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Abstract: Climate change influences urban mortality. The magnitude of such influences differs from
locality to locality and is fundamentally driven by a facet of factors that include changes in local
climatic conditions, demographics, and social-economic factors. Here, we employ regression and
clustering methods to study linkages between mortality and local climatic changes in Seoul. Personal
factors of the deceased (e.g., age and gender), social-economic factors (i.e., education level), and
outdoor climatic factors, including heatwaves (HWs) and the urban heat island (UHI) phenomenon
are considered in the analysis. We find that, among many elements of outdoor weather factors
considered, the apparent temperature mostly correlated to daily mortalities; the mortality risk to
apparent temperature exposure is more heightened for males (RR = 0.40, 95% CI; 0.23–0.54) than
females (RR = 0.05, 95% CI; −0.10–0.20) at higher apparent temperatures (i.e., 60 ◦C). Furthermore,
the influence of HWs on mortality is more apparent in the “Male” gender group and the “Above 65”
age group. The results are useful in identifying vulnerable demographics amid the changing climate,
especially in urban areas, and are fundamental in developing policies that promote climate resilience
and adaptation.

Keywords: climate change; mortality; local climates; urban heat islands (UHI); heatwaves (HW);
vulnerability; health

1. Introduction

One significant effect of climate change is its adverse impact on human health and
performance [1]. Various scientific reports provide substantial evidence relating climate
change-driven temperature variations to heat and cold-related mortalities and morbidi-
ties [2–4]. Some recent efforts to quantify the effect of extreme temperature variations have
reported increases in global temperature-related death ranging between 3% and 12.7%
under future projections of greenhouse gas emissions [5]. Such effects of temperature on
human health are often double-sided—extremely low temperatures promote hypother-
mic reactions. In contrast, extremely high temperatures induce hyperthermic reactions,
which are detrimental to well-being, although the projections are seemingly more severe
for warmer and poorer localities. Consequently, determining temperature balances that
promote bodily homeostasis is crucial to achieving sustainable livelihoods, especially amid
the changing climate.

The occurrence of heatwaves (HWs), defined as episodes of prolonged high tempera-
tures and which are partly driven by the changing climate, also contribute significantly to
heat-related mortalities and morbidities [6]. Empirical evidence demonstrating correlations
between HWs, and heat-related mortality has been reported in many parts of Europe [7,8],
the United States [9], Russia [10], and Korea [11]. The impact of HWs on heat-related
mortalities is even more worrisome, given a vast number of scientific studies that forecast
an increase in the frequency, duration, and severity of HWs in the near future.
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Vulnerability to temperature-related mortalities and morbidities is more heightened in
urban areas than rural areas. However, this tends to arise from extreme heat conditions than
cold heat conditions and is mainly attributed to urban heat islands (UHI). UHIs refer to the
often higher surface and atmospheric temperatures in urban environments than their rural,
more natural surroundings [12]. UHIs arise from complex interactions between the urban
form, which is primarily modified by urbanization, and urban climates that are substantially
influenced by intense anthropogenic activities—such complex interactions significantly
modify the urban thermal structure, intensifying extreme heat-related incidences in urban
areas [13,14]. Various scientific studies have demonstrated the effects of UHI on heat-
related mortality in many agglomerations. For instance, the extent of UHI impacts on
heat-related mortality was reported at 1.1 deaths per million people in American cities [15].
The effect of UHI on heat-related mortalities has also been demonstrated in Athens [16],
London [17], and Shanghai [18]. A more recent study conducted in multiple cities in China
has shown that compound heat events are more pronounced in urban areas than their
rural counterparts and such observations are potentially fueled by UHI formation [19].
Such influences of UHI on the well-being of urban populations are forecasted to worsen,
considering the increasing rate of urbanization resulting in higher UHI intensities (UHII).

UHI and HWs have also been reported to interact synergistically, substantially am-
plifying heat-related mortalities. For instance, Founda and Santamouris reported higher
UHII, reaching up to 3.5 ◦C, during HW periods than during normal summer conditions in
Athens [20]. Such heightened UHII during HWs have also been reported in Sydney [21],
Seoul [22] and multiple cities in China [23]. While the magnitude of the interdependencies
between UHI and HWs is likely to differ from locality to locality given the peculiarity of
each location (e.g., space form and configuration, land characteristics, etc.), the consensus
in the literature points to the synergistic interactions between the two phenomena and
their heightened influence on mortalities and morbidities in urban areas. This is worrisome
amid increasing evidence projecting increased UHII and more frequent HWs in the near
future [24].

The effects of climate change, HWs, and UHI on heat-related deaths discussed above
are not equally distributed across all populations. Some populations are more affected than
others, and this primarily arises from the differences in personal factors, social-economic
factors, or a complex combination of the two elements. Epidemiological studies have
shown that the physiological and psychological toll of extreme temperatures is higher in
specific subgroups than the others [25]. For instance, the effects of high temperatures differ
among age groups; temperature-related mortalities and morbidities are amplified at the
extreme ends of the age curve [26]. Gender (used here and throughout the manuscript
to refer to the biological differences between individuals of different sexes) has also been
reported to modulate the effects of temperature on health and performance—the different
responses to temperature changes between genders and age groups have been attributed
to the inherent differences in physiology between genders or age groups [27,28].

Variations in how certain groups respond to temperature changes have also been
attributed to occupational differences. Outdoor workers and occupations involving in-
tense physical activities (e.g., athletes, soldiers) are more prone to temperature-related
heat strokes primarily due to large amounts of metabolic heat production and heat gain
intrinsic to the nature of certain occupations [29]. Energy poverty is also an issue that
is increasingly having a substantial influence on the resilience of certain groups during
extreme temperatures [30]. Vulnerability to heat-related health issues is highest for popula-
tions with less/insufficient access to energy resources or relevant equipment (e.g., heating
ventilation and air conditioning systems).

