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Abstract: The ability to anticipate the effects of the interaction between waste rubber particles
from end-of-life tires and bitumen can encourage the use of rubberized bitumen, a material with
proven environmental benefits, in civil engineering applications. In this study, a predictive model
of rubberized bitumen viscosity is presented for this purpose. A machine learning-based approach
(Multi-Gene Genetic Programming—MGGP) and a more traditional multi-variable least square
regression (MLSR) method are compared. The statistical analysis indicates that the robustness and
the capability of the MGGP algorithm led to a better estimation of the rubberized bitumen’s viscosity.
Additionally, the MGGP analysis returned an actual equation that could be easily implemented in any
spreadsheet for an initial tuning of the production protocol based on the desired level of interaction
between the rubber and bitumen.

Keywords: waste tire rubber; rubberized asphalt; viscosity; manufacturing optimization; multi-gene
genetic programming

1. Introduction

The use of waste tire rubber in bitumen for road paving applications has been eval-
uated extensively by several research groups around the world from both mechanical
performance [1–7] and environmental perspectives [8,9]. Since the discovery of this technol-
ogy in the early 1960s, the use of crumb rubber (CR) as a bitumen modifier has experienced
a significant evolution. However, its field implementation is still limited compared to
the claimed benefits. One of the reasons is that the interaction phenomena between rub-
ber and bitumen are highly variable and the control of the modified bitumen production
is troublesome.

In general terms, the interaction starts as soon as the CR particles come into contact
with the asphalt bitumen at high temperatures (150–200 ◦C). Due to the diffusion of the
oily fractions of the bitumen into the rubber network, a layer of gel-like material forms in
the outer part of the particles. The extension of this layer extends from the rubber–bitumen
contact surface to the maximum point of penetration of the oily fraction into the rubber and
leads to the swelling of the particles [10]. The presence of the rubber cross-linked chains
prevents the degradation of the particles for a limited time only. Then, the high temperature
and mechanical stirring action initiate the devulcanization and depolymerization process
of the rubber. Some components (e.g., carbon black) are now released into the bitumen
matrix and the fragmentation of the rubber particles starts [10–13]. The magnitude of the
above-mentioned phenomena is extremely variable and the production protocol plays
a fundamental role. Rubber particles, in fact, react in a time-temperature dependent
manner [14]. Swelling and degradation can speed up or slow down by either increasing
or decreasing the blending time and temperature [15,16]. The physical and chemical
characteristics of the rubber and the chemical composition of the base binder also play a
crucial role in the interaction. In fact, the higher the surface area, the higher the quantity of
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oil that can be absorbed by the rubber, if all other variables are kept constant. Then, the
maximum degree of swelling can be reached in a shorter time [14].

According to the IBISWorld Industry Report on Tire and Rubber Recycling released
in September 2018, in the US only, there are more than 100 crumb-rubber production
facilities [17]. A study conducted in Italy by Ecopneus, reported 20 manufacturers selling
crumb rubber in a territory that is a hundred times smaller than the US [18]. Each of these
factories produces more than one type of crumb rubber, which leads to many different
CR available on the market. When the purchase decision in merely economic, the same
bitumen refinery may use different types of crumb rubber in the same paving season.

Regardless of the type of materials used, all interaction processes have something
in common. In the first stage, the simultaneous reduction in the inter-particle distance
due to the swelling action leads to an overall increase in viscosity [11], whereas in the
second stage, as rubber starts to degrade, the particles become smaller with a consequent
reduction in viscosity. Figure 1 shows the mixing phases and their effect on the viscosity of
the modified bitumen. As such, viscosity, even though indirectly, can be an indicator of the
interaction phenomena.

Figure 1. Particle size distribution of the CRs employed for laboratory preparation of AR binders.

Where an asphalt plant is well equipped, material engineers can monitor the status
of the modification by measuring the viscosity of the binder during the blending process
and stop it when the desired degree of interaction has been met. However, the correct
degree of interaction must be known in advance since the same viscosity can be obtained
in the swelling and degradation phases (Figure 1) but the mechanical characteristics are
substantially different [14]. The ability to anticipate the result of the blending process for a
given combination of binder and crumb rubber and a given set of processing conditions
can represent a useful tool for practitioners. This research contributes to the ongoing efforts
on this subject [19–21] and presents a mathematical equation for predicting viscosity as a
function of mixing time, mixing temperature, and crumb-rubber characteristics.

