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Abstract: Accurate prediction of PM2.5 concentration for half a day can provide valuable guidance
for urban air pollution prevention and daily travel planning. In this paper, combining adaptive varia-
tional mode decomposition (AVMD) and multivariate temporal graph neural network (MtemGNN),
a novel PM2.5 prediction model named PMNet is proposed. Some studies consider using VMD to
stabilize time series but ignore the problem that VMD parameters are difficult to select, so AVMD is
proposed to solve the appealing problem. Effective correlation extraction between multivariate time
series affects model prediction accuracy, so MtemGNN is used to extract complex non-Euclidean
distance relationships between multivariate time series automatically. The outputs of AVMD and
MtemGNN are integrated and fed to the gate recurrent unit (GRU) to learn the long-term and short-
term dependence of time series. Compared to several baseline models—long short-term memory
(LSTM), GRU, and StemGNN—PMNet has the best prediction performance. Ablation experiments
show that the Mean Absolute Error (MAE) is reduced by 90.141%, 73.674%, and 40.556%, respectively,
after adding AVMD, GRU, and MtemGNN to the next 12-h prediction.

Keywords: prediction of PM2.5 concentration for half a day; adaptive variable mode decomposition;
multivariate temporal graph neural network; gate recurrent unit

1. Introduction

The rapid development of the global economy has aggravated the air pollution. Ac-
cording to WHO, the air pollution causes 7 million deaths worldwide every year, mainly
due to stroke, heart disease, chronic obstructive pulmonary disease (COPD), lung cancer,
and acute respiratory infection [1]. A large number of environmental epidemiology studies
have found that PM2.5 can carry viruses from the air into human body, inflicting severe
harm to the human body [2]. PM2.5 reaches the throat and lungs via the nasal passage,
invading the human circulatory system and causing a variety of adverse health conse-
quences, including increased mortality, pulmonary dysfunction, cardiovascular disease
(CVD), and allergic reactions [3–5]. A recent study demonstrates high concordance between
PM2.5 pollutants and childhood asthma incidence and that PM2.5 reduction to 5 µg/m3

in Cartagena City would reduce 240 cases of childhood asthma per year [6]. The relevant
studies show that PM2.5 enters the human body during respiration and triggers a series
of cellular oxidative stress responses. Under the stimulation of harmful substances, the
human body produces excessive reactive oxygen free radicals, causing physiological and
metabolic function disorders in the cells. However, excessive reactive oxygen free radicals
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harm the reproductive system, and even cause infertility [7,8]. After the onset of ongoing
COVID-19 pandemic caused by SARS-CoV-2, it is believed that the viruses are transmitted
through the diffusion of respiratory droplets and close contact [9].

So far, some scientific studies on the spread of SARS-CoV-2 viruses in the human body
have revealed that the infection is related to the concentration of PMs in the air [10,11]. A
few Italian researchers have also found through experiments that the SARS-CoV-2 RNAs
can hitch a ride on PMs, and PM10 and PM2.5 are effective carriers for the propagation and
diffusion of SARS-CoV-2 viruses [4,12]. The air pollution caused by PM2.5 poses a huge
threat to human health. Therefore, there is an urgent need for an accurate and efficient
PM2.5 prediction method.

An accurate PM2.5 prediction provides reliable guidance for the government, envi-
ronmental protection organizations, and other institutions to formulate the environmental
governance strategies. In addition, it allows ordinary people to know the PM2.5 concen-
tration in the upcoming half a day, and make travel and work arrangements accordingly
in advance, which helps each person to avoid the harm of pollution as much as possi-
ble [13,14]. The numerical simulation methods require detailed geographic information
for terrain analysis. The model establishment in this type of method is complex and is not
universally applicable [15,16]. On the other hand, the model establishment in statistical
methods is based on the data obtained through data mining, thus eliminating the need to
consider the specific geographical environment. This gives the statistical methods good
performance and high universality. In the early stages, some researchers used traditional
statistical methods based on multivariate statistical analysis to predict PM2.5 concentra-
tion [17,18]. However, using the traditional statistical methods to predict PM2.5 does not
yield satisfactory results because PM2.5 time series data are highly nonlinear and unstable
due to various factors [19]. Therefore, the space for applying traditional statistical methods
in PM2.5 prediction is very limited.

