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Abstract: Accurate determination of the surface roughness is of significant importance in estimating
the mechanical and hydraulic behaviors of rock joints. The correlation between joint roughness
coefficient (JRC) and various statistical roughness parameters calculated from digitized Barton’s
roughness profiles was explored with Pearson’s correlation coefficient method. The results show the
strongest correlation between the standard deviation of the roughness angle and JRC following an
excellent linear relationship. In addition, the correlation in the JRC with textural parameters is better
than its correlation with amplitude parameters. Twenty-nine rock joint surfaces from fine sandstone,
coarse sandstone and granite joint samples with a wide range of surface morphology were digitized
using a high-resolution 3D scanner instrument. Further, the statistical roughness parameter values
were calculated for each joint profile at eight different sampling intervals for sensitivity analysis of
these statistical roughness parameters with regard to the sampling interval. The result indicated that
textural parameters generally have a certain degree of dependency on sampling interval, following a
power-law relationship. Specifically, when the sampling interval increases, the structure function
value increases whereas it decreases for other textural parameters. In contrast, the dependence of the
amplitude parameters on the sampling interval is not significant.

Keywords: rock joint; joint roughness coefficient; roughness parameter; sampling interval

1. Introduction

Joints widely exist in geological rock strata and dominate fluid flow and mechanical
deformation of rock. This is particularly significant in many rock engineering applications,
such as groundwater management, hydrocarbon production, construction of dam founda-
tions, geothermal extraction, CO2 geological storage and hazardous waste isolation [1–6].
Rock joints are usually rough, the surface morphology of rock discontinuity plays an es-
sential role in rock mass strength and hydraulic conductivity [7–13]. The rock joint surface
undulation determines the void spaces between two discontinuity surfaces, affecting the
hydraulic aperture distribution and fluid flow tortuosity [14–16]. Mechanically, the rough-
ness affects the shear strength of rock discontinuities such as rock joints and faults [17–19].
Therefore, it has been rock mechanic scientists and engineers’ ambition to find methods
to accurately characterize rock joint surface roughness and apply it to hydro-mechanical
behavior description of rock joints; however, this seems challenging.

The joint roughness coefficient (JRC) has been widely used to quantitatively character-
ize rock joint surface morphology since 1973 [20]. Initially, the JRC of the rock joint profile
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was determined by visibly comparing it to the ten representative profiles with JRC ranging
from 0 to 20 [7]. Afterward, this method was proposed by the International Society for Rock
Mechanics (ISRM) commission. Although simple and effective, the JRC obtained using
visible comparison may vary. On the one hand, because the user has to match the profiles
subjectively; also, the number of Barton’s roughness profiles is limited. Another method
is to back-calculate JRC with the peak shear strength model (e.g., JRC-JCS) of rock joints
based on the direct shear test result [21]. However, this method has relatively limited in
practical application due to the peak shear strength of rock joints that can only be predicted
by estimating the value of JRC in situ. To avoid the uncertainty of JRC estimation by the
subjective comparison method, numerous empirical correlations of JRC with regard to
roughness parameters and fractal dimensions of rock joints have been established [22,23].
The commonly used statistical parameters include root mean square of the first derivative
(Z2), structure function (SF), roughness profile index (Rp), peak asperity height (Rz), arith-
metic average of the absolute height (Ra), root mean square roughness height value (Rq),
average roughness angle (θ), standard deviation of the roughness angle i (σi), the ultimate
slope (λ), profile elongation index (δ) and angular threshold (θ*

max) [22,24,25]. Among these
parameters, Z2, as a slope-based parameter, is the most popular based on its correlation
to the JRC. The fractal dimension (D) can be determined through different fractal analysis
methods such as box-counting, divider, variogram analysis, roughness-length and power
spectral analysis methods [26–30].

The empirical equations based on roughness parameters can determine the JRC ob-
jectively and efficiently. Various equations, such as linear, logarithmic, trigonometric and
power-law, have been used, even for the same statistical parameters [23,31–33]. It is difficult
for the user to decide which correlation is the most suitable for an application. The reliabil-
ity of JRC estimation based on roughness parameters remains controversial, and further
study is needed. On the other hand, the sampling interval used in digitized rough rock
joint profile influences the value of some roughness parameters and hence the estimation
of JRC. For instance, Yu and Vayssade [34] digitized Barton’s roughness profiles at different
sampling intervals and found Z2 and SF could be sensitive to the sampling interval; just as
the coefficients of empirical equations between JRC and Z2 are not equal for the sampling
interval of 0.25 mm, 0.5 mm and 1.0 mm. Tatone and Grasselli [24] obtained a similar
conclusion by digitizing Barton’s roughness profiles at the sampling interval of 0.5 mm and
1.0 mm. Li et al. [35] digitized 112 joint profiles retrieved from the literature at sampling
intervals ranging from 0.1 mm to 3.2 mm, and two sets of empirical equations of JRC were
proposed. The roughness parameters value may vary with the sampling interval [32,36–38].
However, there are still many knowledge gaps regarding the response of roughness param-
eters to sampling interval, where understanding the dependency of roughness parameters
on sampling interval is important.

The characterization of rock joint roughness requires the measurement of its surface
morphology. Over the past decades, a variety of instruments and methods have been em-
ployed to measure rock joint morphology in the laboratory and in-situ. These measurement
techniques include “Contact Methods” (e.g., needle and stylus profilometers, profile combs
and shadow profilometry) [7,39,40] and “Non-Contact Methods” (e.g., photogrammetry,
structured light techniques and laser scanning) [41–45]. The above measurement technolo-
gies provide powerful tools for accurately describing the roughness of rock joints, and they
are each subjected to varying limitations. As such, Yong [46] reported that each equipment
used to measure the joint surface morphology has a sampling limitation. In addition, some
techniques are not convenient for field use and others are time-consuming or destructive.
Recently, some non-destructive testing techniques have attracted the attention of field mea-
surement engineers [47], which may provide new insight into the development of advanced
field measurement equipment for rock joint topography. At present, three-dimensional
scanners and other digital optical measurement devices are the primary means to acquire
detailed digitizing joint surface topography images in the laboratory [17,29,48].
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This study first digitized Barton’s roughness profiles, and these profiles were used to
explore the relationship between statistical roughness parameters and JRC. To investigate
the dependence of JRC on the sampling interval, a total of 261 representative 2D joint
profiles with a wide range of roughness were extracted from fine sandstone, coarse sand-
stone and granite joint samples digitized using a non-contact three-dimensional scanner
instrument. The roughness parameters, including Z2, Rp, SF, Ra, Rq, Rz, δ, λ, σi, and θ
values, were calculated from the digitized joint profile at eight different sampling intervals
(0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0 mm). The dependence between these roughness
parameters and sampling interval was also analyzed.

