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Abstract: The choice of ceramic-on-ceramic coupling in total hip prosthesis has advantages over
couplings with other combinations of materials that use polyethylene and metal materials in terms
of high hardness, scratch resistance, low wear rate, and increased lubrication performance. To
reduce the risk of primary postoperative failure, the selection of ceramic materials for ceramic-
on-ceramic coupling is a strategic step that needs to be taken. The current study aims to analyze
ceramic-on-ceramic coupling with commonly used ceramic materials, namely zirconium dioxide
(ZrO2), silicon nitride (Si3N4), and aluminium oxide (Al2O3), according to Tressa failure criterion for
the investigation of the stress distribution. A two-dimensional axisymmetric finite element-based
computational model has been used to evaluate the Tresca stress on ceramic-on-ceramic coupling
under gait cycle. The results show that the use of ZrO2-on-ZrO2 couplings can reduce Tresca stress
by about 17.34% and 27.23% for Si3N4-on-Si3N4 and Al2O3-on-Al2O3 couplings, respectively.

Keywords: aluminium oxide; ceramic-on-ceramic; gait cycle; total hip prosthesis; Tresca stress; silicon
nitride; zirconium dioxide

1. Introduction

Restoring the condition of the inflamed hip joint through surgery with total hip
replacement is a surgical intervention that is highly effective today [1–3]. However, active
implant users who have a longer life expectancy are still found to undergo revision surgery
due to various causes of implant failure [4]. One of the main components in a total hip
replacement that needs to be evaluated to minimize implant failure is a coupling that
provides articulation for the user to accommodate the many activities that implant users
perform. In this case, material coupling selection has a strategic role in improving the
performance of total hip replacement [5].

The use of conventional polyethylene as a coupling material with a hard-on-soft
combination, such as metal-on-polyethylene and ceramic-on-polyethylene, has begun to
be limited due to the high number of wear cases that affect long-term performance [6].
Additionally, polyethylene wear particles give a negative body response to implant users [7].
Although the use of metal-on-metal couplings was once an option, the relatively high
number of failure cases found compared to other material combinations made this coupling
less desirable. In addition, the issue of metal ions being harmful to the user’s body from
metal wear particles of metal-on-metal couplings is also a reason for the lack of interest in
these couplings [8,9].
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Therefore, ceramic-on-ceramic couplings have become the surgeon’s choice because of
concerns about the dangers of using other couplings [10]. The main advantages presented
by using ceramic-on-ceramic coupling are their high hardness [11], scratch resistance [12],
low wear rate [13], and increased lubrication performance [14]. In terms of wear particles,
ceramic materials produce less when compared to polyethylene or metallic materials [15].
Unfortunately, the use of ceramic-on-ceramic couplings is prone to fracture, due to high-
intensity activities which result in the need for revision operations [16]. The selection of
ceramic materials for ceramic-on-ceramic couplings is important in minimizing revision
operations that are harmful to the user. Several ceramic materials available and com-
monly used in ceramic-on-ceramic total hip replacement couplings are zirconium dioxide
(ZrO2) [17], silicon nitride (Si3N4) [18], and aluminium oxide (Al2O3) [19].

The evaluation of ceramic materials for ceramic-on-ceramic total hip prosthesis is
essential to confirm long-term implant durability with stress analysis. Von Mises stress
analysis has been widely adopted in the literature for medical implant analysis, as done
by Carreiras et al. [20] and Fernandes et al. [21], but implant failure cases are still reported
today that need more in-depth stress study since it is related to implant failure, and to
ensure safer prosthesis for the patient. A better option is offered by analyzing the failure
using Tresca stress because it is safer than von Mises, because the safety area of Tresca stress
based on Tresca failure theory is lower when compared to von Mises stress area based
on von Mises failure theory [22]. Tresca stress studies on total hip prosthesis couplings
were previously carried out by Ammarullah et al. for metal-on-ultra high molecular
weight polyethylene (UHMWPE) [23,24] and metal-on-metal [25]. However, Tresca stress
studies to evaluate different ceramic materials for ceramic-on-ceramic coupling have not
been performed.

The current study aims to analyze ceramic-on-ceramic couplings with three different
types of ceramic materials using Tresca stresses. The finite element approach is used to
accommodate computational simulation investigations. Loading is simulated by adopting
a gait cycle that reflects the actual condition of the implant user.