With the rise of artificial intelligence, the traditional machine learning techniques are
applied to PM2.5 prediction. The extreme learning machine (ELM) was used to predict
the concentrations of air pollutants in an experiment carried out in Hong Kong [20]. As
compared with the traditional statistical methods, ELM exhibited better generalization
ability, faster learning speed, and higher accuracy in predicting PM2.5 concentration.
The emergence of deep learning has led to a leapfrog progress in enhancing the PM2.5
prediction capability. The long short-term memory (LSTM) was used for PM2.5 prediction
and it achieved good results [21,22] demonstrating the effectiveness of LSTM network in
PM2.5 prediction. Later, the GRU was introduced in the PM2.5 prediction [23], which
exhibited better performance in parameter updating, convergence time, and generalization
as compared to LSTM. This indicates that the GRU is more suitable for PM2.5 prediction.

In order to pursue more accurate and reliable prediction results, more and more re-
searchers applied integrated models for PM2.5 prediction [24,25]. An integrated model
combining CNN and LSTM was proposed for PM2.5 prediction [26]. This model exhibits
good feasibility and practicability as compared with SVM, RD, DT, MLP, CNN, and LSTM
architectures. The ANN, CNN, LSTM, and other hybrid models are used to extract the
spatiotemporal relationship [14] for predicting the air quality for next 48 h. The proposed
spatiotemporal model needs complex a priori relationship based on Euclidean distance for
extracting the spatial correlation features, which is complex and inefficient. The mutual
information was used to analyze various factors affecting PM2.5 concentration, includ-
ing spatial relationship [27]. A comparison of the air pollutant data in different regions
revealed that the PM2.5 data in a region have stronger correlation with the data of other
air pollutants in the same region. Therefore, the other air pollutants in the same region
should be considered first. However, the process of effectively extracting the correlation
between PM2.5 and other features is still a problem to be solved. In order to address
this problem, StemGNN, a multivariate time series prediction model that does not need
the prior knowledge was proposed [28]. This model uses a self-attention mechanism to
automatically construct the graph structure of multivariate time series, and then uses the
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graph convolution to extract the graph structure features. This model provides a fresh idea
for extracting the correlation between PM2.5 and other air pollutants in the same area.

On the other hand, some researchers believed that PM2.5 is a non-stationary time series
and considered introducing signal decomposition techniques to decompose the PM2.5
data into a set of stationary IMFs (modes). For example, EMD was used to decompose
PM2.5 data into a set of smooth IMFs [29,30]. However, EMD is prone to the mode mixing
problem [31], which seriously affects the decomposition effect. Later, VMD was used for
quadratic decomposition to solve the modal mixing problem of general decomposition
algorithms [32]. As VMD incorporates the bandwidth constraints, it effectively solves the
mode mixing problem [33]. However, automatically selecting the decomposition mode
number K and the center frequency constraint strength α still needs to be solved.

They are taken together; given the above problems to be solved, this paper further
studies the influence of the decomposition algorithm, multivariate variables’ correlation
extraction, and long-term and short-term memory characteristics of time series on PM2.5
prediction accuracy. The contributions of this paper are summarized below.

1. A novel AVMD is proposed to automatically find the optimal combination of K and
α, which perfectly solves the difficulty of determining the modal number K and bandwidth
constraint degree α in VMD decomposition. The PM2.5 data are decomposed into a series
of stable IMFs with salient characteristics based on AVMD, which greatly improves the
prediction accuracy of the model.

2. In MtemGNN, a self-attention mechanism is used to automatically construct the
correlation graph structure of PM2.5 and other air pollutants in the same area. In addition, a
graph convolution network (GCN) is used to extract the structural features of the correlation
graph of PM2.5 and other air pollutants. The use of GNN provides a fresh idea for extracting
data correlation features of PM2.5 and other air pollutants.

