is constant and greater than 1. However, the value of G varies for different images
and the effect of enhancement varies. Therefore, we use the inverse of the local standard
deviation to represent G, making G an adaptive variable. At the edges of the image or
where the degree of change is drastic, where the local mean squared difference is large, the
value of G is taken to be smaller so that no ringing effect is produced. In smooth areas of
the image, where the local mean squared deviation is small, the value of G is taken to be
larger, which in turn highlights the contrast of the feature map. The local mean squared
deviation is expressed as follows:

.. 1 i+n j+n ..
0x(i ) = \/ 17 o ik = La(i, )P (13)

In response, the enhanced feature map f (i, j) is represented as follows:

fl07) = La(irj) + Hx (i) (14)

Mapped to a feature map of size H x W, for the C-th channel, Hj, can be expressed as:
Hep(Xe) = f(Xe) (15)

Thus, CCA can be expressed as:
CCA = f(Wuy(WpHcp)) (16)

where f(-) and 7(-) denote the sigmoid function and ReLU activation function, respec-
tively; Wp denotes the convolutional weights with channel reduction ratio r; and Wy
denotes the convolutional weight with expansion ratio r.

3.3. Cyclic Shift Multi-Head Self-Attention Module

In order to improve the deficiencies of the great computational effort of the traditional
non-local self-attentive mechanism [13], recent studies [15,20] have divided a number of
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fixed-size windows and computed non-local attention within each window separately.
Although the number of participants is greatly reduced, information interaction between
windows is not possible. Benefiting from [21], this paper optimizes this procedure based on
the sliding window mechanism to achieve information interaction between windows with
a circular shift mechanism. A cyclic shift window self-attentive is proposed to adaptively
learn the long-distance dependence between hierarchical features. In addition, the circular
shift mechanism removes the masking strategy and relative position coding, making the
network structure more streamlined and efficient.

The overall process of a cyclic shift window is shown in Figure 3. Given the size
H x W x C of the input feature A, and assuming this feature is divided into local non-
overlapping M x M windows, A is circularly shifted toward the bottom and right positions
by M/2, respectively. The local multi-head self-attention (MSA) for every window is then
calculated after the shifting of positions of the feature maps. Finally, through a reverse
cyclic shift, we obtain feature map B by shifting its position up and to the left by M/2.
Each window in feature map B introduces the information in the adjacent non-overlapping
windows and achieves a global information interaction across windows.

1]2]3]als5|6]7]s 555649 | 50] 5152 53] 54
9 |10|11] 12| 13| 14| 15| 16 63|64 |57 | 58|59 60| 61] 62
17|18 | 19| 20| 21 | 22 | 23 | 24 718 1]2[3]|4]5]6
25|26 |27 |28 |29 | 30|31 | 32 Cyclie shitt 15(16] 9 |10 11|12 |13 ] 14
33|34 | 35| 36 37| 38 | 39 | 40  — 23 24| 17 | 18| 19 | 20 | 21| 22
41|42 | 43| 44 |45 | 26 | 47 | 48 3132 25 | 26 | 27| 28 | 29| 30
49|50 | 51| 52| 53 | 54| 55 | 56 30 (40| 33 | 34 | 35| 36 | 37| 38
57 |58 | 59| 60| 61| 62 | 63 | 64 47|48 | 41| 42| 43 | 44 | 45 46
A  MSA
1]2(3]a[5]6]7]8 55] 56|49 | 50| 51 | 52 | 53 | 54
9 10|11] 12|13 | 14| 15| 16 63| 64 | 57 | 58| 59 | 60 | 61 | 62
17]18[19]20(21] 22|23 | 24|  peyersecyciicshitt | 7L B 23456
25|26 | 27 | 28| 29 | 30 | 31 | 32 - _ 15 16| 9 |10 11 |12 |13 ] 14
33|34 | 35| 36 37| 38| 39 | 40 — 23| 24 |17 | 18| 19 | 20 | 21| 22
41|42 | 43| 44 |45 | 26 | 47 | 48 31| 32| 25| 26| 27 | 28 | 29| 30
49|50 | 51| 52| 53| 5455 | 56 39| 40 | 33 | 34 | 35 | 36 | 37 | 38
57 |58 | 59| 60 | 61| 62 | 63 | 64 47| a8 | 41| 42| 43| 44 | 25 | 46

B

Figure 3. Visualization of the process of cyclic shift window multi-head self-attention. A is the input
feature map and B is the attention feature map.

