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Abstract: In this study, we conducted field experiments to assess the effects of the combined ap-
plication of Chinese milk vetch (Astragalus sinicus L., CMV) and red mud (RM) to remediate the
cadmium-polluted acidic paddy soil. The results showed that the combined application increased the
yield component index and improved the grain yields, compared with the control, RM1, RM2, and
CMV treatments. However, the increased range of soil pH values in the CMV-RM1 and CMV-RM2
treatments was smaller than that of the RM1 and RM2 treatments at the different rice growth stages.
The soil organic matter (SOM) contents of the RM-only treatments did not differ throughout the whole
period, but were significantly different (p < 0.05) between CMV-RM2 and the control. Compared
with the control, the combined application decreased the concentration of exchangeable Cd in the
early rice soil. The combined application of CMV and RM substantially decreased the rice uptake of
Cd. However, we found no significant difference (p < 0.05) between the CMV-RM1 and CMV-RM2
treatments. Therefore, compared with remediation with RM or CMV alone, we recommend the
combined application of CMV and RM as an economical, highly effective, and replicable amendment
for remediating acidic, Cd-polluted paddy soil. Considering the restorative effect and proper use of
RM, we recommend CMV-RM1 treatment.
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1. Introduction

Cd is highly toxic to humans, and a readily bioconcentrated heavy metal with a
biological half-life of 15–30 years [1]. The harm to human life posed by cadmium (Cd)
contamination is regarded as a major environmental issue on a global scale. At the moment,
Cd contamination is a major issue [2] and has received a lot of attention in several agricul-
tural regions of China [3]. Cd can lead to a variety of diseases by damaging the respiratory,
urinary, and skeletal systems. Consequently, the remediation of Cd-contaminated soils has
become a research focus for scientists worldwide [4]. Many studies have been conducted in
China and globally on remediation techniques for heavy-metal-contaminated soils [5]. As
a result of its ease of use, high efficacy, and cheap cost, in situ stabilization using several
soil amendments is an economical and effective method for treating Cd-contaminated
cultivated land [6].
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Red mud (RM), a potentially harmful byproduct of the manufacturing of alumina, has
the ability to cement porous aerial structures and has very fine dispersion, high specific
surface area, and good adsorption capabilities [7]. RM is an excellent material for reme-
diating the acidic Cd-polluted farmed soil, since it is inexpensive and simple to obtain.
Numerous studies on the use of red mud in agricultural output have been successful [8].
Red mud application has been shown in numerous research, including both laboratory
and field tests, to speed up the chemical conversion of soil Cd into Fe/Mn oxide fractions
and organic matter-bound fractions. RM contains low levels of essential nutrients such
as K, Mg, Cu, Zn, and Mn. Thus, RM application can significantly promote crop growth
and reduce Cd accumulation, which is attributed to the high pH [9]. The addition of
red mud (RM) considerably increases the conversion of heavy metals to a stable state in
farmlands [10–13], showing that the application of RM effectively reduces heavy metal
concentrations in lettuce. However, RM is an industrial solid waste discharged from Al
extraction in the Al industry [14–17] that also contains metals. The main metals in RM
are Cd, Pb, As, Cr, amongst others. Thus, the excessive application of RM poses certain
environmental risks [18].

Compared with physical and chemical methods, phytoremediation is an environ-
mentally friendly, low-cost, and sustainable soil restoration technique, and has gradually
attracted the attention of researchers [18–20]. Organic regulation is one of the most effective
methods of phytoremediation for heavy metal pollution in soil. Chinese milk vetch (Astra-
galus sinicus L., CMV) is commonly used as an organic regulatory plant for the remediation
of heavy-metal-contaminated soils [21]. According to recent studies, the CMV can also
remove heavy metals from contaminated soils [21–23]. CMV is a biennial Astragalus Linn.,
Leguminosae herb that has been widely planted in southern China for centuries as a type
of green manure [22]. As an amendment, it alters the solubility of Cu and Cd in the soil and
reduces their uptake by rice [24]. The introduction of CMV decreased Cd bioavailability
through changing the soil’s physical characteristics and reshaping the microbial population,
ultimately lowering Cd levels in rice grains [23]. However, the use of CMV still faces some
constraints, as with other phytoremediation techniques, such as with long-term treatment
and the relatively low remediation efficiency.