2. Material and Methods

In this study, two sets of joint profiles were used to achieve research objectives. The
first set is from Barton’s roughness profiles, which was used to determine the relationship
between roughness parameters and JRC. The second set was used to investigate the effect
of sampling interval on roughness parameter estimation, which is from fine sandstone,
coarse sandstone and granite joint samples formed by splitting the intact rock samples.

2.1. Digitization of Barton’s Roughness Profiles

The present study used Barton’s roughness profiles from Barton and Choubey [7] to
determine JRC. The images of Barton’s roughness profiles from the original publication
were scanned using a 1400 dot per inch (dpi) resolution, and then converted the resulting
images into bitmap files, and digitizing them at a 0.5 mm sampling interval using MATLAB
code (Table 1). The digitized profiles were fitted using the least-square best-fit approach,
and it can be seen that the best-fit line is not horizontal as shown in Table 1 but has a non-
zero overall slope (Figure 1). Therefore, it is necessary to realign the profiles as suggested
by Tatone and Grasselli [24] and Li et al. [35]. The slopes of the best-fit lines relative to
the horizontal line were used to calculate the angle of rotation required to make them
horizontal (Figure 1). The coordinates determining the aligned Barton’s roughness profiles
were imported into computer software to calculate the roughness parameters of the profile.

Table 1. JRC and Back-calculation of Barton’s roughness profiles suggested by Barton and Choubey [7].

Profile No. Rock Type Typical Roughness Profiles JRC Back-Calculated

1 Slate
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approach, and it can be seen that the best-fit line is not horizontal as shown in Table 1 but 
has a non-zero overall slope (Figure 1). Therefore, it is necessary to realign the profiles as 
suggested by Tatone and Grasselli [24] and Li et al. [35]. The slopes of the best-fit lines 
relative to the horizontal line were used to calculate the angle of rotation required to make 
them horizontal (Figure 1). The coordinates determining the aligned Barton’s roughness 
profiles were imported into computer software to calculate the roughness parameters of 
the profile. 

Table 1. JRC and Back-calculation of Barton’s roughness profiles suggested by Barton and Choubey 
[7]. 

Profile No. Rock Type Typical Roughness Profiles JRC Back-Calculated 

1 Slate 
 

0.4 

2 Aplite 
 

2.8 

3 Gneiss 
 

5.8 

4 Granite 
 

6.7 

5 Granite 
 

9.5 

6 Hornfels 
 

10.8 

7 Aplite 
 

12.8 

8 Aplite 
 

14.5 

9 Hornfels 
 

16.7 

10 Soapstone 
 

18.7 

12.8

8 Aplite
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14.5 

9 Hornfels 
 

16.7 

10 Soapstone 
 

18.7 

14.5

9 Hornfels

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 24 
 

 

three-dimensional scanners and other digital optical measurement devices are the pri-
mary means to acquire detailed digitizing joint surface topography images in the labora-
tory [17,29,48]. 

This study first digitized Barton’s roughness profiles, and these profiles were used to 
explore the relationship between statistical roughness parameters and JRC. To investigate 
the dependence of JRC on the sampling interval, a total of 261 representative 2D joint pro-
files with a wide range of roughness were extracted from fine sandstone, coarse sandstone 
and granite joint samples digitized using a non-contact three-dimensional scanner instru-
ment. The roughness parameters, including Z2, Rp, SF, Ra, Rq, Rz, δ, λ, σi, and θ values, were 
calculated from the digitized joint profile at eight different sampling intervals (0.1, 0.5, 1.0, 
1.5, 2.0, 3.0, 4.0 and 5.0 mm). The dependence between these roughness parameters and 
sampling interval was also analyzed. 

2. Material and Methods 
In this study, two sets of joint profiles were used to achieve research objectives. The 

first set is from Barton’s roughness profiles, which was used to determine the relationship 
between roughness parameters and JRC. The second set was used to investigate the effect 
of sampling interval on roughness parameter estimation, which is from fine sandstone, 
coarse sandstone and granite joint samples formed by splitting the intact rock samples. 

2.1. Digitization of Barton’s Roughness Profiles 
The present study used Barton’s roughness profiles from Barton and Choubey [7] to 

determine JRC. The images of Barton’s roughness profiles from the original publication 
were scanned using a 1400 dot per inch (dpi) resolution, and then converted the resulting 
images into bitmap files, and digitizing them at a 0.5 mm sampling interval using 
MATLAB code (Table 1). The digitized profiles were fitted using the least-square best-fit 
approach, and it can be seen that the best-fit line is not horizontal as shown in Table 1 but 
has a non-zero overall slope (Figure 1). Therefore, it is necessary to realign the profiles as 
suggested by Tatone and Grasselli [24] and Li et al. [35]. The slopes of the best-fit lines 
relative to the horizontal line were used to calculate the angle of rotation required to make 
them horizontal (Figure 1). The coordinates determining the aligned Barton’s roughness 
profiles were imported into computer software to calculate the roughness parameters of 
the profile. 

Table 1. JRC and Back-calculation of Barton’s roughness profiles suggested by Barton and Choubey 
[7]. 

Profile No. Rock Type Typical Roughness Profiles JRC Back-Calculated 

1 Slate 
 

0.4 

2 Aplite 
 

2.8 

3 Gneiss 
 

5.8 

4 Granite 
 

6.7 

5 Granite 
 

9.5 

6 Hornfels 
 

10.8 

7 Aplite 
 

12.8 

8 Aplite 
 

14.5 

9 Hornfels 
 

16.7 

10 Soapstone 
 

18.7 

16.7

10 Soapstone

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 24 
 

 

three-dimensional scanners and other digital optical measurement devices are the pri-
mary means to acquire detailed digitizing joint surface topography images in the labora-
tory [17,29,48]. 

This study first digitized Barton’s roughness profiles, and these profiles were used to 
explore the relationship between statistical roughness parameters and JRC. To investigate 
the dependence of JRC on the sampling interval, a total of 261 representative 2D joint pro-
files with a wide range of roughness were extracted from fine sandstone, coarse sandstone 
and granite joint samples digitized using a non-contact three-dimensional scanner instru-
ment. The roughness parameters, including Z2, Rp, SF, Ra, Rq, Rz, δ, λ, σi, and θ values, were 
calculated from the digitized joint profile at eight different sampling intervals (0.1, 0.5, 1.0, 
1.5, 2.0, 3.0, 4.0 and 5.0 mm). The dependence between these roughness parameters and 
sampling interval was also analyzed. 