The overall structure of the MSA is shown in Figure 4. The input to the module is
an intermediate feature extracted from N RGs and is fused as the input feature Fy in the
channel dimension. First, we shift the input feature Fy cyclically by M/2 bits along the
diagonal direction and then reshape the shifted feature as B x M? x NC; i.e., the shifted
features are divided into B mutually non-overlapping M x M local windows. Here, B
represents HW/ M? and denotes the total number of windows. The self-attention is then
computed in each window separately. For the local window feature, X & ]RMZXN C we
use two linear transformations, Q and V, to map the input feature, X, into the query and
the value matrix space.
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B x NC x M?
]
w
o .
o Correlation
BxM2xNC | € Matrix o
. = B x M? x NC 0 i
B xM?*xNC o .| B x
©
& — &
= B X M? x M?
_— = -
HW X NC | @
e —
[
>
B XM?* X NC

Figure 4. Overall structure of the MSA module.

Compared to a traditional self-attention module, the MSA utilizes a shared key instead
of the query key Q and the queried key K to compute the self-attention in a symmetric
Gaussian space. This approach is also shown to further reduce the computational burden of
self-attention without affecting performance [22]. Unlike non-local networks where query,
key and value perform a single attention function, in MSA, the query and key perform the
attention function h times in parallel, and the results are fused for multi-head attention.
Thus, the MSA computation process is expressed as follows:

Attention(Q,V) = SoftMax(QQT/\/H)V (17)

where d represents the dimension of query/key.

4. Experiment

In this section, we first detail the dataset used in the experiments and its parameter
settings and then present ablation experiments conducted on the two proposed core mod-
ules to verify their effectiveness. Secondly, the overall strength of the proposed network is
verified using five benchmark test sets. Finally, the network performance is analyzed by
showing the training curves and execution times.

4.1. Datasets and Performance Metrics

For training, we use 800 training images from the DIV2K [23] dataset as the training
set. DIV2K is a publicly available and commonly used high-quality (2K resolution) image
dataset mainly used for image recovery tasks. For testing, five publicly available benchmark
test sets were selected: Set5 [24], Set14 [25], BSDS100 [26], Urban100 [27] and Manga109 [28].
Among them, Set5, Set14 and BSDS100 consist of natural images with rich texture details,
and Urban100 and Mangal(9 consist of images of urban landscapes and anime characters
with rich edge structures.

In addition, we leveraged the peak signal-to-noise ratio (PSNR) [29] and the structural
self-similarity (SSIM) [30] as quantitative evaluation metrics for the performance of the
final reconstructed SR images. Since the human eye is most sensitive to luminance, we
only calculate PSNR and SSIM values on the Y channel of the YCbCr channel. Given a
ground-truth image I'’R and an SR image I°R, the PSNR can be defined as:

2

PSNR (IR, 1%} =10 log, = (18)

MSE)

where 1 5
MSE = gy Loty Lo (176, =176 1
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where L denotes the maximum pixel value of the image, which is generally defined to
be 255. H and W are the height and width, respectively. The higher the PSNR value, the
better the image fidelity and the higher the quality of the reconstruction. The SSIM can be
defined as:

SSIM(IHR, ISR) - [L(IHR,ISR)}“{C(IHR,ISRHﬁ[S(IHR, ISR)f (20)

where ) b
L(IHR’ISR) _ ZVIHRVI;R +h
Hiug + Hise + b1

20HrOsk + b

HR 7SR I I 2

C(I 1 ) == > (21)
OtHr T 05k by

S (IHR ISR) _ 20 HRysR + b3
’ O HROpSR + b3
where «, § and A are the adjustment parameters that control the relative importance of the
three comparison functions, respectively. i denotes the mean calculation, and ¢ denotes the
variance calculation. In addition, b1, b, and b3 are all constants used to avoid a denominator
of zero. The calculated SSIM takes values within the range of [0, 1]. The higher the value,
the lower the image distortion and the better the reconstruction.

