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Abstract: In recent years, since edge computing has become more and more popular, its security
issues have become apparent and have received unprecedented attention. Thus, the current research
concentrates on security not only regarding devices such as PCs, smartphones, tablets, and IoTs, but
also the automobile industry. However, since attack vectors have become more sophisticated than
ever, we cannot just protect the zone above the system software layer in a certain operating system,
such as Linux, for example. In addition, the challenges in IoT devices, such as power consumption,
performance efficiency, and authentication management, still need to be solved. Since most IoT
devices are controlled remotely, the security regarding system maintenance and upgrades has become
a big issue. Therefore, a mechanism that can maintain IoT devices within a trusted environment based
on localhost or over-the-air (OTA) will be a viable solution. We propose a mechanism called STBEAT,
integrating an open-source project with ARM TrustZone to solve the challenges of upgrading the IoT
system and updating system files more safely. This paper focuses on the ARMv7 architecture and
utilizes the security stack from TrustZone to OP-TEE under the STM32 board package, and finally
obtains the security key from the trusted application, which is used to conduct the cryptographic
operations and then install the newer image on the MMC interface. To sum up, we propose a
novel software update strategy and integrated ARM TrustZone security extension to beef up the
embedded ecosystem.

Keywords: ARM TrustZone security; access control; data security; embedded software; embedded
system; STM32

1. Introduction

Due to the growing market for the internet of things, most internet of things devices
use ARM architecture to implement their products. ARM is a family of reduced instruction
set computer (RISC) architecture, which has several advantages as shown below:

1. The instruction length is fixed so that the difficulty to design the instruction decoder
can be reduced;

2. It is a load/store machine, which means all data-processing operations can only be
operated on the registers, which could optimize the latency;

3. Small code size with a highly optimized set of instructions, such as a combination
between arithmetic and logical operations on shift instructions.

There are several generations of ARM design. The architecture of each generation
comes with subtly different profiles: (1) “Application profile”—it supports the virtual
memory system architecture based on an MMU, and both ARM and Thumb instruction sets
as well; (2) “Real-time profile”—it serves a protected memory system architecture based
on an MPU; (3) and “Microcontroller profile”—this model is designed for fast interrupt
processing and easy integration into an FPGA for processors and is suitable for low power
applications [1].
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This research focuses on ARM TrustZone technology, which has been proposed since
ARMv6 architecture. TrustZone is a security extension of ARM System-On-Chip (SoC)
covering the processors, memory, and peripherals, dividing them into the normal world
and the secure world [2]. As can be expected, the normal world cannot directly read from
or write to the secure world or perform any direct access operations. This feature has
been defined as the trusted execution environment (TEE) by the GlobalPlatform which has
spent a lot of time and resources standardizing the TEE internal API. This organization
emphasized “the TEE is a secure area of the main processor of a device and must offer
isolated safe execution of authorized security software” [3].

Basically, STBEAT is based on the integration SWUpdate [4] and OP-TEE [5,6] projects
to create a trusted update environment and relies on the original mechanism to avoid
corruption of the update procedure. In the past, upgrading or patching a system was
challenging. Once the update process fails, the system will corrupt. IoT devices have
low computing power to complete complex mechanisms, but we want to make software
upgrades easy and secure to deploy.

The MPU of STM32 [7,8] is based on the ARM Cortex-A profile, which uses the ARM
TrustZone architecture to isolate resources. As shown in Figure 1, here we take ARMv8-A
as an example. It defines several exception levels as follows:

1. EL0 is the lowest execution level, allowing applications to make unprivileged calls.
2. EL1 on the normal side is the execution level of the normal operating system.
3. EL1 on the secure side is the exception level for secure monitor execution.
4. EL2 is the hypervisor layer and is only used for the non-secure world.

Figure 1. Definition of the ARMv8-A exception level [9].

The Linux kernel and its application framework belong to the normal world, on the
other hand, the secure monitor with minimal services or trusted operating system belongs
to the secure world.

Thanks to the TrustZone [10–12] support of the STM32MP157 microprocessor, our
system protection solution is all encompassing and not limited to the CPU context. The ar-
chitecture provides the bus and peripheral infrastructure to ensure that the secure world
uses a fully secure pipeline to control secure peripherals. For example, internal or external
peripherals can be used by the secure world to support cryptographic operations.