Assessing the effect of local climatic changes on human health and performance is a
challenging issue, particularly given the vast range of factors likely to modulate the said
effect (i.e., UHI, HWs, personal factors, and social-economic factors) but one of urgency
especially considering the changing climate. While the fundamental effects of temperature
changes on heat-related mortality are properly understood in the literature, quantification
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of such effects is likely to vary from locality to locality, mainly due to acclimatization.
Heat-related mortalities have been reported to increase substantially when temperatures
deviate from the local mean [31]. Local mean temperatures vary considerably even across
conurbations of similar sizes. To that end, the present study aims to explore variations in
heat-related daily mortality counts in Seoul city, a densely populated and highly urbanized
conurbation, considering local climatic conditions and personal and social-economic factors.
The results shed more light on heat exposure-related vulnerability in Seoul city and form a
basis for effective policies to combat heath issues stemming from changes in local climatic
conditions.

2. Methods
2.1. Study Area

Seoul, South Korea’s capital and the most populous city in South Korea (i.e., it har-
bors about 21% of the country’s population) [32], was selected as the target area for the
current study. It is located at a longitude of 126.59◦ E and latitude of 37.34◦ N, which is the
central-western part of the Korean peninsula. Seoul’s climate falls under a combination
of the humid continental and subtropical climates with relatively mid-range annual mean
temperatures (i.e., 24 ◦C) [33]. Seoul’s urbanization rate has risen substantially, intensifying
increases in local climatic changes associated with UHI. For instance, an increase of 0.7 ◦C
over the last 30 years as reported by the Korean Meteorological Agency (KMA). Such
changes in Seoul’s local climatic conditions are forecasted to worsen, given the increasing
rate of urbanization and the need for extensive and dense infrastructure to cater for the
said urbanization. In previous years, Seoul has also experienced several HWs and hot
spells [34,35]. Such HWs, whose occurrence is projected to increase in frequency, dura-
tion, and severity, is likely to exacerbate heat-related mortalities and morbidities in Seoul.
Consequently, Seoul makes for an ideal environment to assess the impact of local climatic
changes on the well-being of urban dwellers in South Korea.

2.2. Mortality and Weather Data

We considered non-accidental deaths likely to be fueled by changes in climatic con-
ditions (i.e., cardiovascular, and respiratory related deaths). Daily mortality counts due
to cardiovascular and respiratory diseases were obtained from an open-source database
provided by statistics Korea via a microdata service platform [36]. The platform avails the
number of daily mortalities and personal details related to the deceased. Information such
as age, gender, and level of education was extracted from the database and incorporated
into the analysis to assess variations in temperature vulnerabilities stemming from per-
sonal differences. The data were collected for 19 years (i.e., from 1999 to 2018) to capture
temporal changes in temperature-related vulnerabilities. The extended assessment period
also captures the changes in urbanization, which are fundamentally linked to factors that
drive changes in local climatic conditions (i.e., UHI and HW).

Hourly air temperature elements were also obtained from an open-source database
run by the KMA [37]; these are recorded at 27 automatic weather stations (AWS) in Seoul
(See Figure 1). The observatories were equipped with thin film sensors that record air
temperature values in the range of −40 ◦C and 60 ◦C with an uncertainty error of 0.3 ◦C.
To match the mortality data, hourly temperature values for 19 years were extracted.

2.3. Apparent, Mean Running and Dewpoint Temperature

As well as the temperature variants collected directly from the government plat-
form discussed above, we also computed apparent air temperature and mean running
temperature—The two variants of temperature, particularly apparent temperature, have
been used consistently to quantify the impact of heat stress on mortality and health in
various previous studies [38–41]. Apparent temperature considers the heat stress caused by
the combined effect of temperature and humidity on the human body, while mean running
temperature is a cumulative heat index that considers historical temperature values. The



Sustainability 2022, 14, 13452 4 of 26

apparent temperature was computed from Equation (1) and mean running temperature was
computed from Equation (2). Maximum dewpoint temperature is derived from ambient
maximum temperature and relative humidity using a formula proposed in [42].

Tapparent = −2.652 + (0.994T) + 0.0153(Tdew)
2 (1)

where Tapparent = Apparent temperature, T = Outdoor air temperature, and Tdew = dewpoint
temperature

Trunning= (1− α) {Tt−1 + αTt−2 + α2Tt−3 . . . + αn−1 Tt−n} (2)

where Trunning = Mean running temperature, Tt−n is the mean outdoor temperature at n
times—intervals previously, and α is a time constant that reflects the rate at which the effect
of any past temperature decays.
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Figure 1. Relative positions of the considered urban automatic weather stations (AWS) and rural
reference AWS.

2.4. Urban Heat Island (UHI) and Heatwaves (HWs)

UHI was quantified using the UHI intensity index (UHII), computed as the difference
in air temperature in an urban area (Turban) and air temperature at a rural reference station
(Trural). For urban temperature data, we considered hourly average values from 27 auto-
matic weather stations run by the KMA and located in Seoul (See Figure 1); the obtained
values were then averaged to obtain hourly temperature values representative of the entire
Seoul. For the rural reference station, a single station, Neunggok, located on the outer
boundary of Seoul at a longitude of 126.47◦ E and latitude of 37.37◦ N, was selected. The
choice of the reference station was based on the World Meteorological Organization (WMO)
guideline dictating that representative rural reference stations be located in relatively flat
terrain with a paucity of urbanized infrastructure [43]. The chosen reference station has
been used for the same role in multiple UHI studies in Seoul [44,45]. As well as being in a
rural background in line with the WMO descriptions for an adequate rural reference station,
it is also positioned in a manner exposing it to the same predominant wind conditions as
Seoul, which further reduces potential errors in the estimation of UHI. The average distance
between the considered urban AWSs and the rural reference station is 25 km. UHII was
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then computed as the difference in hourly temperature values between Seoul and Neuggok
(see Equation (3)).

UHII= T(urban) − T(rural) (3)

where UHII = Urban heat island intensity, T(urban) = Air temperature at an urban weather
observatory, and T(rural) = Air temperature at a selected reference rural weather observatory.