Machine learning methodologies are extensively used to develop predictive algorithms
for a material’s characteristics [19–21]. Despite their significant contribution, the algorithms
generated by some of these methodologies are not easily implementable (e.g., neural
networks, fuzzy logic algorithms) since they necessitate a knowledge of programming. For
this reason, the model presented in this paper is developed by a machine learning approach
named Multi-Gene Genetic Programming (MGGP), which returns an actual equation that
can be easily implemented in any worksheet [22–24].

2. Principle of Genetic Programming

In 1992, Koza introduced the genetic programming (GP) approach as a branch of
genetic algorithms (GA) [25]. GP is a computation technique that creates and evolves
computer programs by implementing the “Darwinian natural selection” principles to
obtain the best solution for a given problem. The algorithm randomly generates a primary
population of computer programs (e.g., mathematical equations) structured like trees,
where function nodes (e.g., arithmetic operations, Boolean logic functions, mathematical
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functions) are used to connect terminal nodes (variables and numerical constants). The
goodness-of-fit of all the individuals in the computer programs’ population is evaluated,
and the ones with superior performance are selected and carried to the next generation.
The next generation is then created starting from those individuals and evolves by genetic
operations such as mutation, crossover, and reproduction. Since this is a randomly based
process, some of the individuals may move to the next generation without any evolution
during reproduction, whereas others can evolve extensively [26].

Multi-Gene Genetic programming (MGGP) is an extension of the GP approach. The
above-mentioned trees, also known as genes, which usually contain nonlinear terms, are
here combined linearly with each other using the least square method. This helps to
incorporate the power of both linear and nonlinear regression approaches to enhance the
performance of the algorithm. However, the number of genes and their depths must be
controlled by the user to avoid a further increase in equation complexity and decrease in
algorithm efficiency.

In this research, the MGGP algorithm implemented in the GPTIPS software was
used [27] as it allows changing some parameters of the algorithm manually to find an
acceptable balance between the running time, output complexity, and goodness-of-fit of the
models. The software settings were initially chosen based on recommendations provided
in the literature [23,24] and then adapted to the database of materials’ characteristics used
in this study and described in the next paragraph. As indicated in Table 1, the initial
population size is one of the main inputs of the analysis. This represents the number of
equations initially developed by the software and carried over the analysis. The final
output is the series of equations that reached the final evolutionary step, each of them
characterized by its goodness-of-fit and expressional complexity. Therefore, the user can
either decide to consider all the equations or analyze the equations in a certain range of
these two values.

Table 1. Parameter settings for MGGP algorithm.

Parameter Settings

Function set +,−,×,÷, sqr, power, Ln
Population size 600
Number of generations 100
Maximum number of genes allowed in an individual 8
Maximum tree depth 8
Tournament size 25
Elitism 0.01% of population
Crossover events 0.85
High-level crossover 0.2
Low-level crossover 0.8
Mutation events 0.1
Sub-tree mutation 0.9
Replacing input terminal with another random terminal 0.05
Gaussian perturbation of randomly selected constant 0.05
Direct reproduction 0.05
Ephemeral random constants [−10 10]

3. Materials and Methods

Four crumb rubbers (CRs) sampled from three end-of-life tire (ELT) processing plants
were characterized in a laboratory in terms of particle size distribution, density, and surface
area. Two recycling plants used the so-called ’ambient’ particle size reduction process,
whereas the third one processed ELTs under cryogenic conditions. The nominal maximum
size of the CR particles produced with the ambient process was 1 mm and 0.5 mm for
the samples named CR1 and CR2, respectively. The cryogenic product, named CR4, had
a nominal maximum size of 0.6 mm. CR1, CR2, and CR4 were used as collected in the
plant. CR3, instead, was obtained in a laboratory as a sub-product of CR1 by eliminating
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particles retained at a 0.354 mm sieve. This additional step was necessary to have infor-
mation about the interaction effects due to CR with the same chemical composition but
different gradations.