2. Materials and Methods
2.1. Geometry and Material Configuration

The geometry of coupling in the current study for the components of the femoral head
and acetabular cup, referring to the work of Jamari et al. [26] and which are commonly
used in total hip replacement, are shown in Table 1.

Table 1. Coupling geometry of total hip replacement [26].

Parameter Size (mm)

Femoral head diameter 28
Radial clearance 0.05

Acetabular cup thickness 5

Material properties of three different ceramic materials in the present study were
adopted from previously published works: ZrO2 from Jin et al. [27], Si3N4 from
Dubiel et al. [28], and Al2O3 from Aherwar et al. [29]. These are shown in Table 2. Material
assumption for all simulated ceramic materials is set to be homogeneous, isotropic, and
linear elastic, with a consideration for their Young modulus and Poisson ratio regarding
their mechanical properties. The assumptions refer to previous studies conducted by Uddin
and Zhang [30], Jagatia and Jin [31], Shankar [32], and Cilingir et al. [33].

The coefficient of friction is obtained from a hip joint simulator or a pin-on-disc test [30,34,35].
In the current computational simulation, the values for the coefficient of friction are adopted
from published works: ZrO2-on-ZrO2 from Ruggiero et al. [36], Si3N4-on-Si3N4 from Shankar
and Nithyaprakash [37], and Al2O3-on-Al2O3 from Shankar et al. [32]. These are shown in
Table 3.
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Table 2. Data input of ceramic materials [27–29].

Ceramic Materials Young’s Modulus (GPa) Poisson’s Ratio (-)

ZrO2 210 0.26
Si3N4 300 0.29
Al2O3 375 0.3

Table 3. Coefficient of friction value for various ceramic-on-ceramic couplings [32,36,37].

Ceramic-on-Ceramic Couplings Coefficient of Friction (-)

ZrO2-on-ZrO2 0.49
Si3N4-on-Si3N4 0.2
Al2O3-on-Al2O3 0.1

2.2. FE Model

ABAQUS/CAE 6.14-1 has been used in the current study to simulate steady-state
Tresca stress from ceramic-on-ceramic couplings using static loading with an implicit
analysis. The hip replacement is shown in Figure 1, where the finite element model uses
5500 four-node axisymmetric elements (CAX4) for 2000 CAX4 and 3500 CAX4, respectively,
in the ceramic femoral head and ceramic acetabular cup components through the results
of the convergence study. The number of nodes in both a ceramic acetabular cup and a
ceramic femoral head were 2124 and 3611 nodes, respectively. Tresca stress was evaluated
numerically at each integration point.
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Figure 1. Finite element model of ceramic-on-ceramic coupling.

The computational burden has been lightened by considering only the femoral head
and acetabular cup components as the two main components of a ceramic-on-ceramic
total hip prosthesis on a two-dimensional axisymmetric model using a ball-in-socket
configuration. Present finite element models of ceramic-on-ceramic coupling only consist of
a femoral head and an acetabular cup without adopting other components, such as fixation
and cortical bone. Previous research by Jagatia and Jin [31] explained that considerations
of cement and cortical bone components in contact investigations between a femoral head
and an acetabular cup have no significant effect on the computational simulation results.
In addition, the adoption of a two-dimensional finite element model is used in the current
study. Cilingir et al. [33] explain that the results of computational simulation results
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between two-dimensional and three-dimensional are relatively similar. In addition, the
influence of synovial fluid and surface roughness during contact is represented by the
coefficient of friction, referred to in previous work by Uddin and Zhang [30].

The application of boundary conditions to the ceramic acetabular cup is conducted by
fixing the outer surface in all directions, so that it cannot move. This is based on the fact
that, in real terms, this component is still attached to the pelvic bone [25]. As for the femoral
head, the position between the ceramic femoral head and the ceramic acetabular cup is
made concentric, so that no edge loading is possible. The movement of the femoral head
is allowed to move in a vertical direction without any permitted rotation, which is only
one degree of freedom. Force from the gait cycle is applied to the bottom of the configured
ceramic femoral head in a concentrated manner.