2. Material and Methods 
In this study, two sets of joint profiles were used to achieve research objectives. The 

first set is from Barton’s roughness profiles, which was used to determine the relationship 
between roughness parameters and JRC. The second set was used to investigate the effect 
of sampling interval on roughness parameter estimation, which is from fine sandstone, 
coarse sandstone and granite joint samples formed by splitting the intact rock samples. 

2.1. Digitization of Barton’s Roughness Profiles 
The present study used Barton’s roughness profiles from Barton and Choubey [7] to 

determine JRC. The images of Barton’s roughness profiles from the original publication 
were scanned using a 1400 dot per inch (dpi) resolution, and then converted the resulting 
images into bitmap files, and digitizing them at a 0.5 mm sampling interval using 
MATLAB code (Table 1). The digitized profiles were fitted using the least-square best-fit 
approach, and it can be seen that the best-fit line is not horizontal as shown in Table 1 but 
has a non-zero overall slope (Figure 1). Therefore, it is necessary to realign the profiles as 
suggested by Tatone and Grasselli [24] and Li et al. [35]. The slopes of the best-fit lines 
relative to the horizontal line were used to calculate the angle of rotation required to make 
them horizontal (Figure 1). The coordinates determining the aligned Barton’s roughness 
profiles were imported into computer software to calculate the roughness parameters of 
the profile. 

Table 1. JRC and Back-calculation of Barton’s roughness profiles suggested by Barton and Choubey 
[7]. 

Profile No. Rock Type Typical Roughness Profiles JRC Back-Calculated 

1 Slate 
 

0.4 

2 Aplite 
 

2.8 

3 Gneiss 
 

5.8 

4 Granite 
 

6.7 

5 Granite 
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Figure 1. Example of realigning from re-digitized at a sampling interval of 0.5 mm: (a) the Barton’s 
roughness profile 6 (JRC = 10–12); (b) profile 8 (JRC = 14–16) of Barton and Choubey [7]. The dotted 
and solid blue lines represent the best-fit line through the original and realigned profiles, 
respectively. 

2.2. Joint Sample Preparation 
Intact cylindrical samples were cored from three types of rock blocks (fine sandstone, 

coarse sandstone and granite) with a core diameter of 50 mm and a height of approxi-
mately 100 mm. Two ends of these samples were polished to be smooth and parallel to 
each other using the grinding machine. The cores were spilt using splitting wedges in 
uniaxial compressive apparatus in a similar manner to the Brazilian split test [49]. A total 
of twenty-nine rock joint samples with a wide range of joint surface morphology (58 joint 
surfaces) were prepared (Figure 2). Given that there is a good match between the upper 
and lower halves of rock joint samples, therefore, only one of the halves of each joint sam-
ple was selected for analysis. For convenience and simplicity, the fine sandstone, coarse 
sandstone and granite joint samples were numbered FS, CS and GR, respectively. 
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2.2. Joint Sample Preparation

Intact cylindrical samples were cored from three types of rock blocks (fine sandstone,
coarse sandstone and granite) with a core diameter of 50 mm and a height of approximately
100 mm. Two ends of these samples were polished to be smooth and parallel to each
other using the grinding machine. The cores were spilt using splitting wedges in uniaxial
compressive apparatus in a similar manner to the Brazilian split test [49]. A total of twenty-
nine rock joint samples with a wide range of joint surface morphology (58 joint surfaces)
were prepared (Figure 2). Given that there is a good match between the upper and lower
halves of rock joint samples, therefore, only one of the halves of each joint sample was
selected for analysis. For convenience and simplicity, the fine sandstone, coarse sandstone
and granite joint samples were numbered FS, CS and GR, respectively.
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Figure 2. Preparation of rock joint samples: (a) splitting process of intact cylindrical sample; and
(b) rock joint samples.

2.3. Joint Sample Digitization

The rock joint surface morphology characteristics were measured using a non-contact
three-dimensional scanner instrument Cronos [49]. Its precision is up to ±0.02 mm in
the height direction and the accuracy is up to ±0.1 mm in the horizontal direction. After
scanning, the point cloud data of the joint surface of all samples were obtained, which can
be used to calculate the roughness parameters. Figure 3 shows the digitized fine sandstone
joint surface morphology, where the undulation degree of the joint surface can be judged
from different colors of the graph, coarse sandstone and granite joint surface morphology
are attached in “Supplementary Materials” (See Figure S1 in the Supplementary Materials).
These rock joint samples exhibit a wide range of surface roughness. Figure 4 shows the
Gaussian fitting of the asperity elevation distributions of fine sandstone joint surface, the
Gaussian fitting in coarse sandstone and granite joint surfaces are attached in “Supple-
mentary Materials” (See Figure S2 in the Supplementary Materials). It can be seen that the
surface asperity elevation distributions on most rock joints are in good agreement with the
theoretical Gaussian distribution function. In addition, each joint surface profile was di-
vided by nine equally spaced lines along the long axis direction; hence, nine two-dimension
profile lines were obtained for each sample. The extracted profile lines from joint surfaces
were used to calculate the statistical roughness parameter.
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3. Determination of JRC Using Statistical Roughness Parameters
3.1. Study on the Correlation between Statistical Roughness Parameters and JRC

According to previous study, it can be known that these roughness parameters (Z2, Rp,
SF, Ra, Rq, Rz, δ, λ, σi, θ) can be used to estimate the JRC of rock joints by their empirical
correlations with JRC. To further understand the relationship between roughness param-
eters and JRC of rock joints, a simple correlation analysis between them was conducted
with Pearson’s correlation coefficient (γ) method here, and it can be used to evaluate the
strength of a linear dependence between two variables [50]. The definition and calculation
formula of Pearson’s correlation coefficient (γ) and roughness parameters were presented
in the “Appendix A”. Where the γ takes on a range of values from −1 to +1, a positive
value denotes positive linear correlation, and a negative value denotes negative linear
correlation. The closer the value is to −1 or +1, the stronger the linear correlation. Figure 5
shows the Pearson’s correlation coefficient of each statistical roughness parameter with
respect to JRC of Barton’s roughness profiles at a sampling interval of 0.5 mm. It can be
observed that the Pearson’s correlation coefficient γ > 0.7 for these statistical roughness
parameters except for Ra where γ = 0.66. This result indicates that the JRC of joint profile is
well related to these statistical roughness parameters. Among these statistical roughness
parameters, the Pearson’s correlation coefficient value of σi is the largest, and its value
reached 0.9923, denoting the strongest correlation between the σi and JRC in rock joint,
while Ra is the smallest, indicating that it has a moderate correlation with JRC. Pearson’s
correlation coefficient (γ) value for Z2 is 0.981 and θ is 0.9914, showing that the range of γ
value for the two parameters higher than 0.95 is very close to that of σi. By comparison,
the coefficient (γ) values for Z2, SF, Rp, δ, σi and θ are larger than that of Ra, Rq, Rz and
λ, demonstrating that a better correlation exists between the parameters Z2, SF, Rp, δ, σi
and θ and JRC. The parameters Ra, Rq, Rz and λ reflect the amplitude distribution of a
rock joint profile, therefore, Ra, Rq, Rz and λ are categorized as amplitude parameters [25].
By contrast, Z2, Rp and θ describe the texture variation of a rock joint profile, which is
grouped as textural parameters. The parameters SF, δ and σi are also considered as textural
parameters given that they also mirror the information of the joint profile, despite not being
classified as such before. The roughness of rock joints can be identified by the value of
these parameters mentioned above. For instance, in terms of Z2, a larger Z2 indicates a
rougher joint profile. Taking Barton’s roughness profiles as an example, the 10th roughness
profile shows the roughest morphology with a maximum JRC, whereas the 1st profile is the
smoothest with a minimum JRC.
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ters calculated from Barton’s roughness profiles at a sampling interval (SI) of 0.5 mm.