The TrustZone divides the environment into a secure world and a non-secure world.
The secure world guarantees code and data integrity with hardware support to isolate the
context of the CPU. The protected resources can be DDR locations, SoC peripheral interfaces,
or SoC internal resources. Basically, STBEAT is based on the integration SWUpdate and
OP-TEE projects to create a trusted update environment and rely on the original mechanism
to avoid the update corruption. In the past, upgrading or patching a system used to be a
challenge. Once the update process fails, the system will corrupt, but IoT devices have the
low computing power to complete complex mechanisms, which we want to make software
upgrades easy and secure to deploy.
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1.1. SWUpdate Project

The SWUpdate project is a mature OTA updater for embedded Linux devices and
is also a completely open-source project. The code of SWUpdate is released under open-
source licenses and is integrated with other free and open source software (FOSS) [13]
projects. The SWUpdate has many benefits, such as the following:

1. It is careful about using resources. It has a small footprint and low usage of resources
and can be integrated into devices with limited memory and flash storage. Its zero-
copy option allows the installation of new software without the need for temporary
copies and access to resources.

2. The SWUpdate is developed with security in mind to prevent unauthorized software
from running on your device.

3. SWUpdate is highly customizable and flexible so that you do not need to change your
project for SWUpdate. You can adapt it to some specific update requirements.

4. It is easy to use and has many use cases. You can update from a USB stick, or need a
management system to deploy.

The main functional details of SWUpdate are as follows:

1. The SWUpdate supports signing with RSA keys and with certificates using your own
PKI infrastructure to validate authorized and trusted updates with signed and verified
update packages.

2. The rollback mechanism detects whether the installed software is working properly
and rolls back to the previously installed version in case of failure.

3. SWUpdate supports zero-copy, which can be installed directly on the storage without
creating temporary files.

4. SWUpdate supports two ways to update your system. One is an offline update, such
as USB, SD, and various other local interfaces. The other is the OTA update, which
has an integrated webserver to upgrade the device.

The SWUpdate has been widely used to provide a secure and reliable way to update
products, and due to its high flexibility, we do not need any special requirements and it
can be integrated into any embedded system project. That is the reason we chose this open
source project to improve security by supporting TrustZone.

1.2. Contributions

This paper utilizes the TrustZone extensions and integrates OP-TEE designed primar-
ily to rely on ARM Trust- Zone technology into STBEAT to develop a better and more
secure way to update software [14]. The SWUpdate is an open-source project aimed to
provide a full-scale solution to upgrade embedded systems and their files. Neverthe-
less, SWUpdate runs on Linux under the normal world of the ARM core, and we made
practical improvements to SWUpdate to isolate the crypto operations and added them to
trusted applications.

When SWUpdate is triggered, it will create a channel between the normal and secure
sides, and then SWUpdate communicates with the trusted application and uses the pre-
defined commands to execute further installation. More details are provided in [9,15,16].
To sum up, our contributions are as follows:

1. We implement the prototype of the software update mechanism through ARM Trust-
Zone, and also modify the SWUpdate client of the open source software update project
to meet our requirements.

2. We regard security as the default option of enterprise products.
3. We integrate OP-TEE and SWUpdate to make the embedded ecosystem more secure

because we directly modified the upstream project, so developers can use the project
without modification.

We summarize the concept of TEE, which is based on ARM TrustZone technology,
and TrustZone architecture, which is the system design solution from ARM. In addition,
there are several projects of TEE, for example, Linux is based on OP-TEE, Android is based
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on Trusty, a specific vendor such as Samsung is based on TZ-RKP, and Qualcomm is based
on QSEE, to name a few. Currently, the system software threat is no longer merely hijacking
the root privileges because the critical data has been placed in the TEE environment to
separate resources and provide secure services including user authentication, usage of
secure resources, and trusted isolation and processing.