Furthermore, HWs are defined following the threshold by the KMA. The KMA defines
a HW day as a day whose maximum temperature exceeds 33 ◦C. The threshold reflects the
96th percentile of the averaged daily maximum temperatures of all stations in Korea and
has been the basis of multiple relevant studies in Korea [11,22,46]. In the present, a HW
episode is thus defined as a period of 3 or more consecutive days whose daily maximum
temperatures exceeded 33 ◦C (see Equation (4)).

HWperiod= Tmax > 33 ◦C. (for 3 consecutive days) (4)

2.5. Statistical Analysis

Several statistical analyses were conducted to determine the influence of the earlier
mentioned (i) personal factors and weather elements on daily mortality counts. For instance,
we conducted a regression analysis of multiple orders to analyze the variance in daily
mortality counts considering multiple weather variables. Several criteria should be met
to conduct a robust regression analysis (i.e., independence of observations and absence of
homoscedasticity). In the present study, the independence of observations was assessed
using the Durbin–Watson test [47]. Homoscedasticity was evaluated by the inspection of
studentized and standardized residual plots.

Analysis of variance (ANOVA) was also employed to evaluate mean differences in
daily mortality counts across different population groups (i.e., genders, age groups, and
education level) and the interactive effect of several factors on daily mortality counts.
ANOVA also requires that certain assumptions be met (i.e., normality of the data, homo-
geneity of variances, and absence of significant outliers). The present study assessed the
normality assumption using the Shapiro–Wilk’s test [48], and the homogeneity test was
assessed using Levine’s test [49]. When the data failed to meet the above assumptions,
non-parametric approaches were used (e.g., Welch’s test of unequal variances). Moreover,
to further assess the relationship between UHI and daily mortality counts, the UHI data
were categorized into hierarchical clusters of increasing intensities; (i) Low UHI cluster
(UHII ≤ 1 ◦C) (ii) Medium UHI cluster (1 ◦C ≤ UHII ≤ 2 ◦C) and (iii) High UHI cluster
(UHII > 2 ◦C). Furthermore, to assess the relative contributions/importance of various
factors on daily mortalities, we conducted a stepwise regression analysis correlating (i) time
factors, (ii) weather factors, and (iii) personal factors. First, multicollinearity diagnostic
analysis was conducted to identify dependencies among the different factors considered in
the study—we used Pearson correlation analysis (r) to identify highly correlated variables
(r > 0.8). Collinearity diagnostics were used to evaluate inter-correlations among the con-
sidered weather and personal elements using the tolerance and value inflation factor (VIF)
index [50].

Additionally, we employed a generalized additive model (GAM) to estimate the rate
ratio of the effect of temperature variants on the heat-related mortality of different sub-
groups (i.e., characterized by gender and age). GAMs are considered extensive versions of
generalized linear models with high flexibility and potential to adjust for non-linearities
often associated with time-series data (e.g., seasonality)—they are mathematically repre-
sented by the equations below and have been widely employed in modeling the effect of
environmental conditions on mortality [41,51].

Yt ∼ Poisson (µt) (5)

Log µt = α+ ∑βi(Xi) + ∑ Sj (Xj)+Month + Year (6)
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where Yt represents the daily number of heat-related mortalities, βi is the coefficients of
temperature variants. At the same time, Xi denotes the relative log rate of death counts per
unit change in temperature variation. Sj(Xj) represents the smoothing functions of other
cofounding parameters (e.g., UHI, HWs). The modeling was conducted using the mgcv
package in R. Relative risk is inherently determined as exp (β) at a 95% confidence interval
(CI) and refers to the probability risk of mortality associated with a certain regressor. The
analysis presented in the current study was conducted using R studio, version R-4.0.2.

3. Results
3.1. Variations in Daily Mortality Counts Grouped by Gender and Season

Figure 2 shows daily cardiovascular and respiratory disease variations grouped by
gender and season; the specific values are reported as mean (M) ± standard deviation (SD).
Considering the entire period (i.e.,1999–2018), daily mortalities were slightly higher for
males (16.35 ± 4.55) than females (15.07 ± 4.39); these differences were also statistically
significant F(1,14608) = 299.28, p < 0.05. The slightly higher mortality counts in males
than females are consistent throughout all the seasons (i.e., summertime, wintertime, and
mid-seasons) and, via a one-way ANOVA analysis, the observed differences are statistically
significant across the seasons (See Table 1). Moreover, from the figure, it is observed that
the highest number of daily mortalities, regardless of gender, occurred in the wintertime.
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Table 1. One-way ANOVA results for the variations between gender mortalities per season.

Period Mean ± SD ANOVA

Males Females F-Statistic p Value

Entire period (1999–2018) 16.35 ± 4.55 15.07 ± 4.39 299.80 <0.05
Summertime 14.80 ± 4.16 13.54 ± 3.84 91.02 <0.05
Wintertime 17.92 ± 4.91 16.85 ± 4.69 44.14 <0.05

Mid-seasons 16.36 ± 4.29 14.96 ± 4.19 199.62 <0.05
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3.2. Variations in Daily Mortality Counts Grouped by Age, Gender, and Season

Figure 3 shows variations in seasonal daily mortality counts considering age and
gender. The analysis focuses on a cutoff age boundary of 65 years because multiple previous
studies have reported the age group above 65 years of age as the demographic mostly
susceptible to temperature-related mortalities [16,52–55]. From the figure, it is observed
that daily mortality counts are higher in the “Above 65” age group than the “Below 65” age
group and seem to be modulated by gender and season. For example, the highest median
mortality counts were observed for females above 65 years of age during the winter season
(14 ± 4.40) while the lowest median mortality counts belonged to the group of females
“Below 65” and seemed consistent throughout the seasons (i.e., approximately 2± 1.4). This
indicates that the most vulnerable group are females above 65 years of age. Interestingly,
in the “Above 65” age group, daily mortality counts were higher for females than males,
whereas the opposite was true in the “Below 65” age group. A two-way ANOVA indicated
that age was much more related to daily cardiovascular and respiratory mortality counts,
particularly in the wintertime (F(1,3) = 13,056.27, p-value < 0.05, Partial η2 = 0.65) than
the other seasons. Furthermore, the results showed age to have a higher impact on daily
mortalities than gender, while the interactive effect of the two factors showed small but
statistically significant influences (See Table 2).
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Table 2. Two-way ANOVA results on the interactive effects of age, gender, and season on daily
mortality counts.