3.2. Determination of JRC Using Statistical Roughness Parameters

As shown in Figure 5, the Pearson’s correlation coefficient value for textural param-
eters exceeds 0.9, whereas the value for amplitude parameters is between 0.6 and 0.8.
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Considering that the Pearson’s correlation coefficient (γ) value mirrors the close degree of
the correlation between roughness parameters and JRC, the relationship between textural
parameters and JRC was evaluated by the correlation between their values from digitized
Barton’s roughness profiles at a sampling interval of 0.5 mm and the original JRC values
confirmed by Barton and Choubey [7]. The σi parameter has the strongest correlation with
JRC, therefore, the correlation of JRC against the σi was analyzed in detail in the present
study. In previous study, some relationships between the JRC and the σi parameter were es-
tablished. The approach of using the parameter σi to evaluate JRC was initially established
by Yu and Vayssade [34]. They reported a linear equation and a square root relationship
between σi and JRC at a sampling interval of 0.5. In contrast, the R2 are 0.975 and 0.970
of regression analysis for the linear equation and the square root equation, respectively,
indicating that the linear equation can slightly better determine JRC for the study of Yu and
Vayssade [34]. Therefore, the linear equation (Equation (1)) was considered for comparison
analysis. In addition, Li and Zhang [51] proposed a linear equation and a power-law
formula with zero intercept to define the relationship between σi and JRC by retrieving joint
profiles from the published literature at a sampling interval of 0.4 mm. Likewise, the linear
equation (Equation (2)) was also used to compare analysis based on it having a slightly
larger R2 value (0.8843 for the linear equation and 0.8780 for the power-law formula).
Recently, Abolfazli and Fahimifar [23] suggested that a natural logarithmic equation given
by Equation (3) can describe the relationship between these two variables (R2 = 0.9399).

JRC = 1.14(σi)− 3.88 (1)

JRC = 1.0419(σi)− 4.7334 (2)

JRC = −3.325 + 7.862 ln(σi − 5.187) (3)

Figure 6a shows the variation in the parameter σi values calculated from digitizing
Barton’s roughness profiles against JRC. It can be observed that the JRC increases with the
parameter σi values. Based on the best-fit analysis of the scatter points, the regression line
shows that a linear equation given in Equation (4) fits the two variable values well. Most
of the data points fall on the solid line of Figure 6a, representing the regression equation
except that the data points of the 1st (JRC 0–2), the 3rd (JRC 4–6) and 4th (JRC 6–8) have
slight deviation, and the regression R2 = 0.9834.

JRC = 0.9936(σi)− 6.5153 (4)
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A detailed comparison analysis has been conducted to further validate the linear
equation’s reliability to determine the JRC of rock joints based on the roughness parameter



Sustainability 2022, 14, 13597 10 of 23

σi. The JRC was calculated using Equations (1)–(4) based on the σi parameter values
determined from Barton’s profiles. The variation in the JRC calculated using these equations
proposed by other researchers and introduced in this study, respectively, was depicted
in Figure 6b to compare the consistency between these equations. As can be seen in
the figure, the variation trend of the JRC calculated using Equations (1) and (2) is very
similar to the values determined from Equation (4). In contrast, the JRC calculated by
Equation (2) is closer to Equation (4). However, the variation of the data points from
Equation (3) is somewhat different from that of other equations. The deviation of the data
points calculated by Equation (3) seems to increase as the joint surface roughness decreases,
demonstrating that this equation may be sensitive to the joint surface morphology. The
result showed that Equation (3) might be more suitable for the rock joint with more
significant roughness. Comparing the results of the determination coefficient for both
Equation (4) proposed in this study and Equations (1)–(3) suggested in the previous
researches, it can be seen that the determination coefficient R2 for Equation (4) is higher
than that of other equations, showing that Equation (4) may be superior to other equations
for determining JRC of rock joints.

The potential cause of the difference in these equations may be due to the differ-
ent sampling intervals applied when calculating the statistical roughness. The sampling
interval might shift the establishment of the relationship between JRC and roughness
parameters. The functional relationship between JRC and the σi parameter was established
at a 0.5 mm sampling interval in the study by Yu and Vayssade [34]. However, it was
conducted by Li and Zhang [51] and Abolfazli and Fahimifar [23] at 0.4 mm and 0.02 mm
sampling intervals, respectively. It is difficult to confirm that the establishment of these
relationships is not affected by the sampling interval. In addition, the methods of dig-
itizing joint profiles and the resolution in the measurement process might result in a
difference in the profile data, such as some joint profiles were taken from the literature
(e.g., Equations (1) and (2)), whereas others were directly extracted from the rock joint
surface (e.g., Equation (3)).

The regression analysis between JRC and the textural parameters Z2, SF, Rp, δ, and θ
calculated from the digitizing data in the present study was also conducted by different
linear equations, respectively, as presented in Table 2. It can be observed that these fitting
equations have relatively high determination coefficients (R2 > 0.8790). Particularly, the
determination coefficient of the equation fitted to the roughness parameter θ reaches 0.9807,
but they are all smaller than that of the equation based on σi (0.9834). Nevertheless, this
does not mean it is the best choice to calculate the JRC of rock joints with these linear
equations fitted based on the roughness parameters Z2, SF, Rp, δ, and θ. As the previous
studies have shown some more reliable equations such as the power-law equation of
JRC with respect to Z2 proposed to determine the JRC of rock joints, the determination
coefficient R2 is 0.960 in Tatone and Grasselli [24]. This result shows that using the power-
law equation to quantify the relationship between JRC and Z2 may be more suitable than
a linear formula. The nonlinear relationship between JRC and the statistical roughness
parameters is beyond this research interest. Therefore, this study does not further analyze
these equations fitted based on the textural parameters Z2, SF, Rp, δ and θ.