Due to the above-mentioned restricted access mechanisms, we can put critical cal-
culations into the secure world to protect data effectively, even if the normal world has
the highest privilege to take control. If we want to obtain the kinds of output such as
calculation results or private data from the secure world while in the normal world, one
way to achieve our goal is to trigger the TEE driver to make a secure monitor call and
switch the control to the secure world. We built the software update application into the
secure world, making every transaction of the update procedure secure. We improved
security and made them the default option for commercial products.

In the following sections of this paper, we will introduce the required background
knowledge of this paper. Section 2 introduces the SDK from STM32, TEE implementation,
SWUpdate project and reviews the system architecture and related works. Sections 3 and 4
present experiments to demonstrate the integration, and evaluate whether the result is
successful and meaningful. Finally, Sections 5 and 6 summarize the fundamental framework
contribution and give directions for future work.

2. Related Works
2.1. STM32MP15 Microprocessor

As the specification of STM32MP15 [17] microprocessors, they are based on the Arm
Cortex-A7 [13] dual core. Furthermore, there are many product lines to meet the different
requirements of customers, such as the following:

1. STM32MP151: Single Cortex-A7 with Cortex-M4, without GPU.
2. STM32MP153: Dual Cortex-A7 with Cortex-M4, without GPU.
3. STM32MP157: Dual Cortex-A7 with Cortex-M4, with GPU.

Additionally, different types have different security functions and CPU clock frequencies.

1. STM32MP15xA: only have basic security functions, with clock rate of 650 MHz.
2. STM32MP15xC: have secure boot and cryptography module, with clock rate of

650 MHz.
3. STM32MP15xD: only have basic security functions, with clock rate of 800 MHz.
4. STM32MP15xF: have secure boot and cryptography module, with clock rate 800 MHz.

All in all, as shown in Figure 2, the STM32MP15F block diagram describes that it
supports more security extensions. Including TrustZone, we focused on, in this paper, the
AES/DES hardware module, secure ROM and RAM, and peripherals.

Figure 2. STM32MP157F block diagram.
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2.2. Scratch Block Mechanism to Prevent System Damage

Since various update strategies have been proposed, the relevant distinguishing points
among them are the encryption key and the update methods. This approach develops a
reliable mechanism to divide the flash memory into the current boot area and the storage
area, which is ready to be updated [18]. The agent on the normal world side is responsible
for communicating with the remote server and downloading the new software and then
installing it in the local storage. After that, the client sends the notification to the device for
a reboot. During the update process, the trusted application will check the metadata of the
software and verify the hash value or signature of the entire image.

Further, when beginning the new software update, there are three regions allocated for
the new image block, old image block, and scratch block. The new image block is the place
where we want to flash with a new software package; the old image block is the system
currently running; the scratch block is the temporary buffer employed to swap in and swap
out. This mechanism is designed to prevent system corruption caused by power loss or
software update errors during updates.

We begin by copying the new image block to the scratch area first, then copying the
old image block to the new image block, and finally copying the scratch block to the old
image block; we just keep cycling through these steps. After the exchange of each block,
the relevant information is recorded in a reserved memory area.

If there is a power failure or an aborted update during the update process, the boot-
loader will obtain the recorded information from the previous update and continue the
update process. Therefore, this mechanism can ensure the integrity of software updates.

Moreover, there are many encryption and decryption processing operations in a secure
system, including encrypted data storage or secure connections to remote servers. A secure
and isolated system offers the most significant improvement in key management, and we
can place critical keys into the secure world. At this moment, the non-secure world has to
request the encryption or decryption operation and the specific encryption or decryption
handlers to perform it.

2.3. Secure Transmission and Multiple Encryption Support

Since the solution mentioned above is not comprehensive enough, this research pro-
poses a novel and more secure update process to compensate for the shortcomings [19].
When the host application starts to update the system, it will securely download firmware
using an HTTPS connection from a remote server. After downloading system images,
the host application will divide the firmware into several blocks and send each block to a
trusted application to calculate the SHA256 checksum.

This approach also defines the signature generated by the computational checksum
using firmware and the RSA public key. Hence, the trusted application compares the
checksum with the signature, which is passed by the host application. If all verification
processes are passed, the trusted application will write the firmware to the MMC interface
or NAND flash memory through their driver in the secure world.