In this study, we investigated the feasibility of using a combination of CMV and
RM to remediate Cd-polluted soils by performing field experiments. We evaluated the
main effects of the interaction between CMV and RM, focusing on whether the combined
treatment with CMV and RM can be used as an amendment for the remediation of heavy-
metal-polluted farmland.

2. Materials and Methods
2.1. Site Description, Soil, RM and CMV

The experimental field was located in Xiangtan city, Hunan province, China (27◦54′50” N,
112◦58′30” E). The test area is 1500 m away from the Xiangjiang River, which has rich aquatic
resources. The use of the Xiangjiang River water for irrigation has been the leading cause of
the recent Cd pollution in the area. The soil is a reddish clayey soil, formed from the laterite
parent material of the quaternary period: an acidic fluvo-aquic paddy soil that developed
from river alluvium.

The region has a double-cropping system, with early rice cultivated from April to July
and late rice cultivated from July to October. The average annual temperature of the site is
16.7–17.4 °C, and the total annual precipitation is 1200–1500 mm. The main soil properties
of the 0–200 mm layer in the study field are described in Table 1.

RM, which was produced by a combined Bayer and sintering process, was supplied
by the China Great Wall Aluminum Corporation. The pH of the RM was 11.3. The
concentrations of available nitrogen, available phosphorus and available potassium were
7.21, 1.18, and 4.1 mg kg−1, respectively. The total concentration of Cd in the RM was
0.48 mg kg−1.
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Table 1. Values of main soil properties in this study.

pH
Organic Matter

(OM)
g kg−1

Available N
(AN)

mg kg−1

Available P
(AP)

mg kg−1

Available K
(AK)

mg kg−1

Cation Exchange
Capacity (CEC)

mmol kg−1

5.4 ± 0.3 31.6 ± 1.1 375.2 ± 10.2 7.2 ± 0.8 103.5 ± 2.3 154.8 ± 5.6

For CMV, Xiangzi 4 (registration number: XPD015-2015) was the experimental variety,
which was selected and bred at the Hunan Academy of Agricultural Sciences, Chang-
sha, China.

2.2. Experimental Setup and Sampling

We applied six treatments, as follows: (1) control: without RM and without CMV;
(2) RM1: application of 3000 kg hm−2 RM; (3) RM2: application of 4500 kg hm−2 RM;
(4) CMV: application of CMV; (5) CMV-RM1: application of CMV and 3000 kg hm−2 RM;
and (6) CMV-RM2: application of CMV and 4500 kg hm−2 RM. For the trial, we applied a
randomized complete block group design, with three replicates in each treatment group.
We planted all treatments with early rice only. We conducted the field study between April
and July 2019. For our experiment, we divided one experimental field into 18 subplots
(4 × 5 m for each pot), which we separated by a ridge that was 400 mm wide.

The ground was turned and raked, the fresh CMV in the CMV treatment was cut
10 days before early rice transplanting, and 22,500 kg hm−2 was incorporated into the soil in
April 2019, 15 days in advance of rice transplanting. We used the same application rates of
conventional fertilization (N, P, and K of 150.00, 32.75, and K 74.68 kg hm−2, respectively),
in the subplots as a base fertilizer at 18 days before rice transplanting. We transplanted
seedlings (Xiangzaoxian 45, Hunan Rice Research Institute, a conventional rice variety) on
23 April 2019 and harvested them on 29 July 2019 after 96 days of growth. In brief, from the
flowering to the tillering stage, we intermittently applied irrigation to the subplots under
continuously tilling until day 54. The subplots were then drained for 7 days (days 55 to 61),
and were then kept under dry-wet alternations until day 81. Finally, the subplots were
exposed for 82–96 days. Other field management practices during the growing season in
this trial were consistent with those applied in local fields.