Table 2. Empirical equations derived from this study for JRC determination based on roughness
parameters Z2, SF, Rp, δ, and θ.

No. Variable Equation R2 Rang#

E5 Z2 JRC = 65.7899(Z2)− 6.1936 0.9577 0.1220–0.4036
E6 SF JRC = 476.2897(SF) + 1.8542 0.8790 0.0037–0.0409
E7 Rp−1 JRC = 281.8400(Rp − 1) + 1.2289 0.8956 0.0073–0.0718
E8 θ JRC = 1.5969(θ)− 5.1004 0.9807 3.6151–15.1640
E9 δ JRC = 280.7352(δ) + 1.1866 0.9006 0.0073–0.0718

Note: Rang# represents the range of variable values used to determine the equation.
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Amplitude parameters, as the surface roughness examiner, have also been used to
characterize the surface roughness feature of rock joints. Some correlations of these ampli-
tude parameters, such as Ra, Rq, Rz and λ against JRC, have also been established [22,35,52].
Figure 7 shows the variation in JRC against the amplitude parameters value calculated
from Barton’s roughness profiles. The changing trends of amplitude parameters against
JRC are similar, which may be attributed to the fact that these parameters are related to
the asperity on the rock joint profile. The JRC increase as the amplitude parameters value
increase as a whole. Nevertheless, in terms of the parameter Rz, the value has something
abnormal for the 6th (JRC 10–12), 9th (JRC 16–18) and 10th (JRC 18–20) profiles smaller than
those of the immediately preceding profiles as seen in Figure 7b. The Rq parameter value
slightly exceeds the Ra parameter value for the same joint profile as plotted in Figure 7a. As
reported by Krahn and Morgenstern [53], the two parameters are very close numerically.
However, there is almost no difference in the ratio for the Rz and λ parameter values,
as shown in Figure 7b, which is due to the fact that λ equals the ratio of Rz to L where
it is fixed as defined in the “Appendix A”. The relationship between Ra, Rq, Rz and λ
parameters and JRC calculated from the retrieved joint profiles was defined using linear
and power-law equations by Li and Zhang [51]. Considering simplicity and universality
for engineering practices, Li et al. [35] suggested a power-law equation for the parameters
Rz and λ to determine JRC. However, the present study has not determined the relationship
between amplitude parameters and JRC due to the inconsistency of the changing trend
for some joint profiles data. As a joint profile with large JRC, the amplitude parameters
calculated from the profile may be large or small. This result may be ascribed to the fact that
some important information of the joint profile is ignored when the amplitude parameters
are used to determine the JRC. For example, in terms of Rz, it can only reflect the local
high-order waviness of a rock joint profile while not representing the lower-order waviness
characteristics. Therefore, for the amplitude parameters such as Rz, it may need to combine
some other roughness parameters to characterize the roughness of joint profile, which is
ongoing in our other work.
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4. Correlation between Statistical Roughness Parameters and Sampling Interval

The JRC calculated based on its relationship with statistical roughness parameters
may vary with the sampling interval as argued by Tatone and Grasselli [24], Bao et al. [38]
and Huang et al. [54]. The present study examined the relationship between the statistical
roughness parameters and the sampling interval using artificial rock joints. Firstly, given
that the roughness parameters of rock joints need to be calculated; for this purpose, the
scanned data points were imported into MATLAB (MATLAB, 2017) with a specific code
created by us. Additionally, then, a series of two-dimensional joint profile lines were
extracted at a specific sampling interval. This study considered eight sampling intervals
ranging from 0.1 mm to 5.0 mm. It is known that these extracted profile lines are made
of a series of equally spaced data points, and the coordinates of these points were used
to calculate the statistical roughness parameters at the corresponding sampling interval.
The statistical roughness parameters were calculated for each rock joint profile at eight
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different sampling intervals (0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0 mm). In addition, the
JRC of each joint sample was calculated using Equations (1)–(4) at a sampling interval of
0.5 mm, respectively. As presented in Table 3, all JRC values calculated using the proposed
equation (Equation (4)) fall within the range of 0 to 20. However, the JRC of some rock
joints calculated using other equations exceeds 20. This result demonstrates that using
the proposed equation to calculate the JRC of rock joints may reduce some potential
deviations; therefore, the JRC of jointed samples is calculated using the proposed empirical
formula (Equation (4)).

Table 3. JRC of rock joints.

Sample No.
JRC Calculated by σi

Equation (1) Equation (2) Equation (3) Equation (4) (This Study)

FS1 12.9 10.6 14.4 8.1
FS2 14.9 12.4 15.7 9.9
FS3 14.0 11.6 15.1 9.0
FS4 13.2 10.9 14.6 8.4
FS5 16.3 13.7 16.5 11.1
FS6 17.0 14.3 16.9 11.6
FS7 16.9 14.3 16.9 11.6
FS8 18.1 15.4 17.5 12.7
FS9 15.8 13.3 16.3 10.6
FS10 17.5 14.8 17.2 12.1
CS1 19.0 16.2 17.9 13.4
CS2 16.6 13.9 16.7 11.3
CS3 18.1 15.4 17.5 12.7
CS4 18.0 15.3 17.4 12.6
CS5 19.1 16.3 18.0 13.5
CS6 24.9 21.6 20.3 18.6
CS7 18.3 15.5 17.6 12.8
CS8 23.9 20.6 19.9 17.7
CS9 23.4 20.2 19.7 17.3
CS10 17.7 15.0 17.3 12.3
GR1 23.0 19.8 19.6 16.9
GR2 22.0 18.9 19.2 16.0
GR3 20.5 17.5 18.6 14.7
GR4 21.9 18.9 19.2 16.0
GR5 18.9 16.1 17.8 13.3
GR6 26.3 22.9 20.7 19.8
GR7 25.0 21.7 20.3 18.7
GR8 23.2 20.0 19.6 17.1
GR9 26.3 22.9 20.7 19.8