2.4. Boot Chain Overview [20]

As shown in Figure 3, the first startup program is ROM code, also known as the ROM
stage. The ROM code is a piece of software that is stored in the read-only memory (ROM).
The ROM code is the first executed by the processor, and it will select the boot device as the
first-stage boot loader (FSBL) to load into embedded RAM. In addition, it will perform the
basic clock tree initialization and FSBL loading from the boot device and FSBL launch in
the ROM stage.

The next stage is FSBL, which will complete the initialization of the clock tree and
the external RAM controller. After initialization, the FSBL will load the second-stage boot
loader (SSBL) into the external RAM and jump to it.
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The next stage is SSBL, which runs in wide RAM. It can support complicated features,
such as USB, Ethernet, and display. The U-Boot is commonly used for the Linux bootloader
in this stage.

Figure 3. The boot chain of STM32MP15.

2.5. Secure Boot [21]

The STM32 MPU also supports the secure boot mechanism to ensure the integrity of
the platform at runtime. The STM32 trusted boot chain is outlined below:

1. Configuration of execution rules of the platform, the rules are the essential elements
for a safe execution on the platform.

2. The integrity and authentication, which uses hash algorithms and asymmetric cryp-
tography algorithms to verify boot software components.

The OpenSTLinux is a platform for the STM32 MPU that uses TF-A for trusted boot
and peripheral access control.

As we know, there are two solutions to provide services in terms of security. One of
the runtime services is TF-A SP_MIN, which is a minimal secure service provider, provided
by TF-A, including PSCI controls, SCMI resources, and other services for power states
transition or platform facilities. Another secure service provider is the OP-TEE operating
system, recommended by STMicroelectronics. It is an open-source TEE solution that can
run core secure services and trusted applications, respectively. The trusted applications
are used as secure components, exposing generic services to the non-secure side, such as
random number generation or other cryptographic operations.

The mandatory step to ensure a secure boot is to load the TF-A BL2 firmware into
RAM via ROM, so BL2 firmware needs to be encapsulated in a binary file that starts with
an STM32 header that is able to authenticate and boot the firmware.
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The further boot process will go to BL32, which can be either SP-MIN or OP-TEE,
and the next stage is BL33, which boots the normal operating system via U-Boot.

In summary, as shown in Figure 4, the boot chain of STM32MP15 uses TF-A as the
first-stage bootloader, and it uses U-Boot as the second-stage bootloader. In addition, we
can enable or disable the secure boot mechanism so that we can run a secure variant on any
STM32MP15 device to accommodate.

Figure 4. The components for secure boot of STM32MP15.

3. Methodology
3.1. Architecture

As the architecture overview in Figure 5 shows, we use a typical operating system
such as Linux in the normal world. Moreover, we use the OP-TEE operating system as a
server to serve the normal world. We propose this strategy and conducted experiments on
the STM32MP1 family of platforms with two ARM cores, Cortex A7 and Cortex M4. Our
experiments do not use the Cortex M4 subsystem instead using Cortex A7, which is a 32-bit
ARMv7-A architecture microprocessor with TrustZone support. We use the arm trusted
firmware (TF-A) to plan resource allocation and assign resource access control policies
to boot up the platform. After booting TF-A, the secure OS OP-TEE will be loaded into
memory and then controlled to U-Boot, which is used as the bootloader for the normal
world operating system.

Once all startup processes are complete, the SWUpdate client is in standby mode as a
daemon process and waits for update events. If the client application is called by an event,
it will trigger a system call to trap into kernel mode. After the soft interrupt is processed,
the next step is to find out the tee driver to make a secure monitor call instruction to change
the world state.

All in all, the SWUpdate client and trusted application are located in the normal
world and the secure world, respectively. The update process relies on the above two
components, the TEE driver within the Linux kernel and the OP-TEE operating system,
which is responsible for handling requests from the TEE driver and trusted applications.
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Figure 5. Software update process architecture, which has the SWUpdate client inside the normal
world and trusted application inside the secure world.