CR gradation was determined by a sieve analysis performed in dry conditions adopt-
ing the ASTM series sieve (1, 0.841, 0.71, 0.589, 0.5, 0.354, 0.25, 0.177, 0.125, 0.088, 0.063 mm).
The results were then fitted to the Weibull distribution:

Pd = 1− e−(d/λ)k
(1)

where d is the sieve opening (in mm), Pd is the percentage passing to the sieve through
the opening d, and λ and k are the Weibull distribution parameters. The fitting process
allowed the use of λ and k as the synthetic indicators of the shape curve distribution and
uniformity of the particles’ distribution, respectively.

The particles’ density was measured using the pycnometer method, with ethyl alcohol
employed as the reference fluid since its density is lower than that of rubber and therefore
prevents CR particles from floating to the surface.

The assessment of the surface area (SA) per unit mass was based on digital images
of the particles retained at each sieve size generated using a stereomicroscope. Pictures
captured using a digital camera were subsequently processed through the software ImageJ.
The following equation, proposed by Santagata et al. [15], was used for the SA estimation:

SAm = φ(6/ρ)Σi( f1/dm,i) (2)

where φ is a correction factor, which is a function of the particles’ shape and roughness, ρ is
the density (in g/m3), fi is the frequency (in decimal units) of the i-th single-size fraction,
dm,i is the mean particle diameter (in mm) of the i-th fraction.

CRM binders were prepared to combine each CR with a standard Pen 50/70 bitumen
at three different dosages (15%, 18.5%, and 22% by weight of the base bitumen). Rubber
particles stored at room temperature were added to the pre-heated base bitumen in batches
immersed in a thermostatic oil bath in order to maintain a constant temperature of 190 ◦C.
Blends were then stirred by an anchor-shaped spindle for a total time of 210 min at a speed
of 600 RPM. During the mixing process, the CRM binders were sampled at predefined time
intervals (5, 15, 25, 35, 45, 60, 80, 100, 120, 150, 180, 210 min) and immediately subjected to
viscosity tests to assess the evolution of viscosity as a function of the mixing time. The same
mixing, sampling, and testing procedures were used for the blends produced at 150 ◦C and
170 ◦C with a crumb-rubber dosage of 18.5% only.

Rotational viscosity was measured with a Brookfield viscometer DVIII-Ultra equipped
with an SC4-27 spindle. The modified bitumen was sampled from the blending container,
poured into the viscometer cup, and tested at a single temperature of 175 ◦C (as specified in
the ASTM D-6114). Three subsequent steps of rotational speeds characterized by different
durations were considered. In the first step, the rotational speed was set at 10 RPM
(corresponding to a shear rate of 3.4 s−1) for six minutes to allow the transition from mixing
to testing temperature and reach the steady-state flow conditions. The second and third
stages had a duration of one minute, and the rotational speed was increased to 20 RPM
(6.8 s−1) and 50 RPM (17 s−1), respectively. Only data recorded at 20 RPM are considered
in this study since they correspond to the shear rate indicated in the ASTM specifications.
Other data were used for different purposes.

4. Development of the Predictive Model

The development of the predictive model has been divided into two phases. In Phase
I, the results of a Multi-Variable Least Square Regression (MLSR) model were compared to
a preliminary MGGP-based model to highlight the benefits of using the MGGP algorithm.
In addition, the variables’ inter-dependency and possible anomalies were analyzed. The
MGGP algorithm was then used for a refined analysis in Phase II. The quality of the
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prediction was assessed by calculating the coefficient of determination (R2), mean squared
error (MSE), and mean absolute error (MAE) as follows:

R2 = 1−
n

∑
i=1

(hi − ti)
2

∑n
i=1(hi − ĥ)2

(3)

RMSE =

√
n

∑
i=1

(hi − ti)2

n
(4)

MAE =
n

∑
i=1

|hi − ti|2

n
(5)

where hi is the experimental outputs, ti is the calculated outputs, ĥ is the average of the
experimental outputs, ti is the average of the calculated outputs, and n is the number
of samples.