Period Factor DF MS F p Value Partial η2

Entire period
(1999–2018)

Age 1 509,538.38 47,825.97 <0.05 0.630
Gender 1 889.30 83.47 <0.05 0.003

Age × Gender 1 37,527.62 3522.39 <0.05 0.113

Summertime
Age 1 188,730.94 16,851.49 <0.05 0.501

Gender 1 33.46 2.98 <0.05 0.000
Age × Gender 1 20,503.02 1830.68 <0.05 0.098

Wintertime
Age 1 161,811.01 13,056.257 <0.05 0.650

Gender 1 98.22 7.93 <0.05 0.001
Age × Gender 1 12,388.93 999.64 <0.05 0.127

Mid-season
Age 1 251,790.79 25,566.78 <0.05 0.648

Gender 1 637.76 64.76 <0.05 0.005
Age × Gender 1 17,910.37 1818.62 <0.05 0.116

3.3. Effect of Outdoor Weather Conditions on Daily Mortality Counts
3.3.1. Minimum Temperature

Figure 4 shows the changes in daily mortality counts as a function of daily minimum
temperature grouped by age and gender. As observed from the figures, the relationship
between daily mortality counts and daily minimum temperature is somewhat modified by
age and gender. Considering age, the relationship showed a somewhat U-shaped curve
with a sharp bend at 20 ◦C for the “Above 65” age group and rather a flat line for the “Below
65” age group (See Figure 4a); This seems to indicate that the effect of daily minimum
temperature on mortality is more apparent for the people above 65 years of age than those
that are below. Comparing Figures 4b and 4c, it is seen that given the same minimum
daily temperature, daily mortality counts were slightly higher for females than males. For
instance, at a daily minimum temperature of 22 ◦C, the mortality counts for females were
17, while that for males were 11. When we consider temperature differences of 1 ◦C, the
mortalities of females are slightly higher (3.5 deaths) than those of males (2 deaths).
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3.3.2. Daily Average Temperature

Figure 5 shows the variations in daily mortality rates as a function of daily average
temperature. From the figures, it is apparent that the effect of the daily average temper-
ature on daily mortality is substantially heightened for the “Above 65” age group than
the “Below 65” age group. The lowest mortality counts were observed for daily average
temperatures slightly lower than 20 ◦C, and there tends to be a sharp increase in mortality
rates at daily average temperatures above 22 ◦C towards 30 ◦C. Furthermore, compar-
ing Figures 5b and 5c, the difference in the effect of daily average temperatures on daily
mortality counts between genders tended to be negligible.
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(a) Overall (1999–2018), (b) Male, (c) Female.

3.3.3. Daily Maximum Temperature

Figure 6 considers the effect of daily maximum temperature on daily mortality counts
considering age and gender. Overall, mortalities were relatively high at low daily maximum
temperatures but gradually reduced to a minimum at 26.7 ◦C before sharply increasing
again at about 30 ◦C. Moreover, similar to the previous analysis on the effect of minimum
and average daily temperatures on daily mortality counts considering age, there is a more
apparent pattern between daily maximum temperature and mortality counts in the “Above
65” age group than the “Below 65” age group. One interesting observation concerns
the relationship between daily maximum temperature and female mortality counts; the
regression line tended to be relatively flat, indicating no sharp spikes observed at higher
temperatures in the male group. This suggests a slightly higher tolerance of heightened
temperatures by females than males.
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3.3.4. Apparent Temperature

Figure 7 demonstrates the variations in daily mortality counts as a function of apparent
temperature. As expected, we observed a U-shaped relationship between apparent temper-
ature and the overall daily mortality counts in the “Above 65” age group. Specifically, high
mortality counts at apparent low temperatures gradually decreased to about 40 ◦C before
sharply increasing again. In contrast, the relationship between apparent temperature and
the overall daily mortality counts in the “Below 65” age group showed a somewhat flat line
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indicating no particular influences of apparent temperature. Furthermore, the relationship
between apparent temperature and daily mortality counts was more defined for males
than females. For instance, there is a much steeper increase in male daily mortality counts
(Figure 7b) at apparent temperatures beyond 42 ◦C compared to female daily mortality
counts (Figure 7c).
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3.3.5. 3-Day Lagged Temperature

Figure 8 shows the relationship of a 3-day lagged temperature on daily mortality
counts for each gender and age group. Similar to the previous analysis (shown above), a
U-shaped curve, with a sharp increase at a temperature of 22 ◦C, is observed for the “Above
65” age group while the “Below 65” age group showed rather a flatline. Furthermore,
comparing Figures 8b and 8c, we found no substantial differences in the effect of lagged
temperature on daily mortalities between genders.
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3.4. Potential Effect of HWs on Daily Mortality Counts

This section considers daily mortality variations during HWs and non-HW (NHW)
periods considering gender and age (see Figure 9). Considering the entire period, we
observed slightly higher daily mortality counts during HW periods than NHW periods.
These differences were also statistically significant, as shown by the ANOVA results in
Table 3. The effect of HWs on daily mortality was also observed when considering gender
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as a modulating factor and was significantly higher for males than females (See Table 4).
Similarly, the effect of HWs on daily mortality counts is substantially modulated by age; it
is more apparent in the “Above 65” age group and negligible in the “Below 65” age group
(See Table 5). UHII was also slightly higher during HW periods than during NHW periods.
(See Table 6).
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Table 3. One-Way ANOVA; HW vs. NHW period.

Period Mean ± SD ANOVA

Daily Mortality Count F-Statistic p Value

HW 15.62 ± 4.71 32.129 <0.05NHW 14.04 ± 3.95

Table 4. One-Way ANOVA; HW vs. NHW period considering gender.

Period Mean ± SD ANOVA

Males Females F-Statistic p Value

HW 16.42 ± 5.28 14.82 ± 3.97 8.92 <0.05
NHW 16.36 ± 4.54 15.09 ± 4.54 283.72 <0.05

Table 5. One-Way ANOVA; HW vs. NHW period considering the age.