3.2. Tee-Supplicant

The tee-supplicant is one handler of trusted application requests, as shown in Figure 6.
TA can send the remote procedure call to the tee-supplicant, which is constructed by an
infinite loop to process requests from TA. As shown in Figure 5, we use the method to
load TA dynamically; thus, when the SWUpdate initializes the context, TA will be loaded
with universal unique identification (UUID) passed by the SWUpdate client and put into
the secure world by the tee-supplicant. When TA is initialized, a channel is established
between the normal and the secure world to exchange information.

Figure 6. The communication process of tee-supplicant.

3.3. SWUpdate

SWUpdate is an open-source project based on the GPLv2 license and a Linux-based
update agent, which supports multiple update strategies on both local and over-the-
air (OTA). Moreover, SWUpdate has many features, such as the ability to update the
roots and kernel of the device, the ability to install the system files into embedded media
(eMMC/SD/NAND/NOR), and some of the embedded media requiring the memory tech-
nology device (MTD) library for bridging. This paper relies on the single copy mechanism
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to update the system and files, but we still plan to provide a comprehensive solution by the
dual-copy mechanism to reduce the impact on system corruption or critical file leakage.

3.4. OP-TEE Architecture

The OP-TEE project includes many secure and non-secure components to support
trusted applications. As shown in Figure 7, the main components of OP-TEE are the OP-
TEE core and shared libraries of trusted applications on the secure side, and the client API
library, which is constructed by the OP-TEE supplicant and the OP-TEE Linux kernel driver
on the non-secure side.

Figure 7. The OP-TEE architecture of STM32MP15 [15].

As mentioned above, the OP-TEE core executes in secure privileged mode, while
trusted applications are executed in secure user mode. OP-TEE can load trusted applications
stored in the file system of the Linux operating system or the OP-TEE core boot image.
Trusted libraries include the TEE internal core API libraries provided by OP-TEE for trusted
application development, and OP-TEE also supports the loading of static and dynamic
libraries in the TEE.

The OP-TEE core can use non-secure userland supplicant, which can be invoked
through the OP-TEE Linux kernel driver. A scenario for this service is that we need to
access a non-volatile device that is controlled on the non-secure side, so we need the
suppliant to handle this request from a trusted application.

OP-TEE is initialized and ready to serve when the Linux kernel is booted. As
shown in Figure 8, the TEE driver in the Linux kernel is a generic API, which is ex-
posed from the “libtee” library and is the interface among the SWUpdate client, the trusted
OS, and the tee-supplicant.

Figure 8. The location of the TEE drive and its control flow [15].
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There are several scenarios that meet our proposal:

1. For a non-secure application, services are invoked from a trusted application. The non-
secure application first calls the TEE Client API library and then invokes the OP-TEE
driver of the Linux kernel. The OP-TEE driver performs the secure monitor call,
switches the context to the secure world, and reaches the OP-TEE core. In the last
stage, the OP-TEE core transfers the request to the target trusted application. After the
trusted application completes the request, the system branches back to the calling
application. In addition, if the invoked trusted application is not yet loaded into the
TEE, the OP-TEE core will make a remote procedure call through a non-secure TEE
supplicant to load the trusted application. In this scenario, we send the command for
the secret key parameters to the TEE driver and then forward it to the secure side to
generate a new symmetric key for decrypting the encrypted image. When all images
are decrypted, we use the original function of SWUpdate to install the decrypted
images to the eMMC via the dual copy mechanism. If the upgrade process fails, we
can reverse the operation by restoring the original partition or logical block.

2. For the OP-TEE core to call a non-secure remote service, the OP-TEE core invokes the
Linux kernel OP-TEE driver and forwards the request to the TEE supplicant daemon,
and the system returns the request status to the OP-TEE core.

3. For a trusted application to invoke an OP-TEE core service, most services must be
executed in the privileged mode of the OP-TEE core. The trusted application issues a
system call to invoke the corresponding service from the TEE internal core API.

3.5. OpenSTLinux Distribution

While functioning as a mainlined open-source Linux distribution, OpenSTLinux dis-
tribution is also a key element of the STM32 Embedded Software solution for STM32 multi-
market multi-core microprocessors (MPU) embedding a single or dual Arm® Cortex®-A7
core. OpenSTLinux Distribution contains the required packages listed below:

1. Linux board support package (BSP);
2. Linux kernel;
3. Secure boot chain based on ARM trusted firmware (TF-A) and universal bootloader

(U-Boot);
4. Secure OS, open portable trusted execution environment (OP-TEE).