4.2. Settings

In this paper, the RG number, RCCA number, window size, channel number and
attention head number are set to 6, 20, 8, 64 and 4, respectively. For x2, x3 and x4 training,
we obtained the input LR images from the corresponding HR images by bicubic down-
sampling in the training stage. Then, we set 16 LR patches as each training mini-batch and
performed extraction with a size of 48 x 48 from the LR images. Moreover, we randomly
rotated the image in the training dataset by 90°, 180° and 270° and flipped it horizontally
for data augmentation. We utilized Adam optimizer [31] to optimize our model with
settings of 1 = 0.9 and B2 = 0.999. We fixed the initial learning rate to 10~* and decreased
the learning rate by half every 400 epochs. We implemented the proposed model on the
PyTorch [32] framework with an NVIDIA TITAN XP GPU.

4.3. Comparison with State-of-the-Art Methods

To verify the effectiveness of the proposed networks, six advanced SR networks are
selected for comparison: BICUBIC [33], EDSR [7], RDN [8], RCAN [14], SAN [15], HAN [16]
and NLSN [17].

For the fairness of the experiments, we retrained all algorithms according to the
experimental setup described in the previous section. Table 1 provides quantitative results
for scale factors of x2, x3 and x4 on the five benchmark datasets. It can be seen that our
proposed network outperforms the seven networks on different datasets and scale factors.
Specifically, compared to two CNN architecture-based networks (EDSR and RDN), the
network in this paper achieved higher PSNR and SSIM values on different datasets and
scale factors. Although MSRN has slightly fewer parameters than the proposed network, its
reconstruction results are far worse. Compared to the four attention-based CNN networks
(RCAN, SAN, HAN and NLSN), the present network achieves higher performance with
fewer parameters (Params and FLOPs). In particular, this network achieves a further
improvement over SAN and HAN, which also use the same RCAN backbone network.
Specifically, when reconstructing the results for the Set5 dataset at scale x4, this network
achieves a 0.22 dB improvement in PSNR compared to SAN and a 0.22 dB improvement
compared to HAN. When reconstructing the results for the Urban100 dataset at scale
x4, this network achieves a 0.22 dB improvement in PSNR compared to RCAN and a
0.18 dB improvement compared to HAN. In addition, the network achieves comparable
performance with a lower number of parameters compared to the NLSN. The improvement
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in the PSNR metric is 0.04 dB when reconstructing the results on the Urban100 dataset at
x4 scale and 0.31 dB when reconstructing the results on the Mangal(09 dataset at x4 scale.

Table 1. Quantitative comparison with advanced methods for classical image SR on a benchmark
test set (mean PSNR/SSIM). The CNN-based methods and attention-based methods are separated

by a dashed line for each scaling factor.

"o

means that the result is not available. “NaN” means

that the current device cannot be tested. The best PSNR/SSIM indexes are marked in red and blue
colors, respectively. Note that all the efficiency proxies (Params and FLOPs) were measured under

the setting of upscaling SR images to 1024 x 1024 resolution on all scales.