We collected soil samples before planting and after harvesting the rice. The fresh
soil sample in each plot for a mixed sample was collected at a depth of 0–20 cm. Soil
samples were air-dried in the shade and pulverized with an agate mortar. Subsequently,
the sample was passed through 2 mm and 0.149 mm sieves, to determine the basic physical
and chemical properties and the mass ratio of different forms of Cd in the soil. The basic
physical and chemical properties of red mud were determined by conventional methods.
Soil and red mud were digested with HNO3-HCIO4-HF. Wet digestion with HNO3-HClO4
was used for rice digestion. Poplar leaves (GBW0764) as an internal standard were used for
quality control. After the first soil sample collection, we sowed the rice. During the various
rice growth stages, including at early tillering, active tillering, booting, milk production,
and maturity, we analyzed the soil pH and Cd fraction of the soil samples. After the
samples had been completely digested, we drove the acid to nearly dry, added a small
amount of dilute nitric acid solution to dissolve it, and transferred a fixed volume to be
tested. The method of Tessier [25] was used to determine the content of Cd in the soil. After
harvesting the rice, we measured the index of the yield components, and collected rice
grains to analyze the yield and Cd content. We collected and removed all the rice straw
from the plots, to determine the yield.

2.3. Analytical Methods

We determined the Cd content in rice as follows: we separated brown rice and rice
hulls using a dehusker (JLGJ4.5, Taizhou Food, Taizhou, China). We digested the brown
rice, 0.5 g (dry weight) using HNO3 and HClO4 (4:1, v/v). After cooling, solutions were
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diluted to 25 mL using 2% HNO3. and then filtered. We measured the Cd concentrations in
the digested solutions using a flame atomic absorption spectrometer (AA6300, Shimadzu,
Tokyo, Japan), and calculated the Cd concentrations in the brown rice. We quantified the
SOM content using the K2Cr2O7 oxidation method. We analyzed the total Cd in the soil,
based on previously reported methods [12,14]. We used a TZS-RHW-4HG device (Zhejiang
Topu Yunnong Technology Co., Ltd., Hangzhou, China) to measure soil pH in the field. All
chemicals and reagents were of analytical grade and provided by Changsha Yufusheng
Chemical Glass Instrument Co., Ltd. (Changsha, China). We determined the fraction of Cd
in the soil following a previously reported method [25]. We used Statistical Product and Ser-
vice Solutions (SPSS, version 21.0, International Business Machines Corporation, Armonk,
NY, USA) to perform a three-way analysis of univariate statistics and correlation analysis.

One-way analysis of variance (ANOVA) was used for multiple comparisons of LSD
(p < 0.05, p < 0.01). The graphs were generated using the Origin 2021. Pearson’s correlation
coefficients (R values) with the respective probabilities (P) were used to determine the
significance between different parameters (p < 0.05, p < 0.01).

3. Results and Discussion
3.1. Yield Component Characters of Rice

Among the treatments, CMV-RM2 plants were the tallest, had the most effective spikes,
greatest number of grains on the spike, and fruit set, and the highest 1000-grain weight
(Table 2). Plant height was not significantly different between the–CMV-RM2 treatment
and the other treatments (p > 0.05), except for the control group. The effective panicles
and grain number per panicle were significantly different between CMV-RM2 and the
other treatments (p < 0.05), except for the CMV-RM1 treatment. Seed setting significantly
differed between the CMV-RM2 treatment and the other treatments (p > 0.05), except for
the CMV and CMV-RM1 treatment. The 1000-grain weight did not significantly differ
between the CMV-RM2 treatment and the other treatments (p > 0.05), except for the control
and RM1 treatments. Plant height, effective panicles, grain number per panicle, 1000-grain
weight, and seed setting rate, were not significantly different between the CMV-RM1 and
CMV-RM2 treatments (p> 0.05). The combined CMV and RM application increased plant
height, effective panicles, grain number per panicle, 1000-grain weight, and seed setting
rate. These indices demonstrate the positive effect of the combined application of CMV
and RM on increasing rice yield.

Table 2. Plant height, effective panicles, grain number per panicle, seed setting rate, and 1000-grain
weight increases (%) of CMV-RM2 compared with the other treatments.