3.6. Implementation

We deployed the SWUpdate client application on a customized Linux Kernel and
developed a stand-alone trusted application above the customized OP-TEE OS.

We isolated the cryptographic operations as a service to the trusted application. We
spent more time determining which part has the most significant impact on security during
the progress of developing SWUpdate. Finally, we found the relevant function symbols,
install_raw_image and install_from_file included. Most of them will be redirected to the
functions that write the image to each block of storage space. Here, we obtained the critical
point of writing binary image files to storage and identified whether the image is encrypted
and whether it has a SHA256 hash value to compare the decrypted image.

In a nutshell, our proposed update strategy begins with the SWUpdate client, as shown
in Figure 9. Then, when the update event arrives, it triggers the SWUpdate daemon to
perform further initialization:

1. The client takes the package from a local external interface or remote server and parses
the package description.

2. The client-side searches for the encrypted image inside the package and initializes
TA to obtain the Keyfile and decrypt it. During initialization, the random seed is
required to regenerate the parameter Initialization vector (IVT). As Figure 10 shows,
the symmetric key generator obtains the new IVT to generate a new AES key.

3. The next process is to use the AES key to decrypt the packaged image binary file.
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4. It will check whether the hash value is valid.

Figure 9. The calling convention between the SWUpdate client and trusted application.

Figure 10. New key generated by trusted application and used to decrypt the image.

If valid, it will write directly to the defined partition; if not, it will reject the upgrade
event and abort the entire process.

4. Experimental Result
4.1. Demonstrates and Monitors the Transmission between the Server and Client

This section demonstrates our experiments with the STBEAT solution in several steps
based on STM32MP157C-DK2 as shown in Table 1. We use the STM32 board for two reasons.
First, the CPU family is ARM-based dual Cortex A7, which is the ARMv7 architecture
and TrustZone security extensions supported. Second, STM32 has a comprehensive board
support package to build and construct applications. The STM32MP157 board also has
true random number generators (TRNG), hardware cryptographics, and hash processors.
With the support of these functions, it is believed that one can generate a random seed from
the TRNG and use the symmetric key to conduct operations based on hardware-based
encryption engines. The last component is RAM, in which we need to allocate memory
space for key generation and image decryption. By default, the OP-TEE operating system
has limited memory for each process so we recompiled OP-TEE to adjust the memory space
to utilize more RAM resources.

Table 1. Hardware specification.

Platform STM32MP157C-DK2

Processor ARM Dual Cortex-A7 + Cortex-M4

RAM 4 Gbit DDR3L (16 bits, 533 MHz)

Storage Flash, eMMC/SDC (16 GB)

Normal world OS OpenST-Linux

Secure world OS OP-TEE OS

Symmetric key length 256 bits
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The ARM TrustZone is an isolation mechanism to separate an ARM CPU into two
logical partitions. Since the original SWUpdate client runs in the normal world, we chose
ARM TrustZone as our security solution to deploy. We designed the custom command to be
event triggered and to follow the invocation conventions in the GP specification. Moreover,
SWUpdate has many supported extension packages, including (a) compressed images
using Zlib library and structured language to describe the image using the libconfig library,
and (b) support for setting U-Boot variables, GRUB environments, and EFI Boot Guard
to give flexibility to the boot process. To sum up, SWUpdate has the feature to update
software remotely in an OTA fashion. Our experiment set up the Hawkbit server, an open-
source project, and a back-end solution for rolling out software updates to constrained
edge devices. After setting up the server, we deploy the update image to the STM32 device
as shown in Figure 11, and then SWUpdate will start the upgrade process.

Figure 11. The network traffic between Hawkbit server and STM32 board.

4.2. Build an Upgrade Package

In the first step, we build a new package with an upgrade image and a description file
describing the type of image, including whether it is encrypted and the dynamic IVT value.
From this, we need the libconfig library as Figure 12 to parse the description file, and use
sysroot from buildroot to make it work.
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Figure 12. Enable libconfig support from menuconfig in buildroot.