The results in the fine sandstone joint profiles were taken to illustrate the effect of
the sampling interval on the calculating statistical roughness parameters. Figure 8 shows
the variation in the statistical roughness parameters of the fine sandstone joint profile
with respect to the sampling interval. Among these statistical roughness parameters, the
Z2, Rp, δ, σi and θ values decrease with an increase in the sampling interval, indicating
that these parameters of rock joint profile are sensitive to the sampling interval. The Ra,
Rq, Rz and λ parameter (amplitude parameters) values show a slight fluctuation as the
sampling interval increases (Figure 8). Specifically, as the sampling interval increases, Rz
and λ values exhibit a slight decrease as a whole for all FS joint profiles, Ra values show an
increasing (e.g., FS10) or decreasing (e.g., FS8) trend in some rock joints, Rq values show
the slightest fluctuation among these parameters, especially for the sampling interval less
than 2 mm. The results can be ascribed to the fact that the collected data points involved
in calculating the roughness parameters decrease with an increase in sampling interval,
where some typical asperities point of the rock joint profile is not captured. Among these
statistical roughness parameters, the variation in the SF against sampling interval is quite
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different from that of other parameters, where SF values increase with an increase in
the sampling interval (Figure 8). In addition, the varying rate in the SF increases with
the sampling interval. This result demonstrates that the SF depends significantly on the
sampling interval.
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Additionally, the maximum change value (MC), defined as the ratio of the maximum
to the minimum of the statistical roughness parameters in a specific joint sample for the
sampling interval range of 0.1 mm to 5.0 mm, was calculated. Figure 9 shows the evolution
of MC with respect to JRC, and it can be observed that the MC value is relatively large for
most of the texture parameters. Notably, the maximum MC reaches 1071.7 for the parameter
SF. However, the MC value is mostly between 1 and 1.2 for the amplitude parameters.
The larger the corresponding MC of the roughness parameter, the more easily affected by
the sampling interval. Therefore, the above results indicate that the texture parameters
significantly depend on the sampling interval. In contrast, the dependence of the amplitude
parameters on the sampling interval is not significant. In addition, it is difficult to discern
any trend for the variation in MC with respect to JRC as shown in Figure 9, which indicates
that the influence of the sampling interval on the statistical parameters may not be related
to the surface roughness degree of rock joints.
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To further explore the effect of the sampling interval on roughness parameters of the
rock joint surface morphology, the regression analysis of textural parameters with respect
to the sampling intervals for three types of rock joint profiles was conducted as shown in
Figure 10. It can be seen that the textural parameters show a noticeable nonlinear change
as the sampling interval increases. Specifically, the roughness parameters Z2, Rp, δ, σi and
θ first experienced a rapid reduction and then seemed to be level as the sampling interval
increased. However, SF slowly increases at small sampling intervals and then rapidly
increases with the sampling interval. The regression line (Figure 10) using the best-fit
analysis of the textural parameters and sampling interval data shows that a power-law
(y = AxB) function fits the data well. The y represents the roughness parameter and the x
represents the sampling interval. The regression coefficients A and B were calculated and
presented in Table 4. The absolute value of coefficient B can indirectly reflect the sensitivity
level of the roughness parameter to the sampling interval. The larger the absolute value
of coefficient B, the stronger the dependency of this parameter on the sampling interval.
Among these roughness parameters, coefficient B absolute value is the largest for the SF
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in the same rock joint sample at the same sampling interval (B = 1.1156–1.6560), further
showing that SF significantly depends on the sampling interval. In addition, it can be
observed that the coefficient B absolute value for roughness parameters Z2, σi and θ is close
(0.1036–0.2682 for Z2, 0.0868–0.2332 for σi and 0.0851–0.2154 for θ), demonstrating that
these parameters have a similar dependence on the sampling interval. However, coefficient
B absolute value is the smallest for the Rp (0.0058–0.0187), indicating that the sensitivity of
Rp to the sampling interval is not as strong as other texture parameters. The above results
confirm the power-law relationship between texture parameters and sampling intervals,
and further illustrating that the effect of sampling intervals should be considered when the
Z2, Rp, δ, σi, θ and SF are used to determine JRC values of rock joints.
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Table 4. Summary of fit parameters of a power-law relationship between the roughness parameters
and sampling interval (SI) for different rock joint profile.

Sample No.
SF Z2

A B R2 A B R2

FS1 0.0426 1.1156 0.9851 0.1659 −0.1862 0.8517
FS2 0.0406 1.4970 0.9975 0.1874 −0.1564 0.8935
FS3 0.0449 1.2963 0.9970 0.1802 −0.1694 0.8769
FS4 0.0386 1.4321 0.9996 0.1794 −0.1657 0.8893
FS5 0.0562 1.4893 0.9997 0.2136 −0.1371 0.9029
FS6 0.0672 1.4452 0.9967 0.2228 −0.1245 0.8693
FS7 0.0729 1.6212 0.9998 0.2483 −0.1036 0.9013
FS8 0.0656 1.5973 0.9977 0.2334 −0.1109 0.9114
FS9 0.0602 1.5307 0.9976 0.2202 −0.1272 0.9034
FS10 0.0612 1.5638 0.9998 0.2260 −0.1206 0.9055
CS1 0.0719 1.2107 0.9943 0.2288 −0.2133 0.9367
CS2 0.0452 1.4341 0.9983 0.2012 −0.2092 0.9645
CS3 0.0622 1.3678 0.9963 0.2224 −0.1897 0.9464
CS4 0.0680 1.4151 0.9944 0.2268 −0.1530 0.9313
CS5 0.0737 1.4222 0.9989 0.2400 −0.1547 0.9252
CS6 0.1662 1.4621 0.9949 0.3479 −0.1251 0.9143
CS7 0.0718 1.5797 0.9998 0.2537 −0.1480 0.9543
CS8 0.1105 1.6560 0.9999 0.3098 −0.1067 0.9385
CS9 0.1329 1.5127 0.9959 0.3178 −0.1285 0.9096
CS10 0.0610 1.4574 0.9999 0.2322 −0.1958 0.9695
GR1 0.0799 1.3361 0.9994 0.2659 −0.2434 0.9472
GR2 0.0721 1.2827 0.9991 0.2529 −0.2682 0.9682
GR3 0.0619 1.2564 0.9988 0.2298 −0.2545 0.9539
GR4 0.0653 1.3703 0.9997 0.2457 −0.2466 0.9501
GR5 0.0582 1.2891 0.9996 0.2235 −0.2439 0.9518
GR6 0.1335 1.5721 0.9996 0.3460 −0.1540 0.9675
GR7 0.1147 1.5780 0.9996 0.3160 −0.1470 0.9681
GR8 0.0913 1.2675 0.9950 0.2720 −0.2322 0.9490
GR9 0.1276 1.4815 0.9999 0.3286 −0.1832 0.9585