Period Mean ± SD ANOVA

Above 65 Below 65 F-Statistic p Value

HW 11.79 ± 4.68 4.37 ± 2.22 312.38 <0.05
NHW 9.90 ±3.51 4.50 ± 2.25 2673.17 <0.05
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Table 6. One-Way ANOVA; UHI intensity differences between HW periods and NHW periods.

Period Mean ± SD ANOVA

UHI Intensity [◦C] F-Statistic p Value

HW 3.04 ± 0.61
125.44 <0.05NHW 2.40 ± 1.10

3.5. Potential Effect of UHI on Daily Mortality Count

We considered the potential effect of UHI on mortalities and whether such effects
were somewhat modulated by age and season. Table 7 shows correlations between daily
average UHI and daily mortality counts. As illustrated in the table, the average daily UHI
is more correlated with daily mortalities in the “Above 65” age group than the “Below
65” age group. Taking the overall data (considering the entire period) as an example, our
analysis indicates a higher association between UHI, and daily mortality counts in the
“above 65” age group (R2 = 0.100) than the “below 65” age group (R2 = 0.003). Furthermore,
the observed positive correlations between UHI intensity and mortalities were strongest
during the summertime than during other seasons.

Table 7. Potential effect of seasonal UHII on mean daily mortality counts.

Age Group Period R2 p-Value

Above 65

Entire period 0.105 <0.05
Summertime 0.170 <0.05
wintertime 0.060 <0.05
Midseason 0.070 <0.05

Below 65

Entire period 0.000 <0.05
Summertime 0.050 <0.05
wintertime 0.012 <0.05
Midseason 0.015 <0.05

The potential impact of UHI was also analyzed using cluster analysis. As earlier
discussed in the methods section, UHI data were grouped into hierarchical clusters of
increasing intensities; Low UHI cluster (UHII ≤ 1 ◦C), medium UHI cluster (1 ◦C ≤ UHII
≤ 2 ◦C), and high UHI cluster (UHI > 2 ◦C). Daily mortality counts were then analyzed
across each group while at the same time considering the potential modulating effect of
age, gender, and season. Figure 10 shows the variations in daily mortality counts across
the three UHI groups for each age group (i.e., Above 65 and Below 65 and across seasons.
As seen from the figure, the effect of UHI on daily mortality counts is more apparent in
the “Above 65” age group than the “Below 65” age group regardless of the UHI cluster.
Taking cluster 1 (i.e., low UHI group) during the summertime as an example, the median
difference in daily mortality counts between the “Above 65” and “Below 65” age groups
was approximately eight deaths. Relatively similar numbers are seen across the other two
clusters regardless of the season.

The interactive effect of gender and UHI on daily mortality counts was also analyzed.
Figure 11 shows the distributions in daily mortality counts between genders and across
different clusters of UHII. As shown in the figure, the differences in daily mortality counts
were somewhat the same between the two genders regardless of the UHI cluster. Taking
cluster 1 (i.e., low UHI cluster) as an example, it is observed that the difference in median
daily mortality counts between genders is negligible. However, the distribution seems
much broader for females than males in all seasons.
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3.6. Variations in Daily Mortality Counts Considering Education Level and Outdoor Weather

Figure 12 shows the variations of daily mortality counts among groups with different
education levels. As indicated in the figure, the highest number of daily mortalities was
observed for the low education level group (i.e., Basic). In contrast, the lowest number was
observed for the highly educated group (i.e., Graduate school and above). For instance,
the median mortality count in the “Basic” education group was 2.5 deaths, while the
“Graduate” group was 1 death. This seems to indicate that the higher the education level,
the lower the daily mortality counts.
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Furthermore, similar results are observed when considering the effect of outdoor
weather on the daily mortalities of groups with different education levels. At each given
temperature, the daily mortality counts were highest in the low education group (i.e., Basic)
and lowest in the high education group (i.e., Graduate). For instance, taking −10 degrees
of 3-day lagged temperature as an example, the observed daily mortalities were, 3.9 deaths,
3.6 deaths, and 1.5 deaths for the “Basic”, “University” and “Graduate” education groups,
respectively. Similar trends are seen when considering the potential effect of apparent
temperature—a higher number of deaths were observed in the low education groups
than the high education groups. However, the inflection point upon which heat-related
mortalities begin to sharply rise tended to be somewhat the same across the education
groups.

3.7. Relative Contributions of Different Factors on Mortality Counts

Table 8 shows the VIF and tolerance values for the considered independent variables.
The bolded values show independent variables with potential collinearity issues based
on the tolerance and VIF concept. As shown in the table, weather elements constitute
substantial collinearity (e.g., VIF values < 10) that might bias the assessment of relative
contributions. To assess the relative contributions, therefore, we employed a step-wise
regression analysis with (i) time factors, (ii) weather factors, and (iii) personal factors
as independent factors. Not all weather elements were introduced, given the observed
collinearity. By introducing different variables (i.e., time variables, weather variables, and
personal factors) in a step-wise manner, it is observed that personal factors (i.e., gender, age,
and education) explain much more of the variance in daily mortality rates than time and
weather factors (see Table 9). Note here that adjusted R2 values are presented in addition
to R2 values. This is because R2 is a biased estimator when comparing various models;
it increases monotonically when new regressors are added to the model even when said
regressors have no prognostic addition to the model. As such, to better assess the “value”
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added by temperature variants (e.g., apparent temperature, maximum UHII) and HWs to
Model 2 and later personal factors (e.g., gender, age, and education) in Model 3, adjusted
R2 was employed.

Table 8. Tolerance and value inflation factor (VIF) values for the dependent values.

Model Collinearity Statistics

Tolerance VIF

Year 0.762 1.312
Month 0.883 1.132

Day 0.995 1.005
Average UHII 0.181 5.521

Maximum UHII 0.173 5.769
Average temperature 0.002 533.116

Maximum temperature 0.005 206.977
Minimum temperature 0.006 160.008

Three-day lagged temperature 0.035 28.3620
Apparent temperature 0.022 44.4460

HW 0.894 1.118
Gender 0.945 1.058

Age 0.966 1.035
Education 0.945 1.059

Table 9. Relative contribution of various factors on daily mortalities.