Params FLOPs Set5 Setl4 BSDS100 Urban100 Mangal09
Methods Scale X) G)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
BIUCBIC x2 - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
EDSR x2 40,730 3184 36.11/0.9302 32.92/0.9095 30.32/0.9013 30.93/0.8951 37.10/0.9773
RDN x2 22,123 1298 36.08/0.9305 32.74/0.9070 30.23/0.8913 30.22/0.8826 37.82/0.9668
RCAN x2 15,445 1004 37.77/0.9598 33.43/0.9157 32.01/0.8977 31.46/0.9219 38.18/0.9759

SAN x2 15,861 1012 37.80/0.9599 33.43/0.9157 32.02/0.8981 NaN NaN
HAN X2 15,924 1035 37.81/0.9599 33.45/0.9158 32.03/0.8980 31.51/0.9225 38.17/0.9760
NLSN x2 41,796 2740 37.83/0.9599 33.44/0.9158 32.01/0.8976 31.44/0.9217 38.20/0.9759
Our method x2 9672 614 37.84/0.9602 33.46/0.9159 32.05/0.8981 31.58/0.9227 38.33/0.9766
BIUCBIC x3 - - 30.41/0.8655 27.64/0.7722 27.21/0.7344 24.46/0.7411 26.96/0.8555
EDSR x3 43,680 3276 33.80/0.9213 29.92/0.8339 28.80/0.7981 27.28/0.8320 32.28/0.9338
RDN x3 22,308 1475 33.73/0.9211 29.90/0.8332 28.79/0.7972 27.10/0.8276 32.35/0.9335
RCAN x3 15,629 1017 33.82/0.9223 29.99/0.8403 28.84/0.7982 27.38/0.8314 32.36/0.9348

SAN x3 15,897 1024 33.90/0.9232 30.01/0.8310 28.89/0.7988 NaN NaN
HAN x3 16,109 1048 34.11/0.9242 30.14/0.8369 28.91/0.8001 27.56/0.8387 32.73/0.9379
NLSN x3 44,747 2935 34.15/0.9249 30.12/0.8367 28.92/0.8003 27.62/0.8404 32.84/0.9392
Our method %3 9856 626 34.12/0.9252 30.12/0.8369 28.94/0.8013 27.63/0.8407 33.03/0.9399
BIUCBIC x4 - - 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599 24.91/0.7826
EDSR x4 43,090 3294 31.72/0.8880 28.28/0.7741 27.36/0.7288 25.39/0.7628 29.44/0.8933
RDN x4 22,271 1490 31.63/0.8864 28.20/0.7719 27.31/0.7272 25.30/0.7600 29.46/0.8924
RCAN x4 15,592 1044 31.80/0.8891 28.34/0.7749 27.39/0.7300 25.46/0.7666 29.75/0.8970

SAN x4 15,861 1059 31.79/0.8887 28.31/0.7748 27.38/0.7298 NaN NaN
HAN x4 160,71 1075 31.79/0.8898 28.32/0.7753 27.40/0.7307 25.50/0.7682 29.73/0.8976
NLSN x4 44,157 3364 31.91/0.8902 28.36/0.7753 27.41/0.7305 25.64/0.7698 29.81/0.8985
Our method x4 9820 654 32.01/0.8915 28.40/0.7771 27.46/0.7325 25.68/0.7734 30.12/0.9015

In addition, we compared the visual quality from the Set14, BSDS100, Urban100 and
Manga109 datasets at a scale factor of x4. As shown in Figure 5, for “zebra” from Set14 and
“8023” from BSDS100, we observed that most algorithms recovered visible edges, but with
different degrees of blurring. This network continuously reconstructs the stripes on zebra
and bird, while EDSR, SAN and HAN produce incorrect textures. In addition, the stripe
structure recovered by this network is brightly colored and closer to the original image.
For “img_073” from Urban100 and “YumeriroCooking” from Mangal09, we observed that
the other methods had varying degrees of artifacts, producing relatively blurred lines,
incorrect textures and dull colors. In contrast, the network proposed in this paper was able
to reconstruct the stripes on the building and the fabric in full, and the color effects were
much closer to the original image.
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Figure 5. Visual comparison results of our method with EDSR, RDN, RCAN, SAN, HAN and NLSN
for x4 SR images on Set14, BSDS100, Urban100 and Mangal09 datasets. Best PSNR/SSIM indexes

are marked in red and blue colors, respectively.
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4.4. Ablation Studies