4.3. Comparison

The upgrade image is encrypted by the symmetric key with the AES algorithm, which
is standard and supported by SWUpdate [22]. We use the OpenSSL to generate the AES
key and utilize it to encrypt the image. The comparison between the non-encrypted image
and encrypted one is presented in Figures 13 and 14.

Figure 13. The non-encrypted image file with the file signature GZ identified by HxD. In the
comparison chart in Figure 14, we cannot see the signature of the document to be recognized.
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Figure 14. The image is encrypted by the AES key and we cannot identify the file signature by hexdump.

4.4. Trusted Application Steps

In the second step, we check whether the device is ready and in standby mode,
then send this new package to the SWUpdate client, whereby it will start the upgrade
process as shown in Figure 15. At this moment, it will run the InitializeContext and bring
up the trusted application via tee-supplicant by dynamical loading. After the trusted
application has been initialized, the SWUpdate client will send our predefined command
“TA_SWUPDATE_GET_AES_KEY” to the trusted application.

When the trusted application receives this command, it will calculate the IVT value
based on the random seed of the downloaded package. By the way, since we need to output
logs from OP-TEE, we use the onboard ST-LINK/V2-1 debugger: Virtual COM port and
debug port connected to the host and connected to the board via Putty software. The image
shows that the SWUpdate created a session with the trusted application and exchanged
random seeds to generate new key parameters.

Eventually, the trusted application moves the generated binary of the key file to the
shared memory so the SWUpdate client can retrieve the data from the shared memory to
decrypt the image. Then, SWUpdate begins the upgrade progress and writes directly to the
partition we specified.
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Figure 15. SWUpdate obtains the key from the trusted application and decrypts the image to be
installed later.

4.5. Risk and Improvement

All in all, the image will be decrypted and installed to a predefined partition. Here, we
use the single copy mechanism, which works by directly overwriting the original partition.
However, there is a risk of power failure occurrence while updating, and there is also a
risk that a direct overwrite could damage the currently running system and may cause
the system to hang, as shown in Figure 16. Nevertheless, SWUpdate supports a dual copy
mechanism to improve the installation process to make it safe and reliable, and we see this
implementation as a future improvement.

Figure 16. System hang when updating using single-copy mechanism.

5. Conclusions

The STBEAT solution is a comprehensive approach to securely update systems and
can be applied to resource-limited embedded systems or slightly higher-performance MPU
systems. Our scenario uses ARM-based Cortex A7, which is the ARMv7-A architecture.
Therefore, it can also run this integrated and complete software system.

To sum up, our STBEAT solution has the following features: (1) Key protection: We
place critical security keys in the secure side, accessible only to the secure world. This
feature prevents unauthorized or unwanted requests from the normal world. Further,
this feature makes key generation more secure than the original method of SWUpdate.
(2) System image protection: We encrypt system images with the supported random
seed, including kernel or file system or application binaries. In this way, if an attacker
performs traffic sniffing, they will not know the file type and the original image file. More
importantly, they will not know the decryption algorithm of the random seeds. This can
improve security against certain kinds of rainbow table attacks.
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Evaluation

Our STBEAT system resolves security issues through a novel software update method.
System evaluation is also important because the user or any endpoint experience is the
impact vector of this solution.

The measurement process is to download the binary file, set the decryption key,
and install it on the interface after decryption. The difference between the normal world
and the secure world is the TrustZone function. The client sends the command to the
trusted application, which receives the command and processes the request. The time spent
here is very costly because we have performed a lot of calculations here, including starting
TA or generating new decryption keys or decoding parameters for use by the obfuscator.
As shown in Figure 17, the average value of the solution with TrustZone disabled was
0.000046 s, and the average value of the solution with TrustZone enabled SWUpdate trusted
applications was 0.27 s.

Figure 17. The evaluation of STBEAT performance with normal update and secure update.

The increase is as high as 5000%, but we think this situation is acceptable because
updates are not frequent in the real world, and the total time spent on user experience is
not long.