Compared with

Control RM1 RM2 CMV CMV-RM1

CMV-RM2
increased

%

plant height 5.85 3.41 2.78 1.31 0.95
effective panicles 24.30 19.82 12.71 10.83 3.91

grain number per panicle 15.36 11.99 6.98 5.80 3.51
seed setting rate 6.94 4.15 3.29 2.33 1.27

1000-grain weight 4.55 3.69 3.27 2.85 2.43

Note: Control, without RM and without CMV; RM1, application of 3000 kg hm−2 RM; RM2,: application of
4500 kg hm−2 RM; CMV, application of CMV; CMV-RM1, application of CMV and 3000 kg hm−2 RM; CMV-RM2,
application of CMV and 4500 kg hm−2 RM.

3.2. Rice and Straw Yield

Rice and straw yields fluctuated for the different treatments (Figure 1). The rice yield
positively correlated with the combined application of CMV and RM. The grain and straw
yields did not significantly differ between the CMV-RM1 and CMV-RM2 treatments. The
grain yields of the CMV-RM1 and CMV-RM2 treatments were significantly (p < 0.05) higher
than those of the control and the RM1, RM2, and CMV treatments by 14.65%, 10.07%,
8.73%, and 4.84%, and by 13.52%, 8.98%, 7.65%, and 3.80%, respectively; however, we
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found no significant difference when comparing the CMV-RM1 and CMV-RM2 treatments
with the CMV treatment. The straw yield in the CMV-RM1 and CMV-RM2 treatments was
significantly higher (p < 0.05) than in the control and the RM1, RM2, and CMV treatments,
by 6.95%, 4.47%, 2.63%, and 0.40%, and 6.59%, 4.12%, 2.29%, and 0.06%, respectively.
However, we found no significant difference between the CMV-RM1 and CMV-RM2
treatments and the CMV treatment.
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Figure 1. Rice and straw yields under different treatments (LSD Test, different letters above the
bars represent statistically significant different, p < 0.05, p < 0.01). Note: Control, without RM and
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application of CMV; CMV-RM1, application of CMV and 3000 kg hm−2 RM; CMV-RM2, application
of CMV and 4500 kg hm−2 RM.

Therefore, we found that the combined application of CMV and RM had a remarkable
effect on early rice and straw yields. Accordingly, we recommend the CMV-RM1 treatment
in terms of rice and straw yields.

3.3. Change in Soil pH

The soil pH values of the different treatments and stages in the early rice seasons
fluctuated (Figure 2). Compared with the control and CMV treatments, the pH value of
the soil increased as the RM application rate increased at the different rice growth stages.
The pH in the RM treatment decreased as the growth period progressed. However, the
soil pH of the CMV-RM1 and CMV-RM2 treatments was lower than that of the RM1 and
RM2 treatments at the different rice growth stages. The soil pH of the CMV treatment
was generally the lowest among all the treatments at the different rice growth stages. At
the different growth stages, the pH value of the soil treated with RM was higher than in
the control group, mainly because the RM was alkaline, and an acid-base neutralization
reaction occurred when the RM was applied to acidic soil, which increased the soil pH.
Over time, the soil pH value gradually decreased during the tillering and booting stages,
and tended to stabilize during the milk and mature stages. We provide the following
explanations as a possible reason for this decrease: we incorporated the CMV into the
paddy soil before we transplanted the rice and prepared the field, and CMV had a phased
effect on soil pH. The pH of the CMV decreased in the early to middle stages. Decreasing
soil pH after plant material addition has also been reported previously. In the later stages,
the pH of the CMV increased in the treatments, compared with the control group [26,27].
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The soil has a self-buffering capacity. The pH of the soil tended to return to its initial
level. In contrast, rice roots produce secretions during growth, containing large amounts
of H+ and organic acids (such as lactic, oxalic, malic, and formic acids). These secretions
increase the concentration of H+ in the soil, acidify the rhizosphere soil, and decrease
soil pH. In the tillering and booting stages, rice grows vigorously, the production of root
exudates is relatively high, and the soil pH is also relatively strongly regulated. Except
for the control and CMV treatments, the pH values of all soils in the RM treatments were
higher than those of the background soil at different rice growth stages, which indicated
that the application of RM increased the soil pH value in a short time and that this increase
was sustainable. Considering the effects on soil pH, when applied to remediate heavy-
metal-contaminated soils, RM may provide beneficial long-term results.