Model Performance Model 1 Model 2 Model 3

Year Year Year
Month Month Month

Apparent temperature Apparent temperature
Maximum UHII Maximum UHII

HW HW
Gender

Age
Education

R2 0.0080 0.0085 0.6130
Adjusted R2 0.0080 0.0082 0.6060

Deviance explained
(%) 0.97 0.99 53.10

3.8. Relative Risk of Mortality
3.8.1. Gender

Figures 13 and 14 below indicate estimated relative mortality risk considering gender,
time factors, and selected weather factors at a 95% CI. From the figures, it is observed that
mortality risk for both males and females increases with increasing years, lowest in the
summer period (i.e., July) and highest in the winter period particularly January (RR = 0.10,
95% CI; 0.08–0.12). Furthermore, the relationship between relative mortality risk and appar-
ent temperature shows a U-shaped curve with the lowest risk observed at approximately
40 ◦C and the highest risk at the highest apparent temperature of approximately 60 ◦C for
both males and females. However, comparing Figures 13c and 14c indicates that relative
mortality risks are relatively the same for both genders at low apparent temperatures (RR
= 0.10, 95% CI; 0.09–0.20) and slightly more heightened for males (RR = 0.40, 95% CI;
0.23–0.54) than females (RR = 0.05, 95% CI; −0.10–0.20) at higher apparent temperatures
(i.e., 60 ◦C). UHII also tended to be directly proportional to relative risk of mortality for
both genders but decreased at UHII above 5 ◦C (RR = 0.015, 95% CI; 0.012–0.016) perhaps
due to the few incidences of UHII above 5 ◦C. This is also seen from the large margin of
errors at UHII above 5 ◦C (See Figures 13d and 14d).
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3.8.2. Age

Figures 15 and 16 below indicate estimated relative mortality risk considering age,
time factors and selected weather factors. As seen from the figures, we found that the risk
of mortality increases with the “Year” factor for the age group above 65 years (Figure 15a)
and vice versa for the age group below 65 years (Figure 16a). Moreover, low apparent
temperatures were associated with increased mortality risks and the risks were slightly
higher for the age group above 65 years (RR = 0.10, 95% CI; 0.002–0.18) than below 65 years
(RR = 0.01, 95% CI; −0.1–0.12); similarly, high apparent temperatures are associated with
increased mortality risks but the peak apparent temperature upon which mortality risk is
highest differs in the two age groups; it is slightly lower for the above 65 age group (38 ◦C)
than the below 65 years age group (>40 ◦C). UHII is also directly proportional to relative
risk of mortality and the induced risk is relatively similar in both age groups (RR = 0.01,
95% CI).
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4. Discussion

Climate change, often from the perspective of long-term temporal temperature vari-
ability, has been at the forefront of human-centric issues in the 21st century. Epidemiological
research, through various methodologies, has shown that extreme temperatures can have
diverse physiological strains on a human body, leading to many health issues. For instance,
Bobb et al. [56] reported that risks of hospitalization for fluid and electrolyte disorders, renal
failure, and urinary tract infection increase under extreme heat events. Similar epidemi-
ological research [57–59] has reported the significance of extreme heat vents on people’s
physiological well-being, which could eventually lead to fatal outcomes.

The health vulnerabilities imposed by increasing temperatures are a much more severe
concern in urban agglomerations as they often experience escalated thermal conditions,
mainly resulting from local climate change [25]. While the impacts of temperature changes
concern the majority population, the sensitivity and adaptive capacity to said tempera-
ture changes vary from demographic to demographic. Such variations are primarily a
consequence of a complex combination of personal and social-economic elements. Conse-
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quently, it is essential to identify groups most vulnerable to heat exposure and subsequently
deliver targeted mitigation and adaptive strategies. Moreover, the compounding effects
of local/regional climate change vary from locality to locality and are driven mainly by
geographical and social-political-economic elements endemic to said localities. Analyses
dealing with the impact of regional and global climate change should thus be area-specific
to enable locally tailored interventions and planning. To that end, the main objective of
the current study was to quantitively evaluate the associations between temperature and
respiratory and cardiovascular mortalities in Seoul while simultaneously analyzing how
the said associations differ across different demographics characterized by (i) personal
factors (i.e., age and gender), (ii) social-economic factors (i.e., education level), and (ii) local
climatic episodes (i.e., UHI and HWs).

Our results showed that the effect of temperature variants (e.g., minimum daily tem-
perature, average daily temperature, and maximum daily temperature) differ significantly
across different age groups (i.e., above 65 years and below 65 years of age) and between
males and females. For instance, given the same daily maximum temperature, the number
of mortalities was significantly higher for females above 65 years of age than their male
counterparts (see Figure 6). The finding reports that older females are more vulnerable to
health issues resulting from elevated temperatures and reiterates reports from studies in
South Korea [60], Spain [61], England [62] as well as cities in China [63]. Such differences in
sensitivities to heat exposure between genders are, to an extent, attributed to differences in
physiological characteristics inherent of the two genders (e.g., in terms of temperature regu-
latory mechanisms [64,65]. Another possible explanation for such a result pertains to social
demographic characteristics that encourage gender differences in elements such as life
expectancy and social isolation [61,66]. On the contrary, a study conducted in the Tibetan
counties in China reported males to be more susceptible to extreme temperature exposure
than females [67]. Similarly, a recent study conducted in multiple cities in China found that
males were more affected by high-frequency temperature variations than females [68] while
another study in Taiwan found no differences in susceptibility between the two genders [69].
Such observations seem to emphasize regional differences in temperature-mortality effects
and perhaps warrants more intense discussions on the role of regional climatic conditions
on temperature-mortality relationships.