6. Recommendations for Future Work

We can further improve security by generating more random seeds to prevent the
cryptographic algorithm from being broken and using more sophisticated algorithms
to protect the symmetric key, such as RSA. In addition, we can implement installation
checking for storage security. This will verify the address written to the memory is valid
and the range belongs to the secure world with the support of the TrustZone protection
controller [23].

This paper only implements the integration based on ARM TrustZone and the open-
source project SWUpdate. However, we can make improvements as described above
to make the STBEAT more complete and comprehensive and submit it to the Yocto or
Buildroot projects for integration into the embedded ecosystem whenever possible. Further,
we know there are significant architectural differences between ARMv7 and ARMv8. The
ARMv8 architecture has more improvements and integrations for TF-A and OP- TEE. We
can apply these features to ARMv8 in the future to fit the world’s coming product lines.
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6.1. Discussion

Since the trusted application method we proposed dynamically loaded, the binary file
is located in the REE file system. This means that binary files may be vulnerable to attackers.

We simply decompile the trusted application signed by the TEE tool chain, and we can
extract some relevant information inside the trusted application. As shown in Figure 18, we
use the reverse engineering tool IDA Pro to search for secret strings or any key parameters.
We can find the secret string stored in the last part of the binary file. To prevent this, we
encode the secret string. As shown in Figure 19, we use IDA Pro to search this again; even
though we can extract the string, we cannot know the original state. As shown in Figure 20,
we first use the STM32MP1 kernel for our entry point of STBEAT and will grab the binary
file to be upgraded from the local storage. Then the SWUpdate client initializes the context
and creates a session between the normal world and the secure world. The SWUpdate
client triggers the trusted application by sending a predefined command, while the trusted
application starts to decode the key string and returns to the CA to decrypt the image.
When installing the upgrade image, STBEAT uses a single copy mechanism to install the
image to eMMC. At this time, due to the risk of single copy, the currently running file
system is damaged. This, however, means that the upgrade image has been successfully
written to memory.

Figure 18. Use IDA Pro to reverse the trusted application to find the secret string in the last part of
the binary file.

Figure 19. Flow chart of magic and secret and encrypted key decoding and seed generation. The secret
and magic will perform XOR first, the result will perform XOR with the encrypted key, and then the
key is generated by random seed calculation and returned to the CA.
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Figure 20. STBEAT starts the upgrade process under the STM32MP1 kernel version.

We force the system to restart, and the machine will check the status of the entire
device when it starts, because the newly upgraded operating system does not know this
information. After starting, we can see that the buildroot shell has started as shown in
Figure 21, and we print out the file system information of the operating system that is built
by the buildroot project.

Figure 21. Kernel upgrade successfully and start buildroot shell.

6.2. Security Analysis

To conclude, we analyze the important defensive aspects for STBEAT framework:
Firstly, for the critical point, we have to protect the upgraded image, which was

modified. With the support of SWUpdate, we encrypt our software image by utilizing the
single key algorithm and implementing in trusted application to ensure that the image file
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encrypted, as shown in Figure 14, which means that there is no leakage of any relevant
information in non-secure world.

Secondly, the trusted applications contain many pieces of critical information based on
our development board, and do not have secure storage hardware. Therefore, we use the
dynamic loading approach to execute our trusted applications at runtime, but the trusted
applications still present some risks in the Linux file system. In other words, the potential
problem remains that the trusted application binaries are in a path that anyone can access.
We also reverse the engineering to these binaries from the attacker’s perspective. We find
that we can extract some secret strings from them; see Figure 18.

Since the leakage of the binary string could be harmful to the system, we try to generate
another set of unrecognizable strings by obfuscating the secret. The results are in line with
our requirements, although it is still necessary to convert the obfuscated string back to the
original secret in the trusted application and cost some overhead. Figure 19 expresses the
flow chart.

Lastly, due to the current methods and hardware limitations, we use a single copy
mechanism, which causes the file system to be corrupted after the entire system is updated
and completed, as shown in Figure 16. This even leads to system crash. The availability of
the CIA model from the security aspect might be invalidated. In the future, we will utilize
the dual-copy method for the system update, and invoke the system image with the other
partition to boot after a reboot.
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