4.1. Phase I: Preliminary Analyses with MGGP and MLSR Approaches

The inter-dependency of the variables was considered to avoid overstating the effects
on the mathematical model. An R-value of 0.8 between two variables was specified in
previous studies as a good threshold [28] to discriminate variables’ inter-dependency. The
results indicated high correlations between three parameters: λ, k, and SA. Hence, a database
should contain only one of them or none. Four distinct databases were created for the
modeling process:

• Set 1: Weibull parameter λ, density (λ, g/cm3), mixing temperature (T, ◦C), mixing
time (t, min), and rubber content (RC, %),

• Set 2: Weibull parameter k, density, mixing temperature, mixing time, and rubber
content,

• Set 3: Surface area (SA, mm2), density, mixing temperature, mixing time, and rubber
content,

• Set 4: Weibull parameter k, mixing temperature, mixing time, and rubber content.

The set of data used for the preliminary MLSR and MGGP analyses had a population
of 222 viscosity test results that were randomly divided into two subsets: 80% of the
population was utilized for training and the remaining 20% was considered for validating
(testing) the models. Since the purpose of the study was not the description of these
materials from a mechanical point of view, only the statistical description of the data
collected and used for modeling is herein reported (Table 2).

Table 2. Descriptive statistics of the model variables for the entire database.

Parameter λ k SA ρ T t RC η
[mm2] [g/cm3] [◦C] [min] [%] [cP]

Mean 0.409 3.46 225 1.201 177.2 86.1 18.5 4883
Median 0.402 2.17 221 1.196 190.0 70.0 18.5 4295

Maximum 0.580 6.21 386 1.223 190.0 210.0 22.0 15,715
Minimum 0.254 1.91 113 1.180 150.0 5.0 15.0 945
Std.Dev. 0.114 1.69 102 0.016 16.21 65.8 2.13 3057

Skewness 0.156 0.72 0.67 0.084 −0.744 0.524 0.004 1.619
Kurtosis 2.054 1.97 1.97 1.808 1.928 1.984 2.707 5.632

Sum 90.7 767 49,951 266.7 39,340 19,110 4100 1.1 ×106

ΣSq.Dev. 2.894 627 2.30 0.055 58,068 9.5 ×106 1004 2.1 ×109

Observations 222 222 222 222 222 222 222 222

The MLSR and MGGP models that resulted from the preliminary analysis are

η = −112λ− 1600ρ + 37.6T − 3.9t + 1001.5RC− 17588.6 (6)
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η = 110T − 1688λ + 215t− 1688RC− 1577Ln(t3) + 122RC · Ln(t3)− 0.913T · t
− 0.913T · RC− 0.913t · RC2 + 2.33RC3 + 2.33ρ · t · RC− 490 (7)

The best MLSR- and MGGP-based equations are both functions of the rubber content,
mixing time, mixing temperature, rubber density, and Weibull parameter λ (Set 1).

Figure 2 shows the relationship between the predicted and measured viscosity values
using the MLSR and MGGP approaches. It is evident that the MLSR approach, given its
mathematical form, was unable to develop an adequate equation to forecast the viscosity of
the rubberized binders. In Figure 2a, data points are presented with three different symbols
to highlight the gaps in the predictions for values between 2500 cP and 3200 cP as well
as in the range 5800–8200 cP. On the other hand, the MGGP model shows a good overall
goodness of fit. However, a difference existed for viscosity values above 6000 cP, which
were mainly recorded for the binders with the highest crumb-rubber content. Thus, some of
the variables considered in the analysis have a specific significance and impact the different
mixing conditions, and there was a certain level of particle swelling and degradation. For
this reason, the threshold value of 6000 cP was selected to split the initial database and
refine the analysis in Phase II.

Figure 2. Preliminary results of binder viscosity prediction using the (a) MLSR and (b) MGGP models.