One interesting finding with vast implications for urban planning policies is the in-
flection temperature point upon which daily mortalities increase between the two genders.
This is better observed considering the daily average temperature (see Figure 5)—the inflec-
tion temperature point for males was observed at 20 ◦C while that for females was 21.5 ◦C.
The finding suggests that the population in Seoul is acclimatized to low temperatures
and that this is more the case for males than females. This can also be viewed from the
perspective of physiological differences between the two sexes; men have been reported
to have larger decreases in core body temperature than women when exposed to cold
temperatures [70], and possibly the reason for the observed lower inflection temperature
point in males than females (i.e., 20 ◦C vs. 21.5 ◦C).

Furthermore, age was indicated as a significant factor contributing to heat-related
mortalities. For instance, given the same outdoor temperature conditions, the number of
mortalities was significantly higher for the “above 65 years” age group than the “below
65 years” age group. This finding also corroborates reports from previous studies [52]
and is potentially explained by the age-related differences in physiological mechanisms
that influence thermoregulatory pathways. For instance, during elevated heat exposure,
older individuals are reported to respond with reduced blood flow from the skin and
minimized redistribution of blood from the splanchnic and renal circulations relative to
younger individuals—as a result, core body temperatures increase, potentially leading to
hypothermia [71].

Low-educated groups showed higher mortalities than high-educated groups. We hy-
pothesize that the primary reasons for the seen differences in heat-related mortalities among
groups with different education levels are closely linked to occupational job differences and
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long-term differences in financial capabilities. For instance, individuals in the high educa-
tion clusters are likely involved in professions often conducted in well-ventilated/heated
indoor spaces, significantly reducing the toll of temperature extremes on their health; the
opposite is likely true for individuals in low education clusters. Additionally, other lifestyle
differences that arise from the variability in economic status between highly educated
and low-educated individuals (e.g., quality of their homes, access to a nutritious diet,
access to medical facilities) and that lead to accumulated health issues in the low-education
group—these pre-existing issues could exacerbate the influence of extreme temperature
deviations on low educated individuals leading to increased rates of mortality.

Our analysis also showed that, generally, heat-related daily mortalities were on aver-
age 1 death higher during HW than NHW periods. Such findings are commensurate with
reports from previous studies; For example, a study on non-accidental deaths during HWs
in European cities reported increases in HW-induced mortalities of up to 33.6% in Milan
and 7.6% in Munich [72]. The effect of HWs on heat-related mortalities is fundamentally
explained by the earlier discussed severe pressure that heat exposure exerts on the ther-
moregulatory mechanisms of the human body. One specifically interesting observation
relates to how gender modulates the influence of HWs on heat-related mortality. For
example, we found that the number of heat-related deaths during HW was, on average,
two deaths higher in males than females (see Table 4). This finding corroborates recent ob-
servations in Seoul that report a slightly higher risk of male mortality than female mortality
during HW episodes [73]. However, numerous other studies have reported contradictory
observations. For example, Fouillet et al., [74], reported a higher percentage (i.e., 64%) of
female deaths than male deaths during the 2003 HW in France. Similar reports have been
observed in Chinese cities [75] and more recently in Senegal [76]. One potential reason for
the contradictions in the literature is perhaps because a vast number of previous research
have seldom considered other demographic characteristics likely to expose men more to
heat risks, particularly during HW episodes. For instance, outdoor workers who consist
mainly of a higher proportion of men than women are particularly vulnerable to exertional
heat strokes stemming from elevated temperatures during HW episodes. Consequently, it is
essential to analyze the effects of gender on heat-related mortalities during HW episodes for
specific subgroups. Additionally, assessing the role of public health interventions and the
implementation of early warning systems for extreme heat events on reducing heat-related
mortalities would provide deeper insights on the real effect of HWs on temperature-related
deaths. This would be particularly interesting as recent studies in South Korea [77] have
reported a relatively higher number of HW-related deaths in rural areas than urban areas.
While such observations contradict existing theoretical evidence, they also point to the
lack of in-depth analysis on the impact of HW on temperature-related mortalities that
considers other overlooked social-economic characteristics such as the prevalence of HVAC
usage and availability in the much-developed sub-regions of Seoul city. The observed
effect of HWs on mortality is also potentially amplified by the additional influence of
UHI. Previous studies [20,22,78] have drawn linkages between HW and UHI, illustrating
synergetic interactions between the two elements. These interactions are also found in the
present study (See Figure 9) and further point to the usefulness of UHI mitigative measures
in reducing mortalities during HWs.

We also assessed the potential effect of UHI on heat-related mortalities across sexes and
age groups. Our results showed that the number of heat-related mortalities was significantly
higher in high UHII clusters than low UHII clusters, particularly for the “above 65” age
group and the females, further pointing to the attenuated sensitivity to heat exposure by
females and the elderly. It is worth noting that the direct influences of UHI on heat-related
mortality have been somewhat neglected in the literature despite its obvious significance
for climate-resilient environments [79] and adaptive potential that can be achieved through
implementing UHI mitigative strategies [80]. Studies that precisely assess the effect of UHI
on heat-related mortality are warranted and critical in the development of robust urban
health policies. Furthermore, it is worth noting that although the models relating UHII
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to seasonal mortality explain relatively low mortality variations (see Table 7), the models
are still statistically significant at a p-value < 0.05, indicating a good fit of the model to the
data. Perhaps increasing the amount of data could better establish the inferred relationship
between UHI intensity and mortality in Seoul—this is one issue that can be looked into as
large datasets covering long periods become available.