3. A GRU is employed to extract the temporal characteristics of long-term time series.
This not only solves the problems of gradient disappearance and gradient explosion in the
long-term sequence training, but also reduces the number of unnecessary calculations, thus
greatly improving the prediction accuracy of multi-step PM2.5 prediction.

4. An experiment using a real dataset acquired in Beijing revealed that the proposed
hybrid prediction model is far superior than the existing baseline models. In addition
to its high performance for 3-h prediction, the PMNet still maintains a high accuracy in
predicting PM2.5 concentration for half a day, giving more time for ordinary people to take
protective measures and the government to control air pollution.

The remainder of this paper is organized as follows:
The Section 2 introduces the structure of the PMNet and the research methods.

Section 3 describes the experiment results. Section 4 analyzes and discusses the exper-
iment results. Section 5 presents the conclusions.

2. Methods
2.1. Overview of the PMNet

A new hybrid model PMNet is proposed in this paper. The PMNet has two branches.
Among them, one is responsible for adaptive decomposition of PM2.5 signal and the other
is used for extracting the correlation features of PM2.5 and other air pollutants. The overall
framework of the PMNet is shown in Figure 1. The AVMD analyzes the characteristics
of the target PM2.5 data, automatically determines the number of signal decomposition
modes K and bandwidth constraint strength α, and then decomposes the PM2.5 data into a
set of stable IMFs. The correlation extraction unit embedded in MtemGNN automatically
extracts the correlation weight matrix W between multivariate time series X and constructs
the correlation graph structure G = (X, W) to represent the correlation between PM2.5 and
other air pollutants. The graph structure extracted by the embedded correlation unit is
fed to the GCN unit, then transformed by the graph Fourier transform (GFT) into spectral
domain for graph convolution feature extraction. The outputs of the two branches are
integrated into one piece for GRU to learn the long-term and short-term dependence of the
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time series, thus obtaining the prediction results. The details of the structure and related
method are provided in the subsequent sections.
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Figure 1. The structure of the PMNet.

2.2. AVMD

After setting the number of decomposition modes K and the central frequency band-
width constraint α, VMD [34] decomposes the original non-stationary sequence into K
IMFs, each confined in a specific bandwidth around its center frequency. The constraint
degree α of the center frequency determines the bandwidth constraining degree of the IMF
(please refer to Appendix A for a detailed description of VMD). The constraint strength α
of center frequency bandwidth and the decomposition mode number K affect the quality of
VMD decomposition considerably. When the value of K is fixed, a big value of bandwidth
constraint degree α means that the decomposed modes will lose some information, which
will make the sum of all decomposed modes deviate significantly from the real signal. The
compensation method used to avoid large deviations is to increase the decomposition mode
number K. However, further increasing K leads to over decomposition, which increases
the accumulated error in model prediction, thus increasing the difficulty in improving
the prediction accuracy of the model. When the value of α is small, although a small
value of modal number K can be used, the phenomenon of mode mixing occurs, which is
also not conducive to achieving high accuracy in model prediction. In order to solve the
difficulty in selecting VMD decomposition parameters, this paper proposes a novel AVMD.
The proposed AVMD automatically finds the optimal K-α combination on the basis of
quantifying the VMD decomposition effect, and then decomposes the target data. The steps
of AVMD decomposition are shown in Figure 2. The key steps include the quantization of
VMD decomposition effect and the selection of optimal parameter combination. A detailed
description is provided in the two subsequent sections.
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2.2.1. Quantification of VMD Decomposition Effect

The reconstruction error (RE) should be considered first to quantify the VMD decom-
position effect. In order to make the decomposed signal as close to the original signal as
possible, the value of RE should not be too large. The RE is defined as follows:

RE =
N

∑
t=1

∣∣∣∣∣x(t)− K

∑
k=1

uk(t)

∣∣∣∣∣ (1)

where, uk is the k-th sub mode of decomposition, x(t) is value corresponding to the time t
of the original time series, and N is the length of the decomposed time series.