4.2. Phase II: Refined MGGP Model

In this second round of the modeling process, 24 values of the initial database were
removed to be used for the final validation of the predictive models. The remaining 198 indi-
vidual values were divided among those below (153 values) and above (45 values) 6000 cP.
The statistical descriptions of these two sub-databases are provided in Tables 3 and 4. The
percentages for the subdivisions of each database for training and testing purposes were
kept as per the previous step of the analysis.
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Table 3. Descriptive statistics of the model variables for η < 6000 cP.

Parameter λ k SA ρ T t RC η
[mm2] [g/cm3] [◦C] [min] [%] [cP]

Mean 0.413 3.430 219.0 1.202 173.9 92.3 17.8 3544
Median 0.413 3.726 171.0 1.205 190.0 80.0 18.5 3300

Maximum 0.580 6.213 386.0 1.223 190.0 210.0 22.0 5975
Minimum 0.254 1.908 113.0 1.180 150.0 5.0 15.0 945
Std.Dev. 0.107 1.613 95.5 0.017 17.63 70.4 1.88 1372

Skewness 0.156 0.778 0.839 0.032 −0.392 0.37 −0.13 0.123
Kurtosis 2.359 2.165 2.387 1.628 1.408 1.68 2.84 1.825

Sum 68.82 524.2 33,502 183.8 26,610 14,120 2715 5.4 ×105

ΣSq.Dev. 1.730 395.3 1.4 ×106 0.042 4.7 ×104 7.5 ×105 537.5 2.9 ×108

Observations 153 153 153 153 153 153 153 153

Table 4. Descriptive statistics of the model variables for η > 6000 cP.

Parameter λ k SA ρ T t RC η
[mm2] [g/cm3] [◦C] [min] [%] [cP]

Mean 0.393 3.230 232.5 1.200 186.9 65.3 20.9 9549
Median 0.402 2.167 221.0 1.196 190.0 60.0 22.0 8245

Maximum 0.580 6.213 386.0 1.223 190.0 150.0 22.0 15,715
Minimum 0.254 1.908 113.0 1.180 170.0 5.0 18.5 6025
Std.Dev. 0.108 1.580 100.5 0.016 7.331 41.8 1.64 3219

Skewness 0.250 0.988 0.612 0.184 −1.90 0.34 −0.82 0.533
Kurtosis 2.357 2.558 1.932 1.711 4.613 2.19 1.67 1.792

Sum 17.87 145.5 10,461 54.01 8410 2940 941 4.2 ×105

ΣSq.Dev. 1.730 395.3 1.4 ×106 0.042 4.7 ×104 7.5 ×105 537.5 2.9 ×108

Observations 45 45 45 45 45 45 45 45

As reported in Table 1, 600 equations were developed for every generation of the
analysis. The frequency of occurrence of each variable was calculated (frequency equal to
one indicates that all equations contain that variable). The results of the sensitivity analysis
are illustrated in Figure 3. The mixing time and rubber content had the most dominant effect
on the CRM binder viscosity prediction, followed by the mixing temperature and rubber
density. The gradation also played an important role in forecasting the viscosity values.
None of the equations for viscosity above 6000 cP considered the surface area. As mentioned
in the previous section, high-viscosity values are usually recorded for a high rubber content,
which may be a condition in which the surface area could lose its significance. The effect
of a single parameter on viscosity can also be analyzed by a parametric study. Figure 4
illustrates the impact on the forecast viscosity due to the variation in the rubber density,
Weibull parameter λ, and k. The parametric study of the surface area is not shown for
the reason mentioned above. The effect of the gradation changed considerably in the
two scenarios, whereas the rubber density had the same effect. However, the inherent
randomness of the MGGP algorithm did not allow for the control of or force the effect of
a given parameter in order to have the desired trend, and the algorithm optimized the
prediction models as a result of the superposition of all the effects of the variables analyzed.
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Figure 3. Frequency of input parameters: (a) η < 6000 cP, and (b) η > 6000 cP.

Figure 4. Parametric study: (a) η < 6000 cP, and (b) η > 6000 cP.