3.4. Soil Organic Matter in Paddy Soil

The SOM content is a critical factor affecting crop productivity because of its essen-
tial role in maintaining the physical, chemical, and biological [28–30] properties of the
soil [31–34]. In this study, the SOM content decreased throughout the growth period
(Figure 3). The SOM content of the different treatments changed minimally over the entire
growth period, with a maximum change of only 3.4 g kg−1. The SOM content did not differ
significantly between the RM-only and control groups (p > 0.05). The SOM content differed
significantly between the CMV treatment and the control treatment, but not significantly
amongst the CMV, CMV-RM1, and CMV-RM2 treatments in the early tillering stage. Except
for the CMV-RM2 treatment, the SOM content did not differ significantly amongst the
other treatments during the active tillering stage (p > 0.05). Except for the CMV-RM1 and
CMV-RM2 treatments, the SOM content did not differ significantly amongst the different
treatments in the booting, milk, or maturity stages (p > 0.05). Therefore, treatment with RM
alone produced no differences in the SOM over the entire period. We observed a significant
difference between the CMV-RM2 treatment and control groups (p < 0.05), potentially
related to the composition of the RM. Moreover, as a type of green manure, the use of
CMV in soil is a beneficial practice for agricultural production. Sustainable cultivation
systems can be enhanced by improving soil nutrients [31,33,34], stimulating microbial
activity [35,36], and reducing weed density and abundance [37].
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Figure 3. The SOM of different treatments and different stages (standard error). Note: control, without
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RM; CMV, application of CMV; CMV-RM1, application of CMV and 3000 kg hm−2 RM; CMV-RM2,
application of CMV and 4500 kg hm−2 RM.

3.5. Cd Fractions

We used the continuous extraction method to analyze the effectiveness of the combined
CVM-RM application in remediating the soil. The five forms of Cd in soil are exchangeable
(EXC), carbonate (CA), manganese oxide (Fe-Mn), organic matter bound (OM), and residual
(RES) [38]. Normally, metals in the aqueous phase are directly uptaken by field crops. In
addition, field crops prefer to uptake EXC when both EXC and CA are present. The
other three forms are unavailable components and difficult for field crops to take up. The
structure and distribution of the Cd forms in the soil are shown in Figure 4.

The exchangeable forms accounted for less than 30% of the Cd in the soil during the
early rice cultivation stage. Compared with that in the control, the concentration of EXC-Cd
decreased in the early tillering stage by 11.46% (RM1), 17.01% (RM2), 4.31% (CMV-RM1),
and 9.12% (CMV-RM2). Except for CMV, EXC-Cd decreased in the active tillering stage by
14.84% (RM1), 20.04% (RM2), 4.93% (CMV-RM1), and 8.69% (CMV-RM2). Except for CMV,
EXC-Cd decreased in the booting stage by 4.81% (RM1), 20.01% (RM2), 9.03% (CMV-RM1),
and 13.44% (CMV-RM2). Except for CMV, EXC-Cd decreased in the milk stage by 6.84%
(RM1), 11.21% (RM2), 4.28% (CMV), 16.21% (CMV-RM1), and 22.44% (CMV-RM2), and in
the maturity stage by 13.67% (RM1), 21.53% (RM2), 18.39% (CMV), 24.82% (CMV-RM1),
and 30.85% (CMV-RM2). Exchangeable Cd is the most toxic form. With the combined
application of CMV and RM, EXC-Cd transformed into CA-Cd, Fe-Mn-Cd, and Res-Cd.