Increasing K or decreasing α continuously makes RE very small, but this may lead
to over decomposition or mode mixing. Therefore, it is also necessary to find a metric
to measure the degree of modal mixing in VMD decomposition and select the minimum
value of K on the premise of ensuring acceptable degree of modal mixing and avoid over
decomposition. As discussed, each IMF resulting from decomposition is confined within
a specific bandwidth around its center frequency. The IMFs with severe mode mixing
usually have more peaks and wider bandwidth, while IMFs with less severe mode mixing
usually stay in a narrow bandwidth around the central frequency. Therefore, the spectrums
of the IMFs with less severe mode mixing are better encompassed by a specific normally
distributed probability density function, as shown in Figure 3a. On the other hand, the
spectrums of the IMFs with severe mode mixing are more likely to dwell outside the specific
normally distributed probability density function, as shown in Figure 3b.

In this paper, a normally distributed probability density function centering on the
location of the central frequency of each IMF is constructed, and the degree of spectrum of
IMF dwelling outside the normal distribution is used as the metric to analyze the degree of
mode mixing. The relevant mathematical expressions are expressed as follows.

Sk =
1√
2πσ

exp(− (m−mk)
2

2σ2 ) (2)

fk = Rescaling(Γ(uk)) (3)

ek(m) =

{
fk(m)− Sk(m), fk(m)− Sk(m) ≥ 0

0, fk(m)− Sk(m) ≥ 0
(4)



Sustainability 2022, 14, 13191 6 of 22

AMME =
1
K

K

∑
k=1

M

∑
m=1

Akek(m)d (5)

where, Sk represents the normally distributed probability density function corresponding to
the k-th IMF, mk represents the location of the center frequency of the k-th IMF, and m is the
abscissa metric. For the convenience of normalizing the signal, the variance of the normally
distributed probability density function is set to σ = 0.4, which ensures that the highest
point of the normal distribution is equal to that of the normalized IMF. fk represents the
spectrum of the k-th IMF after moralization, Rescaling represents min-max normalization,
Γ(uk) represents the Fourier decomposition of uk, fk(m) represents the amplitude of the
spectrum fk at location m of the frequency metric, and ek(m) represents the error between
fk(m) and Sk (when the value of the fk(m) is greater than the Sk(m)). In order to effectively
quantify mode mixing, the distance d between m and the x-axis coordinate of its IMF center
frequency is defined to amplify the mode mixing of ek, which is far away from the center
frequency. Ak represents the amplitude corresponding to the center frequency of the k-th
IMF. The larger the value of Ak, the larger is the proportion of the IMF spectrum in the total
signal spectrum and more important is the IMF. Therefore, the spectra of IMFs with large
Ak are less tolerant to mode mixing. The average modal mixing error (AMME) efficiently
reflects the severity of mode mixing in VMD. The smaller the value of AMME, the lower is
the mode mixing degree in VMD decomposition and vice versa.

2.2.2. Selection of Optimal Parameter Combination

Please note that quantifying the VMD decomposition effect does not mean that the task
of finding the optimal combination of decomposition mode number K and center frequency
constraint strength α is accomplished. In order to find the K-α combination that yields
the optimal VMD decomposition result, one complex and time-consuming method is to
calculate the AMME and RE values for all possible parameter combinations. In principle, in-
creasing the decomposition mode number K or decreasing the central frequency constraint
strength α reduces the RS value. In addition, the rate of change diminishes continuously,
and finally approaches saturation. Increasing the decomposition mode number K or the
central frequency constraint strength α reduces the value of AMME, and the rate of change
diminishes continuously and finally approach saturation. This phenomenon is similar to
the effect of adjusting the filter size and network width in a neural network structure on
the model accuracy and time consumption, i.e., the phenomena of supermodularity and
submodularity [35]. Therefore, the problem of finding the appropriate K-α combination can
be transformed into a submodular optimization problem or supermodular optimization
problem. The definitions of supermodularity and submodularity are given in Appendix B.