Sample No.
Rp δ

A B R2 A B R2

FS1 1.0154 −0.0058 0.9716 0.0140 −0.0460 0.8681
FS2 1.0187 −0.0059 0.9749 0.0173 −0.0341 0.8975
FS3 1.0176 −0.0060 0.9748 0.0166 −0.0377 0.8879
FS4 1.0174 −0.0058 0.9751 0.0161 −0.0366 0.8931
FS5 1.0236 −0.0064 0.9742 0.0224 −0.0286 0.9040
FS6 1.0254 −0.0062 0.9524 0.0247 −0.0295 0.8755
FS7 1.0307 −0.0061 0.9602 0.0301 −0.0219 0.9011
FS8 1.0276 −0.0059 0.9661 0.0266 −0.0224 0.9091
FS9 1.0251 −0.0062 0.9684 0.0239 −0.0265 0.9027
FS10 1.0261 −0.0061 0.9673 0.0252 −0.0251 0.9027
CS1 1.0293 −0.0122 0.9937 0.0260 −0.0354 0.9375
CS2 1.0231 −0.0097 0.9880 0.0204 −0.0266 0.9652
CS3 1.0269 −0.0100 0.9927 0.0242 −0.0295 0.9450
CS4 1.0269 −0.0081 0.9888 0.0254 −0.0261 0.9325
CS5 1.0300 −0.0090 0.9866 0.0275 −0.0286 0.9226
CS6 1.0537 −0.0116 0.9745 0.0522 −0.0212 0.9219
CS7 1.0330 −0.0096 0.9915 0.0313 −0.0204 0.9554
CS8 1.0471 −0.0092 0.9797 0.0453 −0.0174 0.9360
CS9 1.0468 −0.0102 0.9684 0.0451 −0.0229 0.9114
CS10 1.0291 −0.0110 0.9962 0.0262 −0.0219 0.9705
GR1 1.0396 −0.0181 0.9801 0.0366 −0.0375 0.9376
GR2 1.0374 −0.0187 0.9807 0.0314 −0.0366 0.9574
GR3 1.0308 −0.0150 0.9837 0.0262 −0.0404 0.9435
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Table 4. Cont.

GR4 1.0344 −0.0158 0.9767 0.0298 −0.0416 0.9322
GR5 1.0287 −0.0136 0.9841 0.0247 −0.0399 0.9402
GR6 1.0585 −0.0166 0.9892 0.0560 −0.0196 0.9588
GR7 1.0494 −0.0130 0.9911 0.0467 −0.0191 0.9558
GR8 1.0408 −0.0180 0.9838 0.0358 −0.0386 0.9356

GR9 1.0557 −0.0177 0.9910 0.0518 −0.0265 0.9411

Sample No.
θ σi

A B R2 A B R2

FS1 7.4943 −0.1746 0.8385 11.8211 −0.1782 0.8436
FS2 8.4746 −0.1492 0.8738 13.8057 −0.1456 0.8815
FS3 8.1793 −0.1591 0.8619 12.7733 −0.1624 0.8669
FS4 8.0267 −0.1574 0.8738 12.3054 −0.1634 0.8791
FS5 9.4741 −0.1234 0.9018 15.2581 −0.1258 0.8989
FS6 9.9773 −0.1142 0.8497 15.9228 −0.1146 0.8578
FS7 11.2573 −0.0901 0.8868 16.2786 −0.0995 0.8968
FS8 10.2509 −0.1062 0.8858 17.1376 −0.1004 0.8987
FS9 9.9180 −0.1113 0.9205 14.9390 −0.1211 0.9066
FS10 10.0920 −0.1060 0.8752 16.5286 −0.1073 0.8897
CS1 9.8305 −0.1873 0.9003 15.8384 −0.1941 0.9173
CS2 8.9809 −0.1792 0.9472 14.5415 −0.1850 0.9551
CS3 9.9470 −0.1560 0.9291 15.8793 −0.1672 0.9363
CS4 10.1814 −0.1333 0.9081 16.3880 −0.1368 0.9174
CS5 10.5524 −0.1309 0.8883 17.1755 −0.1363 0.9048
CS6 12.3624 −0.1168 0.9445 22.2406 −0.1103 0.9200
CS7 11.3631 −0.1314 0.9366 16.4990 −0.1423 0.9471
CS8 13.0844 −0.0851 0.9243 22.1257 −0.0868 0.9273
CS9 11.8134 −0.1101 0.9129 21.0558 −0.1120 0.9049
CS10 9.9365 −0.1708 0.9566 15.7409 −0.1808 0.9602
GR1 11.2024 −0.1981 0.9184 17.9891 −0.2136 0.9321
GR2 10.7387 −0.2154 0.9233 17.3103 −0.2332 0.9492
GR3 9.9227 −0.2086 0.9103 16.3119 −0.2209 0.9354
GR4 10.4506 −0.1922 0.9181 17.4927 −0.2068 0.9368
GR5 9.5644 −0.2057 0.9099 15.1834 −0.2223 0.9349
GR6 14.5471 −0.1268 0.9331 22.7248 −0.1322 0.9526
GR7 13.1223 −0.1144 0.9240 22.1869 −0.1190 0.9491
GR8 11.6967 −0.1853 0.9127 18.3945 −0.2034 0.9304
GR9 13.6499 −0.1380 0.9143 22.2623 −0.1506 0.9398

Note that as the sampling interval continues to increase, it seems that the roughness
parameters Z2, Rp, δ, σi and θ have a low dependence on the large sampling interval.
Nevertheless, it is not appropriate to use these parameters to directly determine the JRC
without considering the effect of the sampling interval at the small-scale rock joint. The
main reason is because much information on the rock joint surface may be ignored under
a large sampling interval, hence affecting the accurate assessment of its contribution to
hydraulic and mechanical behaviors.

5. Influence of Sampling Interval on Reconstructed Rock Joint Profile

The digitized points of reconstructing rock joint profile reduce as the sampling interval
increases. For instance, Figure 11 shows the average joint profile lines of FS1 at eight
sampling intervals, and it can be seen that the shape of the rock joint profile has some
discrepancies for different sampling intervals. Consequently, the statistical roughness
parameter value calculated for the rock joint profile at different sampling intervals may
not be equal. There are non-uniform results when using the same empirical equation to
estimate JRC at different sampling intervals.
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In previous studies, the joint profile was decomposed into the primary first-order
asperities (primary waviness) and second-order asperities (second roughness). These
different orders of asperities (roughness) may play different roles in the mechanical and
hydraulic behaviors of rock joints. For instance, Zou et al. [55] reported that the primary
waviness mainly determines the local fluid flow directions, whereas the secondary rough-
ness increases the local complexity of fluid flow and solute transport. Barton [20] reported
that the first-order asperity controls the shear behavior of rock joints under high normal
stress whereas that of the second-order asperity under lower normal stress. However, many
second-order asperities are not captured with an increase in the sampling interval as shown
in the rectangular box in Figure 11. Even some typical asperities may be overlooked as
the sampling interval exceeds a specific value (e.g., 2.0 mm). This result may lead to an
inaccurate evaluation of the role of roughness in the hydraulic and mechanical behaviors of
rock joints. In addition, the digitized rock joint profile is generally imported into numerical
simulation software to establish a joint geometric model and further investigate the effect
of roughness on fluid flow and mass transport. In these circumstances, if the primary wavi-
ness or secondary roughness of the rock joint profile is ignored, the true response of joint
surface roughness on fluid flow regime may be hard to capture. Therefore, when estimating
the roughness parameters of the rock joint profile, a reasonable sampling interval should
be considered in the specific rock joint scale so as to meet the practical requirements.

