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Geothermal energy is a near-inexhaustible and multi-purpose resource capable of
satisfying global energy demand while lowering the reliance on fossil fuels for primary
energy [1–3]. Geothermal energy, which is produced by thermal energy and stored within
the Earth, can produce electricity and meet the heating and cooling needs of buildings
globally [4,5]. This versatility is of great importance given the geopolitical dependency
on fossil fuels and the large greenhouse gas emissions they produce. Geothermal energy
benefits from the internal energy of the Earth that is mainly related to the temperature
gradient (geothermal gradient) from the core (~6000 ◦C) to the surface (air temperature).
In the depths that are accessible by drilling with the current technology (~10,000 m),
the average geothermal gradient is 25–32 ◦C·km−1 [6]. In these circumstances, there are
various technological obstacles that geothermal energy must overcome for its successful
application [7,8]. The Special Issue, entitled ‘Frontier Research of Engineering: Geothermal
Energy Utilization and Groundwater Heat Pump Systems’ will address some of the most
challenging technological issues in the field of geothermal energy.

Geothermal systems are composed of three elements: a heat source, a reservoir and
a fluid. The heat source can range from a magmatic intrusion at >500 ◦C to the Earth’s
surface temperature in low-temperature systems. The reservoir is defined by a volume
of permeable rocks from which the circulating fluids (most of the time, water) extract
heat. Even though the heat source is always natural, hydraulic fracturing can increase
reservoir permeability and injection wells can supply fluids [9]. High- (>150 ◦C) and
intermediate-enthalpy (90–150 ◦C) geothermal resources are primarily used for electricity
generation, while low-enthalpy geothermal resources (<90 ◦C) are suitable for a wide range
of applications.

Electricity is largely produced in conventional steam turbines and binary plants [10].
Conventional steam turbines require fluids at temperatures >150 ◦C and can operate with
either atmospheric or condensing exhausts. For geothermal fluids that are in the range
of 85–170 ◦C, binary plants use a secondary working fluid—often an organic fluid with
a low boiling point and high vapor pressure at low temperatures. To reach reservoirs
with temperatures that allow electricity production, wells typically need to be several
kilometers deep. This poses a technological barrier and raises the cost and complexity
of these geothermal energy installations. Deep well drilling technology is usually only
cost-effective for oil wells, and geothermal energy is frequently a second use of abandoned
oil wells [11]. High-enthalpy reservoirs can only be used at shallower depths in regions
with high geothermal gradients, such as volcanic zones.

Pipelines that transport geothermal fluids and, frequently, re-injection wells, are
required for geothermal energy exploitation in addition to the production wells and a
utilization facility [12]. Pipelines can transport geothermal fluids over long distances, but
must ensure proper thermal insulation and prevent corrosion and leaks. Recent research is
helping to better understand how fluid properties are affected by the geometry of leaks

Sustainability 2022, 14, 13745. https://doi.org/10.3390/su142113745 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142113745
https://doi.org/10.3390/su142113745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5835-6390
https://doi.org/10.3390/su142113745
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142113745?type=check_update&version=1


Sustainability 2022, 14, 13745 2 of 3

in pipe walls [13]. The exploitation of high-enthalpy geothermal energy may increase the
likelihood of land subsidence and earthquakes [14]. The development of technology to
improve seismic monitoring, reduce stress and aftershocks, and prevent earthquakes of a
larger magnitude is key to minimizing risk [15,16]. The use of CO2 as a working fluid in
deep mines and enhanced geothermal systems (EGSs), which combine carbon storage and
geothermal extraction, has also drawn significant interest in recent studies [17].

The internal energy in low-enthalpy geothermal systems is insufficient to produce elec-
tricity. Low-enthalpy geothermal systems, however, are accessible with less expensive and
sophisticated technology because they are located closer to the surface [18]. As a result, they
constitute a thermal reservoir that is exceptionally valuable for both heating and cooling.
Direct geothermal use refers to the internal energy transfer between geological materials
and surface thermodynamic systems without converting it into work [19]. Since ancient
times, people have used geothermal energy directly (for example, using caves to prevent
seasonal temperature fluctuations), but it was not until the invention of mechanical drilling
and heat pump technology in the nineteenth century that this technology could be widely
used. Heat pumps work by recovering heat stored naturally in ground or groundwater,
and can be used either for heating or cooling. Some heat pumps allow dual functioning, i.e.,
heating operation in winter and cooling operation in summer. Groundwater heat pump
(GWHP) systems are increasingly used for the cooling and heating of buildings due to
their relatively lower cost, easier installation and higher performance than ground heat
pumps. In groundwater heat pump systems, the water passes through heat pumps to
extract (heating) or release (cooling) heat before being discharged into the aquifer. The
efficiency of this process is determined by the coefficient of performance (COP), which
compares the amount of usable heating or cooling provided to the amount of work (en-
ergy) required. GWHPs operated for heating return the water to the aquifer at a lower
temperature, while GWHPs operated for cooling return the water at a higher temperature.
In both situations, the natural temperature of the aquifer is modified, which is essential for
assessing environmental impact and performance losses [20–23]. Fiber optic technology
has emerged as a suitable technology for monitoring groundwater temperature, as well
as for estimating hydraulic and thermal aquifer properties, which are of great importance
for the performance of geothermal exploitation [24,25]. Hydraulic and thermal parameter
estimation also benefits from the continuous development of advanced inverse modelling
tools [26].

In this context, it is essential to better understand the hydro–thermo–chemical pro-
cesses involved in the use of geothermal energy and to investigate new technologies and
methods that contribute to facilitating or enhancing the exploration, exploitation and perfor-
mance of geothermal energy systems, as well as to reducing and monitoring their potential
environmental impacts.
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