2.3. Giat Cycle

Finite element investigation for ceramic-on-ceramic coupling is carried out by applying
force according to the physiological condition of the human hip joint in the form of gait
cycle, which is the most common activity carried out by implant users [38]. The gait
cycle used in the current study adopted a previous approach by Jamari et al. [26], shown
in Figure 2, in which one cycle is divided into 32 phases, with the seventh phase being
the highest base of 2326 N. Referring to the previous study by Ammarullah et al. [39],
gait cycle only considers the resultant vertical force with a negligible range of motion for
simplification in the application of two-dimensional axisymmetric models.
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Figure 2. Adopted gait cycle [26].

3. Results and Discussion
3.1. Convergence Analysis

The selection of the number of elements used in ceramic-on-ceramic coupling was
carried out through convergence analysis to investigate the Tresca stress. The convergence
study was performed by considering six models with different elements, with an increasing
number of elements from one model to another. This determined the number of elements
that were sufficient to obtain accurate Tresca stress results, without burdening the computa-
tional workload in the ceramic-on-ceramic coupling [9]. Figure 3 shows the comparison of
the maximum Tresca stress with the number of elements used for Al2O3-on-Al2O3 coupling.
The fourth model was chosen when considering the Tresca stress results, whose difference
was very small at 1.46 MPa (below 10%) compared to the 6th model with the greatest
number of elements. The fourth model uses a total of 5500 elements, with details of 3500
for the ceramic femoral head and 2000 for the ceramic acetabular cup.

3.2. Tresca Stress Analysis

Figure 4a presents the maximum Tresca stress for all studied ceramic-on-ceramic
couplings for one gait cycle. The variation of the maximum Tresca stress is caused by
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different loads received during gait cycles. The highest Tresca stress value was found in the
seventh phase on every ceramic-on-ceramic coupling because its phase is the condition of
peak loading. The comparison of the highest, average, and lowest Tresca stress can be seen
in Figure 4b.
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Figure 4. Tresca stress magnitude: (a) maximum during gait cycle and (b) comparison of highest,
average, and lowest.

The lowest maximum Tresca stress at the peak loading among ceramic-on-ceramic
couplings in the current study was found at ZrO2-on-ZrO2 of 56.97 MPa. There was
an increase of maximum Tresca stress during peak loading found for Si3N4-on-Si3N4 of
21.32 MPa and Al2O3-on-Al2O3 of about 11.95 MPa compared to ZrO2-on-ZrO2. The
properties of ceramic material used greatly affected the difference in Tresca stress on
ceramic-on-ceramic coupling. With the same magnitude of force applied, ceramic materials
that had a higher Young’s modulus had a higher Tresca stress value. This caused ZrO2-
on-ZrO2 to have the lowest Tresca stress value, as ZrO2 has Young’s modulus of 210 GPa,
which is the lowest Young’s modulus of other ceramic materials in the current work. The
maximum Tresca stress values for ceramic-on-ceramic coupling are described in Table 4.

Table 4. Maximum Tresca stress during peak loading.

Ceramic-on-Ceramic Coupling Maximum Tresca Stress (MPa)

ZrO2-on-ZrO2 56.97
Si3N4-on-Si3N4 68.92
Al2O3-on-Al2O3 78.29
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Figure 5 shows the contours of Tresca stress distribution performed on ABAQUS [40].
To represent the gait cycle in thirty-two phases, three phases have been chosen to ex-
plain changes in the contour distribution referred to in the previous study conducted by
Jamari et al. [41]. It is observed that the distribution of Tresca stress is wider and the
magnitude is greater along with the higher applied load.
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To further evaluate the Tresca stress on ceramic-on-ceramic coupling, the relationship
between Tresca stress and ceramic acetabular cup thickness is shown during peak loading
and selected phases in Figures 6 and 7. The highest Tresca stress is found in the ceramic
acetabular cup’s thickness in direction y of around 1 cm for all studied ceramic-on-ceramic
couplings. It means the highest Tresca stress occurred in the bulk area, not in the contact
area, since acting forces caused a change in ceramic acetabular cup volume. The location
where the volume of the ceramic acetabular cup decreases more due to acting forces was
indicated by the higher Tresca stress magnitude on this area, which occurs in the bulk
area of the ceramic acetabular cup. The thickness of the ceramic acetabular cup, which
was originally 5 mm, was reduced due to the acting forces when the ceramic-on-ceramic
coupling was under gait cycle. In the 7th phase (peak loading) of gait cycle, the thickness
of the ceramic acetabular cup on the asymmetric axis for ZrO2-on-ZrO2 was 4.99883 mm,
Si3N4-on-Si3N4 was 4.99905 mm, and Al2O3-on-Al2O3 was 4.99917 mm.