In this section, we present the results of multiple sets of ablation experiments con-
ducted to validate the effectiveness of the CCA and CS-MSA modules. To save training
time, all comparison experiments were trained 100 times at x2 scale factors to evaluate
performance. The baseline model consists of 6 RGs and 20 basic residual blocks, with no
attention blocks in the basic residual blocks. Channel attention (CA), channel contrast-
aware attention (CCA), window self-attention (WSA) and cyclic shift window multi-head
self-attention (CS-MSA) blocks were added to this base for ablation experiments.

4.4.1. Combination with CCA

The effectiveness of the CCA module was investigated, and the results are shown
in Table 2. It can be seen that the integrated CA module improves the average PSNR by
0.48 dB over the five benchmark datasets compared to the baseline model, which validates
that the channel attention mechanism can effectively improve the performance of the SR
network. The network performance is significantly improved by the integration of the CCA
module, with an average PSNR improvement of 0.11 dB compared to the CA module. This
is due to the fact that the CCA module combines local standard deviation to improve the
contrast of the feature maps and effectively aggregates more edge texture information.

Table 2. Effectiveness of CCA on benchmark datasets for x2 SR. Best PSNR/SSIM indexes are
marked in red and blue colors, respectively.

Method Set5 Set14 BSDS100 Urban100  Mangal09
ethods PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Baseline 36.29/0.9508 32.22/0.9034 31.12/0.8845 28.94/0.8857 35.13/0.9614
Baseline + CA 36.70/0.9527 32.44/0.9047 31.30/0.8858 29.55/0.8954 36.09/0.9660
Baseline + CCA 36.80/0.9541 32.56/0.9074 31.40/0.8889 29.68/0.8981 36.21/0.9676

To demonstrate the effect of contrast more visually, this section visualizes the output
feature maps for both models located at a shallow level with the integrated CA module and
the CCA module. As seen in Figure 6, the feature maps are clearer and the edge structure is
more prominent with the integration of the CCA module.

Baseline+CA-30 Baseline+CA-50

Baselinet+CCA-30 BaselinetCCA-50

Baseline+CA-00

Baseline+CCA-00

Figure 6. Residual block visualization output feature maps. Here, 00 denotes the first residual block
in the first residual group in the network.
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4.4.2. Combination with CS-MSA

To verify the effectiveness of the circular shift mechanism, this section compares it with
the window mechanism and the sliding shift window mechanism. These three mechanisms
all use MSA to perform non-local attention and are named window multiheaded atten-
tion (W-MSA), sliding shift window multiheaded attention (SW-MSA) and the proposed
circular shift window multiheaded attention (CS-MSA), respectively. Table 3 reports the
PSNR/SSIM metrics for the three benchmark datasets as well as the number of parameters
(Params), floating point computations (FLOPs) and inference times (Runtimes). Specifically,
we integrate each of these three modules from Baseline + CCA. As expected, the average
PSNR and SSIM of the three datasets improved by 0.1 dB and 0.0012, respectively, after the
W-MSA module was integrated, indicating that global information interactivity between
learning hierarchy features can significantly improve the performance of the network. The
average PSNR and SSIM for the three datasets improved by 0.46 dB and 0.0016, respectively,
when SW-MSA was integrated, and Params, FLOPs and Runtimes all improved. We then
replaced SW-MSA with CS-MSA, and the average PSNR and SSIM metrics decreased by
0.05 dB and 0.001 for the BSDS100 and Urban100 datasets, respectively, and improved by
0.04 dB and 0.0003 for the Manga109 dataset, respectively. In addition, CS-MSA achieves
the same network size, and the average PSNR and SSIM metrics improve by 0.2 dB and
0.0023, respectively, compared to W-MSA. This indicates that CS-MSA can efficiently in-
teract with the information between windows and that the cyclic shift operation does not
generate additional parametric quantities.