Based on the supermodularity and submodularity, AMME and RE exhibit the change
in K and α. This work selects a part of K-α combinations to compute the corresponding
AMME and RE values. Then, the corresponding AMME and RE values are generated for
all possible parameter combinations by interpolation and monotonization. Finally, find
an appropriate K-α variety within the allowable error range. According to the variation
characteristics of RE and AMME obtained by changing the values of K and α, the initial K-α
combination should be as uniform as possible and the boundary values should be included.
The excessively small values of K should be avoided as other frequency domain signals may
be masked by large low-frequency components. When the value of K is too small, it leads
to inconsistency between the decomposition result and the theoretical value. As shown in
Figure 3c, when the selected value of K is low, most frequency domain signals are masked
by low-frequency and large value components. Therefore, they cannot be decomposed
and result in abnormal VMD decomposition. As shown in Figure 3d, an abrupt change
in AMME occurs when the value of K is small. Therefore, the smallest value of K before
abrupt change in AMME is regarded as the initial K.
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Figure 3. The visualization of different degrees of mode mixing and abrupt change in the minimum
value of K. (a) IMF with almost no mode mixing; (b) IMF with serious mode mixing; (c) Low-
frequency large-value IMFs affecting other frequency band division when the value of K is too small;
(d) AMME anomaly caused by excessively small value of K.

According to some initial K-α combinations, the original data are decomposed by
VMD to calculate the corresponding AMME and RE values, and then the inverse distance
weighting interpolation [36] is used to fill the values of AMME and RE corresponding
to all combinations within reasonable ranges. Due to the inherent submodularity and
supermodularity in AMME and RE, the AMME and RE should show monotonicity with an
increase in K or α. Please note that the real values obtained from the experiments are non-
monotonic due to various uncertainties. Consequently, a monotonic correction function
is required, which replaces the points that do not satisfy the monotonicity by correction
values generated based on the monotonic interpolation. Increasing K and decreasing α
continuously causes the RE and AMME to decrease monotonically and approach saturation,
but over decomposition and excessively weak central frequency constraint may occur. In
order to avoid over decomposition, AMME and RE should not be further reduced when
the condition of the maximum error (5%) is satisfied. When the maximum allowable error
(5%) is satisfied, the minimum value of K and the maximum value of α are selected to form
the optimal parameter combination. Finally, the optimal parameter combination is fed to
the VMD module to complete signal decomposition.
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2.3. MtemGNN

The graph neural network (GNN) that is a relatively new neural network, is a fusion
of graph structure and traditional neural network [37]. The introduction of graph structure
breaks the traditional representation of Euclidean distance and effectively represents the
intrinsic correlation between different objects. MtemGNN uses the graph structure in GNN
to represent the correlation characteristics of multivariate time series and is inspired by
StemGNN, which is a multivariate time series prediction method [28].

In this study, the spectral sequential cell responsible for learning the frequency charac-
teristics of a single time series in StemGNN is omitted in MtemGNN. There are two reasons
for this omission. First, the cell can only learn very limited time series information, which
is very inefficient as compared with AVMD’s ability of learning overall frequency character-
istics of a time series. More importantly, the frequency of short-term time series is usually
unstable, so the cell is not helpful for the extraction of time series features. MtemGNN
consists of a latent correlation layer and a GCN layer. As GNN needs a graph structure to
construct the correlation representation of multivariate time series, the latent correlation
layer is needed to automatically infer the correlation graph representation of multivariate
time series. The GCN layer is used to extract the features from a graph structure.

2.3.1. Latent Correlation Layer

For some specific structures, it is feasible to determine the graph structure between
them based on the prior knowledge, such as road network in traffic prediction. However,
in most circumstances, no prior knowledge is available for constructing the graph structure.
Therefore, the self-attention mechanism [38] is used to automatically learn the intrinsic
correlation graph structure of multivariate time series. Specifically, the self-attention
mechanism automatically calculates the correlation between each time series with all other
time series to obtain the correlation representation of the former. The multivariate time
series X is sent to the GRU to iteratively update the state of the hidden layer. The state of the
last hidden layer R is used to represent the entire time series. Afterwards, the correlation
between the time series is calculated by using the self-attention mechanism. The formula
for calculating self-attention correlation weight matrix is:

Q = RWQ, K =RWK, W = Softmax(
QKT
√

d
) (6)

where, Q and K represent “query” and “key”, respectively, which are calculated using the
linear projections of the learnable parameters WQ and WK in the attention mechanism. d is
the number of hidden dimensions in Q and K. The adjacent matrix of graph G, W ∈ RN×N

represents the correlation between the time series. The graph structure is represented by
correlation weight matrix and multivariate time series, as shown in Figure 4.
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2.3.2. GCN Layer

As shown in Figure 1, the GCN layer consists of two stacked GCN blocks [39]. The
residual connection mechanism is used to connect two GCN blocks for obtaining a deeper
model [40]. Specifically, the second GCN block attempts to construct the residual between
the real value and the reconstructed value of the first GCN block. Each block has two
branches, i.e., the forecasting branch for predicting future values and the backcasting branch
for reconstructing the historical values. The backcasting branch helps to learn the residual
representation and adjust the structure of the prediction model. As the number of edges
connected to each node in the graph structure varies from node to node, it is impossible
to perform convolution with a fixed convolution kernel. One classic and efficient graph
convolution method is to first convert the spatial domain data to spectral domain based on
GFT and then perform convolution GConv in spectral domain, and finally convert the data
back to the spatial domain through inverse graph Fourier transform (IGFT).

Similar to the traditional Fourier transform, the GFT [41] finds a set of orthogonal
bases and decomposes the graph based on these orthogonal bases for representation.
The process of decomposing the eigenvalues of Laplacian matrix in the graph is the pro-
cess of finding the orthogonal bases needed to construct the graph. The normalized
Laplace matrix [42] is expressed as Lsym = IN − D−

1
2 WD−

1
2 , where IN ∈ RN×N is the

unit matrix and D is a diagonal matrix whose diagonal values represent the number of
edges connected with each node. The eigenvalues of Laplace matrix are decomposed
into L = UΛUT , where U ∈ RN×N is the eigenvector of the matrix and Λ is the di-
agonal matrix of eigenvalues. For a given multivariate time series X ∈ RN×T , GFT,
GConv, and IGFT are defined as GF (X) = UTX = X̂, GConv

(
X̂
)
= σ

(
LsymX̂W l

)
, and

GF−1(GConv
(
X̂
))

= UGConv
(
X̂
)
, respectively, where W l is the learnable parameter

matrix and σ is the activation function.

2.4. GRU

The GRU [43] is a variant of the relatively new recurrent neural network and solves
the problems of gradient disappearance and gradient explosion during RNN training. The
GRU has a learning ability similar to LSTM, but its internal structure is simpler, which
means that a smaller number of calculations are required [44].

The GRU is composed of an update gate, a reset gate, and an output gate, capable of
effectively extracting the long-term and short-term features from a time series [45]. The
architecture of GRU is presented in Appendix C.

The update gate has the functions of forgetting and selective memory, which is equiv-
alent to the combination of LSTM input gate and forgetting gate. The calculation formula
of the update gate is shown in Equation (7), where zt represents the update gate, which is
used to control the extent to which the state information of the previous time is used in the
current state. The larger the value of the update gate, more information from the previous
state is used. h(t−1) represents the output vector of previous time and xt represents the
input vector of current time.

zt = σ(wz1ht−1 + wz2xt + b) (7)

The calculation process of the reset door is shown in Equation (8), where rt represents
the reset gate, which is used to control the amount of information from the previous time
used by the candidate information of the current time.

rt = σ(wr1ht−1 + wr2xt + br) (8)

The reserved information h̃t at the current time is updated as:

h̃t = tanh(wh1rtht−1 + wh2xt + bh) (9)



Sustainability 2022, 14, 13191 10 of 22

Considering the retention vector h̃t and the output vector after updating the output
gate, the output vector ht obtained at the current time is expressed as:

ht = (1− zt)ht−1 + zt h̃t (10)

where, wz2, wr2, and wh2 represent the weight of input xt in each operation. wz1, wr1, and wh1
represent the weight of output ht in each operation.

3. Experimental Results
3.1. Settings

The deep learning models used in this paper are developed using Python. The experi-
mental environment includes 64-bit Windows 10 operating system, Intel Core i5-10500H
processor, and main frequency 2.5 GHz. All the experiments in this work are conducted
under the same conditions.