Based on Tresca failure theory, Tresca stress on ceramic-on-ceramic couplings explains
the correlation of the probability of future implant failure. Higher Tresca stress means a
higher probability of implant failure, and vice versa [23]. From this explanation, ZrO2-on-
ZrO2 was the safest coupling, compared to other studied ceramic-on-ceramic couplings.
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Based on the current simulation, results of Tresca stress could be used as a reference for
developing ceramic-on-ceramic total hip prosthesis to minimize failure in the future. The
present study has worked to improve implant performance in ceramic materials selection.
In addition, several efforts can be made to improve implant performance, including the
evaluation of ceramic-on-ceramic couplings geometry [42], adding dimples on the contact
surface [43], surface finish [44], and coating/surfacing applications [45]. Surgical proce-
dures from orthopedic doctors also affect the resistance of the total hip prosthesis after
primary surgery [46].
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A computational simulation-based study on ceramic-on-ceramic coupling has pre-
sented implant performance from a biomechanical perspective by looking at Tresca stresses
on different ceramic materials. Tresca stress results in the current ceramic-on-ceramic
coupling can be one consideration for surgeons in choosing ceramic materials by choosing
a ceramic-on-ceramic coupling with the lowest Tresca stress. This means that it has a lower
risk of failure among other ceramic materials, according to Tresca’s failure theory [22],
where it was found that in ZrO2-on-ZrO2 for use in total hip replacement surgery when
choosing couplings with the type of ceramic-on-ceramic. However, material selection can-
not only be viewed from this perspective. A study is needed from a biomedical perspective
so that the selection of materials carried out can provide both better knowledge and clinical
relevance [47]. Some biomedical investigations that could be carried out to support the
selection of ceramic materials for ceramic-on-ceramic couplings include studies of the



Sustainability 2022, 14, 13413 8 of 12

composition of ceramic materials [28] and the possibility of negative body responses due
to long-term use [44].
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3.3. Comparison of Tresca Stress Results with Similar Published Literature

The maximum Tresca stress at peak loading of gait cycle for the ceramic-on-ceramic
coupling in the current study was compared with a similar study with different material
combinations, conducted by Ammarullah et al. [23,25]. This is presented in Figure 8. It can
be seen that the overall Tresca stress value of the current study is the highest, compared to
others. This is because the Young’s modulus of ceramic is greater than that of metal and
UHMWPE.
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Figure 8. Maximum Tresca stress of ceramic-on-ceramic couplings at peak loading of gait cycle from
present study compared with metal-on-UHMWPE couplings [23] and metal-on-metal couplings [25].

3.4. Limitations

There are several deficiencies in the present investigation that should be mitigated
for in further research. The computational simulation model used for ceramic-on-ceramic
coupling ignored the presence of synovial fluid [48]. Gait cycle are only described by gait
loading, with values varying based on cycles without the application of motion [49]. The
finite element model used only considered the femoral head component to represent the
femur head, and the acetabular cup to represent the acetabulum, without considering other
components, such as fixation and femoral stem for lighter computations [50].

4. Conclusions

The prediction of a computational model from ceramic-on-ceramic coupling based
on the finite element method to analyze Tresca stress was successfully carried out. In the
seventh phase, the highest Tresca stress was found for every ceramic-on-ceramic coupling
model, which is the highest gait loading condition. The distribution of Tresca stress
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contour on the ceramic acetabular cup component was found to be wider, along with
the higher Tresca stress value. The current simulation shows that ZrO2-on-ZrO2 has a
lower Tresca stress than Al2O3-on-Al2O3 and Si3N4-on-Si3N4 couplings. It demonstrated
that the ZrO2-on-ZrO2 coupling had the best performance to reduce the risk of primary
postoperative failure than other ceramic-on-ceramic couplings in the current study. To
provide clinical relevance to the results of the current study on material selection for
ceramic-on-ceramic couplings, research from biomedical perspectives, such as material
composition and potential negative body responses, need to be carried out separately from
the biomechanical perspective in the form of Tresca stress.
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