Our results also reiterate previous reports on the impact of seasonality on temperature-
related mortalities [81]. The mortality risk is substantially lower during the summer months
than in winter, which points to a more serious concern for cold-related mortalities than
heat-related mortalities in Seoul, especially for females and the elderly (e.g., >65 years
of age). One potential reason for the higher mortalities during cold periods is linked to
bronchoconstriction likely to develop during exposure to extreme cold conditions. Cold ex-
posure also weakens mucociliary defenses, which cause respiratory infections and potential
inflammation [82]. These conditions are likely to persist longer than those caused by heat
exposure. They have been reported as the potential reason for the higher mortalities during
colder periods than hotter ones [83]. This observation has wide implications, particularly
regarding the current research trends in the field. Most of the research in the field seems to
focus more on the consequences of heat-related mortalities, yet cold exposure claims higher
mortality counts. Our findings agree with those by Gasparrini et al. [84], who critically
reviewed existing epidemiological studies and found higher mortalities associated with
cold exposure than heat exposure. This observation is useful for public health policies, par-
ticularly for Seoul city, as it evidences the mortality risk associated with cold exposure and
provides a platform for discussing relevant policies and mitigation strategies. Moreover,
while our results show a decline in the risk of temperature-related mortalities over the years
for the “below 65 age group” (see Figure 16a), the risk increased substantially for the “above
65 age group” (see Figure 15a). This finding partly contradicts previous observations [85]
reporting a temporal decline in heat-related mortalities during summers in South Korea
and cold-related mortalities in London [86]. The contradictions are, potentially, because
studies in the field have often concentrated on different demographics with no agreed-upon
categorization scheme. For instance, the definition for elderly individuals seems to lack
consistency across studies in the literature. Moreover, the role of improved infrastructure,
technology, and public health interventions is seldom incorporated into the analysis. With
such uncertainties, understanding the effect of temperature on human health becomes
even more challenging. There is thus abundant space for analyzing temporal trends in
temperature-related mortality in Seoul, particularly considering other social-economic ele-
ments (e.g., prevalence and use of aiding mechanical equipment) and newly implemented
urban policies.

5. Conclusions

We set out to determine associations between temperature changes, HWs, and UHI
on respiratory and cardiovascular mortalities in Seoul for a period of 19 years (1999–
2018). At the same time, we observed how the said associations varied across different
demographics characterized by personal and social-economic factors (e.g., age, gender,
and education level). Additionally, through GAM regression, we estimated the relative
risk of mortality induced by temperature changes for different demographic groups. We
found that temperature-related risk of mortality in Seoul has increased after 2010 for both
men and women and particularly for older individuals (i.e., above 65 years of age); the
risk of mortality was slightly lower for younger individuals (i.e., below 65 years of age). In
addition, among the many variants of temperature considered, the apparent temperature is
mostly correlated to daily mortalities in Seoul; this relationship is substantially modulated
by age while gender plays a very slight role. We also found that HW episodes had
a more substantial impact on males than females. The effect of UHI on temperature-
related mortalities was more apparent during the summertime than in other seasons. The
observations pinpoint the cofounding effects of social-economic elements on temperature–
mortality relations and help identify groups most vulnerable to regional temperature
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changes. Moreover, they provide key insights useful in developing urban health policies
that promote climate resilience and adaptation.

6. Limitations and Future Research

The present article faces a few limitations. One such limitation is related to the heat
stress measurement indices used in the study. For instance, we considered several variants
of air temperature, particularly apparent temperature, which captures the integrated toll
that air temperature and humidity have on heat stress. Similarly, we used absolute air
temperature values. However, these indices do not consider certain critical elements, such
as radiation and convective air flows, that have a substantial influence on the thermal
load experienced by a subject. Consequently, future research needs to consider indices
incorporating other essential factors likely to affect thermal stress on the human body.
It is also important to note that there is a plethora of factors likely to compound the
impact of thermal changes on human health and which were not considered in the present
study. For instance, the present article did not control for the potential impact of the
synergetic interactions between urban pollution and urban warming on mortality despite
its likely huge effect on temperature-related mortality. Additionally, the quality of built
environments (e.g., homes, offices) in terms of thermal insulation and access to cooling
equipment substantially affects how individuals cope with heat stress and is an essential
factor in assessing heat-related mortality. There are also factors related to the physical
activeness of the deceased. Individuals with active physical lifestyles are likely to suffer
fewer heat-related incidents, which perhaps explains increased heat-related mortalities
in old individuals. Consequently, considering all these factors could indeed further our
understanding of heat-related mortalities and underlying factors.

Author Contributions: Conceptualization, J.N., G.Y.Y. and M.S.; methodology, J.N., G.Y.Y. and M.S.;
formal analysis, J.N., G.Y.Y. and M.S.; resources, G.Y.Y.; data curation, J.N.; writing—original draft
preparation, J.N., G.Y.Y. and M.S.; writing—review and editing, J.N., G.Y.Y. and M.S.; visualization,
J.N., G.Y.Y. and M.S.; funding acquisition, G.Y.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020R1A2C1099611).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data maybe provided upon reasonable request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

HW Heat waves
NHW Non-heat waves
UHI Urban heat island
UHII Urban heat island intensity
KMA Korea meteorological agency
AWS Automatic weather station
WMO World meteorological organization
VIF Value inflation factor
GAM Generalized additive models
RR Relative ratio
HVAC Heating ventilation and air conditioning



Sustainability 2022, 14, 13452 23 of 26

References
1. Sweileh, W.M. Bibliometric Analysis of Peer-Reviewed Literature on Climate Change and Human Health with an Emphasis on

Infectious Diseases. Global. Health 2020, 16, 1–17. [CrossRef] [PubMed]
2. Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.;

et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Chang. 2021, 11,
492–500. [CrossRef] [PubMed]

3. Zafeiratou, S.; Samoli, E.; Dimakopoulou, K.; Rodopoulou, S.; Analitis, A.; Gasparrini, A.; Stafoggia, M.; De’ Donato, F.; Rao,
S.; Monteiro, A.; et al. A Systematic Review on the Association between Total and Cardiopulmonary Mortality/Morbidity or
Cardiovascular Risk Factors with Long-Term Exposure to Increased or Decreased Ambient Temperature. Sci. Total Environ. 2021,
772, 145383. [CrossRef]

4. Liu, J.; Hansen, A.; Varghese, B.; Liu, Z.; Tong, M.; Qiu, H.; Tian, L.; Lau, K.K.L.; Ng, E.; Ren, C.; et al. Cause-Specific Mortality
Attributable to Cold and Hot Ambient Temperatures in Hong Kong: A Time-Series Study, 2006–2016. Sustain. Cities Soc. 2020, 57,
102131. [CrossRef]

5. Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento
Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of Temperature-Related Excess Mortality under Climate Change
Scenarios. Lancet Planet. Health 2017, 1, e360–e367. [CrossRef]
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