4.3. Predictive Models and Performance Analysis

For each data set listed previously, the best equation was selected based on the good-
ness of fit and the complexity of the analytical equation. The statistics of the MGGP
equations are reported in Table 5. Based on the sum of the MAE for the training and test
data, it can also be concluded that the models obtained with the third and fourth sets of
inputs had the highest accuracy for predicting the CRM binder viscosity below and over the
viscosity threshold. The final predictive models can be then expressed as in Equation (8).
The development of two distinct MGGP predictive models for the CRM binder viscosity
increased the overall goodness of fit as shown in Figure 5a,b.

η =



469T − 11, 900ρ + 20.3t + 186RC + 1944
√

t + 2RC
−1.28T(t− 9.06ρ + Ln(k))− 1.28T2 + 0.524ρ1.5 · t(2ρ + T)− 43, 700

( f or η < 6000 cP)

8.08
(
k + T + RC2)+ 270t + 1900RC + 62, 000Ln(t)− 25, 800

√
t

−
7377

√
T

RC +7377RC+53,800
t + 1344t·Ln(t)

RC − 1, 230, 000)
( f or η > 6000 cP)

(8)
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Table 5. Summary of the statistical performance of the MGGP models.

Set 1: λ, ρ, T, t, RC
R2 RMSE MAE

η > 6000 cP Train 0.89 443 359
Test 0.88 543 475

η < 6000 cP Train 0.95 641 531
Test 0.88 1071 903

Set 2: SA, ρ, T, t, RC
R2 RMSE MAE

η > 6000 cP Train 0.89 437 353
Test 0.88 534 458

η < 6000 cP Not found

Set 3: k, ρ, T, t, RC
R2 RMSE MAE

η > 6000 cP Train 0.89 434 328
Test 0.88 486 391

η < 6000 cP Train 0.95 678 582
Test 0.88 1118 990

Set 4: k, T, t, RC
R2 RMSE MAE

η > 6000 cP Train 0.86 490 386
Test 0.85 604 518

η < 6000 cP Train 0.94 749 327
Test 0.89 1040 917

Gray highlights represent the selected models.

Figure 5. Predictive models for (a) η < 6000 cP—Inputs: k, ρ, T, t, RC, and (b) η > 6000 cP—Inputs: k,
T, t, RC.
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Equation (8) was used for predicting two sets of data that were not included in the
analysis described above. This was intended to be an independent validation of the model.
Figure 6 shows a comparison of the measured and predicted viscosities using the final
MGGP models.

Figure 6. Results of the validation process.

5. Conclusions

The magnitude of the interaction mechanisms between CR and bitumen during the
different stages of the blending process is highly variable. The ability to forecast the effect of
the mixing process for a given combination of binder and crumb rubber and a given set of
processing conditions may be of great interest to practitioners and promote the use of rubber
from ELTs for paving applications. For this purpose, the Multi-Gene Genetic Programming
algorithm was used to develop a predictive model of CR-modified binders’ viscosities
using the physical properties of the crumb rubber and the mixing process characteristics as
the inputs.

The results obtained by the application of the MGGP algorithm on the whole database,
as well as those obtained using the Multi-Variable Least Square Regression (MLSR) method,
showed that the overall goodness of fit of the MGGP model (R2 = 0.89) was excellent
compared to the model obtained through the MLSR approach. In particular, the MLSR
appeared to be inadequate due to its mathematical form. A detailed analysis of the results
showed a significant difference in predicting viscosity values below (R2 = 0.72) and above
(R2 = 0.81) 6000 cP, which were mainly collected on binders modified with a high CR content.
This suggested that certain characteristics of both the crumb rubber particles and mixing
process, may have a specific significance and impact during the different blending phases.
Based on these findings, the MGGP model was refined in order to have separate models
for viscosity above and below the threshold value of 6000 cP. A sensible improvement
of the goodness of fit was obtained and the comparison of the measured and predicted
viscosities of the dataset used for the validation process showed excellent performance.
The application of the Multi-Gene Genetic Programming algorithm is very promising since
it overcame the problems encountered when using the MLSR approach. Moreover, unlike
other machine learning algorithms, the MGGP returned an actual equation, which can be
used by practitioners to forecast the interaction effects in terms of viscosity and tune the
production process accordingly.
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