6. Conclusions

This study examined the relationship between JRC and statistical roughness parame-
ters, including amplitude parameters (Ra, Rq, Rz, λ) and textural parameters (Z2, Rp, SF,
δ, σi, and θ) based on the digitized Barton’s roughness profiles. Further, the statistical
roughness parameter was used to determine the JRC of the rock joint profile. In addition,
the sensitivity of the statistical roughness parameters with respect to the sampling interval
has been evaluated using digitized rock jointed samples with different surface morphology.
The following conclusions can be drawn from this study:

• It is observed that there is a good correlation between JRC and statistical roughness
parameters Z2, SF, Rp, δ, σi, θ, Ra, Rq, Rz and λ based on the correlation analysis of
JRC with statistical roughness parameters with Pearson’s correlation coefficient (γ)
method. The coefficient γ values for these roughness parameters exceed 0.7 except
for Ra where γ = 0.66. Compared with the amplitude parameters Ra, Rq, Rz and λ (γ
ranges from 0.66 to 0.8), a better correlation exists between the textural parameters Z2,
SF, Rp, δ, σi and θ and JRC (γ > 0.9).
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• Among these parameters, the standard deviation of the roughness angle σi has the
strongest correlation with JRC (γ = 0.9923). Further, a linear empirical equation
between JRC and the parameter σi is proposed to determine the JRC of the rock
joint profile.

• As the sampling interval increases, the Z2, Rp, δ, σi and θ parameter values decrease,
and the Ra, Rq, Rz and λ parameter values show slight fluctuations, whereas SF values
increase with an increase in the sampling interval. In addition, the evolution in the
texture parameters Z2, SF, Rp, δ, σi and θ with the sampling interval can fit a power-law
function well.

• Sensitivity analysis has revealed that the texture parameters (Z2, SF, Rp, δ, σi and θ) sig-
nificantly depend on the sampling interval as a whole. In contrast, the dependence of
the amplitude parameters (Ra, Rq, Rz and λ) on the sampling interval is not significant.

The present results help improve the accuracy of the roughness characterization of
rock joints. Additionally, they can provide new insights into quantitatively evaluating the
role of roughness in mechanical and hydraulic behaviors of rock joints for rock hydraulics
researchers. Dozens of rock joint samples with a wide range of surface morphology are
used to achieve the objective of this study. However, the rock joint profile used in this study
is difficult to cover the complex and diverse joint surface morphology in the geological
rock strata. The machine-learning analysis tool will be used to obtain a large dataset in the
following study and further examine the universality of the results.
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List of Symbols

JRC Joint roughness coefficient
Z2 Root mean square of the first derivative
SF Structure function
Rp Roughness profile index
Rz Peak asperity height
Ra Arithmetic average of the absolute height
Rq Root mean square roughness height value
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θ Average roughness angle
σi Standard deviation of the roughness angle i
λ The ultimate slope
δ Profile elongation index
θ*

max Angular threshold
D Fractal dimension
γ Pearson’s correlation coefficient
SI Sampling interval
L The projected length of fracture profile
Lt True length of the profile
zmax The highest peak
zmin The lower valley

Appendix A

The calculation formulas of some of the roughness parameters and the Pearson’s
correlation coefficient:

Z2: Root mean square of the first derivative of the profile [56]

Z2 =

[
1
L

∫ x=L

x=0
(

dz
dx

)
2
dx

]1/2

=

[
1

N − 1

N−1

∑
i=1

(zi+1 − zi)
2

(xi+1 − xi)
2

]1/2

where L is the projected length of fracture profile along the long axis, dz is the increment of
z of the profile, dx is the increment of x of the profile, N is the number of sampling points,
(xi, zi) and (xi+1, zi+1) are the coordinate of adjacent points on the fracture profile.

Rp: Roughness profile index [39]

Rp =
Lt

L
=

N−1
∑

i=1
[(xi+1 − xi)

2 + (zi+1 − zi)
2]

1/2

L

where Lt is the true length of the profile.
SF: Structure function of the profile [57]

SF =
1
L

∫ x=L

x=0
[ f (x + dx)− f (x)]2dx =

1
L

N−1

∑
i=1

(zi+1 − zi)
2(xi+1 − xi)

Ra: Arithmetic average of the absolute height of the profile [53]

Ra =
1
L

∫ x=L

x=0
|z|dx =

1
N

N

∑
i=1
|zi|

Rq: Root mean square of the height of the profile [53]

Rq =

[
1
L

∫ x=L

x=0
z2dx

]1/2

=

[
1
N

N

∑
i=1

z2
i

]1/2

Rz: Peak asperity height of the profile, equals to the vertical distance between the
highest peak and the lowest valley of profile [35].

Rz = zmax − zmin

where zmax is the highest peak, zmin is the lower valley.
θ: Average roughness angle of the profile [34]

θ =
1
L

∫ x=L

x=0
tan−1

∣∣∣∣ dz
dx

∣∣∣∣dx
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σi: Standard deviation of the roughness angle i [34]

σi = tan−1
[

1
L

∫ x=L

x=0
(

∣∣∣∣ dz
dx

∣∣∣∣− tan θ)2dx
]1/2

δ: Profile elongation index [34]

δ = (Lt − L)/L

λ: Ultimate slope of the profile [52]

λ = Rz/L

γ: The Pearson’s correlation coefficient [50]

γ =
Cov(X, Y)√

σx
√

σy

where γ is the Pearson’s correlation coefficient, which is the covariance of the two variables
divided by the product of their standard deviations. The γ ranges from −1 to +1, and there
are three strength levels: weak correlations: γ ≤ 0.39, moderate correlations: γ = 0.40 to
0.69, strong correlations: γ = 0.7 to 1.0. X represents the roughness parameter, Y represents
the JRC, σx and σy are their variance, respectively. Cov(X, Y) represents the covariance of X
and Y.

Cov(X, Y) = E[(X− µx)(Y− µy)]

where µx is the average value of the X, µy is the average value of the Y.
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