When applied to rice soils as green manure, CMV not only enhances fertility but also
improves the structure of soil macroaggregates and stimulates microbes. Many organic
acids and polysaccharides are produced and released by enhanced microbial activity in fer-
tilized soil [31,38–40]. In addition, the micropores in soil macroaggregates are transformed
into macropores by organic acids and polysaccharides [41]. The accumulation of Zn and
Cd in wheat straw or cereals does not increase following the application of organic manure
or compost, part of which can be attributed to the dilution of these two elements in the
larger biomass [42,43]. The results of this experiment are consistent with those reported by
Jarrell and Beverly [44]. Treatment with CMV decreased the amount of available Cd.
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Figure 4. Geochemical fractions of soil Cd at early tillering, active tillering, booting, milk, maturity
and different stages of rice growth: EXC, CA, Fe-Mn, OM and Res are exchangeable, carbonate
bound, iron-manganese oxide bound, organic and residual fraction. Note: control, without RM and
without CMV; RM1, application of 3000 kg hm−2 RM; RM2; application of 4500 kg hm−2 RM; CMV,
application of CMV; CMV-RM1, application of CMV and 3000 kg hm−2 RM; CMV-RM2, application
of CMV and 4500 kg hm−2 RM.

The Fe and Al oxides in RM contain surface-active sites that are associated with heavy
metals. The general combination fixes heavy metals, thus forming iron aluminum oxide
combined with heavy metals, which are difficult for field crops to take up and use [45].
Fe and Al oxides introduce new adsorption surfaces to the soil, which can stabilize heavy
metals through physisorption, chemisorption, or physicochemical adsorption. An increase
in pH is the most direct reason for decreases in Cd activity in the soil. Of the five Cd species,
four (all except OM-Cd) were affected by the change in soil pH in this study. As RM was
alkaline, once we applied the RM to the soil the increase in soil pH caused a large amount
of soluble Cd to enter the insoluble state.

Therefore, compared with the CMV-only and RM-only methods, the combined appli-
cation/repair of CMV and RM prevented both the pH decrease produced by CMV and
decomposition, increased the pH with the addition of RM, and improved the structure of
the soil aggregates.
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3.6. Cd Concentration of Brown Rice

We also observed a reduction in the total Cd concentration in rice in this study
(Figure 5). Compared with the control, the Cd concentrations in the RM1, RM2, CVM,
CVM-RM1, and CVM-RM2 treatments decreased by 13.79%, 41.38%, 20.69%, 44.83%, and
55.18%, respectively. Thus, the Cd reduction with the combined application in the CMV-
RM1 and CMV-RM2 treatments was greater than in the other treatments. However, we
observed no significant difference. This result suggests that the combined application of
CVM and RM as a soil remediation method substantially reduced the uptake of Cd by rice.
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Figure 5. Total Cd concentration of different treatments in rice (LSD Test), defferent letters above the
bars represent statistically significant different, p < 0.05. Note: control, without RM and without CMV;
RM1, application of 3000 kg hm−2 RM; RM2: application of 4500 kg hm−2 RM; CMV, application of
CMV; CMV-RM1, application of CMV and 3000 kg hm−2 RM; CMV-RM2, application of CMV and
4500 kg hm−2 RM.

4. Conclusions

The combined application of Chinese milk vetch (Astragalus sinicus L.) and red mud
decreased Cd bioavailability and the Cd content of rice. The application of a certain amount
of red mud in acid tide mud fields with moderate and mild Cd pollution can significantly
improve rice yield, while significantly increasing soil pH value and SOM; reducing the
available Cd mass ratio in soil reduced the Cd mass ratio in brown rice. The use of joint
repair technology overcomes the shortcomings of using red mud or Chinese milk vetch to a
certain extent, improves the repair efficiency, and reduces the repair cost and risk from only
red mud or Chinese milk vetch. The results of the field trials showed that the combined
application of CMV and RM is an economical, efficient, and replicable amendment for the
remediation of Cd-contaminated fields. We found no significant differences between the
CMV-RM1 and CMV-RM2 treatments. Given the restorative effect, and with an appropriate
use of RM, we recommend the CMV-RM1 treatment. In future studies, researchers should
widen the selection of CMV species from a set of joint remediation models, and apply them
to the remediation and protection of contaminated farmland soil after testing.
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