Table 3. Performance comparison of different components on three benchmarks. Best PSNR/SSIM
indexes are marked in red and blue colors, respectively. “,/ “ indicates the currently used component.

Methods Different Components Params FLOPs BSDS100 Urban100  Mangal09
W-MSA SW-MSA CS-MSA (K) G) PSNR/SSIM PSNR/SSIM PSNR/SSIM
Baseline v 9902 610 31.41/0.8893 29.77/0.9003 36.32/0.9685
+ Vv 10,032 615 31.55/0.8901 29.98/0.9041 36.45/0.9690
CCA Vv 9902 610 31.50/0.8902 29.91/0.9021 36.49/0.9693

4.5. Model Analysis
4.5.1. Training Process Curve

This section shows the curve trends of the training loss and validation metrics of
the network. Four CNN networks based on the attention mechanism are selected for
comparison with the network in this paper, where the validation set is the Set5 dataset. At
a magnification factor of 4, the training loss curve is shown in Figure 7a, and the training
accuracy curve is shown in Figure 7b. It can be intuitively seen from the curve trends
that the network in this paper converges at a more stable rate than the other networks
during the training process and achieves a higher validation metric, which stays around
29.01-29.03 dB in the later stages.

— RCAN (x4)
—— HAN (x4) 28
l —— NLSN (x4)

—— Our_method(x4)
0175 ‘

0.150 SAN (x4)

0.125

Loss

0.100

PSNR/dB

0075
| —— our_method(x4)

—— RCAN (x4)
—— HAN (x4)

—— NLSN (x4)
\\;‘S'~“;~‘:«&‘—:AJ~,~—.\_,,“»,

- SUS DR 18 SAN (x4)

0.050 |

0.025

o 20 40 60 80 100 0 20 40 60 80 100
Epoch (x10) Epoch (x10)

@) (b)

Figure 7. Training process curve at x4 SR. (a) Training loss curve; (b) training accuracy curve.
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4.5.2. Execution Time

To fully measure the performance of the network proposed in this paper, model execu-
tion time experiments were conducted, and the execution time of the network proposed
in this paper was compared with that of other methods. Figure 8 shows the results of the
experiments, where the execution times of all models were tested on the 2.10 GHz Intel(R)
Xeon(R) Silver 4110 CPU with 48 G RAM. From the figure we observe that the network
in this paper achieves the highest performance at the expense of some execution time. In
summary, our method offers a better balance between model complexity and reconstruction
performance.

32.5

Our method
2 NLSN(2021) A
g HAN(2020)
& . . .
& Y EDSR(2017) RCAN(2018) SAN(2019)
RDN(2018)
31.5
31
0 20 40 60 80 100 120 140 160 180 200 220

Execution time (ms)

Figure 8. Trade-off between performance and execution time on Set5 for x4 SR. Note that the input
resolution is 256 x 256.

5. Conclusions

In this paper, we proposed a global attention network for nature image edge enhance-
ment. The network combines channel- and self-attention mechanisms to adaptively learn
the global dependencies between layered and intra-layer features in multiple dimensions.
Specifically, the CCA module learns the correlation between feature channels within layers
and combines the global standard deviation to enhance the contrast of the feature map and
enrichen feature edge structure information. The CS-MSA module captures the long-range
dependencies between layered features, capturing more valuable features in the global
information. Experiments conducted on benchmark datasets at X2, x3 and x4 show that
the network in this paper outperforms current state-of-the-art SR networks in terms of per-
formance metrics and visual quality. In particular, the metrics are significantly improved,
and the reconstructed image edge structure is clear in the Urban100 and Manga109 datasets
where the edge structure is rich. In future work, we will extend the network in this paper
to real-world super-resolution tasks, making it capable of resolving real-world degraded
images in general.
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