The dataset used in our experiment is acquired during the period from 1 January 2018,
to 31 December 2021, in Beijing. The sampling interval was 1 h, i.e., 24 samples were taken
every day. The monitoring dataset is released by China Environmental Monitoring Station
on https://air.cnemc.cn:18007/ (accessed on 18 September 2022). The average value of all
sites was used as the Beijing PM2.5 data in this experiment to prevent a large number of
missing data due to the selection of single-site data. The dataset includes the concentrations
of AQI, PM2.5, PM10, SO2, NO2, O3, CO, and the average concentration of these pollutants
during the prior 8 h and the prior 24 h.

The experimental data are divided into three parts, i.e., 70% of the information is used
as a training set, 20% as a verification set, and 10% as the test set. It can be seen from the
data in Table 1 that the data of the last 24 h is used as input to predict the PM2.5 during the
next 12 h. The initial learning rate, epochs, and batch size are 0.001, 150, and 24, respectively.
MSE loss and RMS Prop are used as loss functions and optimizers, respectively.

Table 1. The main parameters of PMNet.

Parameter Name Value

Initial learning rate 0.001
Epochs 150

Batch size 24
Loss function Mean squared error (MSEloss)

Optimizer Root Mean Square Propagation (RMSProp)
Window size 24 h

Forecast horizon 12 h

3.2. AVMD Performance

In the AVMD experiment, a set of PM2.5 data acquired during 4000 consecutive hours
is used as an input of AVMD to estimate the best K-α combination. For the convenience
of observation, each IMF spectrum’s ordinate and abscissa metrics are normalized. To
effectively distinguish the mode mixing, the abscissa scale of the customarily distributed
probability density function is shrunken by ten times based on the experimental data.
By analyzing the data of PM2.5, power load, and electricity price, and by consulting the
relevant published papers in the field of AVMD, it is determined that the reasonable range
of α is (100, 3100) and the upper limit of K is (16).

AVMD automatically decomposes the PM2.5 data of Beijing into 10 IMFs with a center
frequency bandwidth constraint strength of 1000. The local curves of the original signal
and the decomposed IMFs were drawn to observe the stationarity of the IMFs after AVMD
decomposition. As shown in Figure 5, the low-frequency signals IMF1 and IMF2 determine
the general direction of the original signal, which is more stable than the original signal,
helping the model extract the features of the low-frequency signal. The internal signal

https://air.cnemc.cn:18007/
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frequencies of the remaining IMFs are fixed in a particular frequency band, respectively,
which is convenient for model feature extraction.
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The visualized mode mixing degrees of two typical IMFs are shown in Figure 6. Where
A1 and A10 represent the amplitudes of the center frequencies of IMF1 and IMF10, respec-
tively, m1 and m10 represent the indices of the normalized center frequencies, and MME
represents the degree of mode mixing of IMFs. The center frequency index in Figure 6a is 0,
and the center frequency index in Figure 6b is close to 1. The center frequency indices of
the remaining IMFs in Appendix D are scattered between 0 and 1, which verifies that the
IMFs obtained by AVMD decomposition have obvious internal frequency characteristics
and are easy to extract. As shown in Figure 6a, the spectrum with a larger amplitude value
A1 cannot tolerate larger modal mixing, so our AVMD algorithm can better constrain the
spectrum within the probability density function of the normal distribution. As shown in
Figure 6b, the spectrum with small amplitude values A10 can tolerate a certain degree of
mode mixing, thus the over decomposition as a result of pursuing low mode mixing degree
can be avoided.
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Figure 6. Visualization of mode mixing of two typical IMFs. (a) Low mode mixing degree of large
amplitude IMFs; (b) Small amplitude IMFs tolerating a certain degree of mode mixing.

The visualization of two typical cases of mode mixing with different degrees proves
that the proposed AVMD not only effectively reduces the phenomenon of mode mixing,
but also avoids over decomposition. An existing AVMD quickly finds the value of K
automatically by adding a decomposition quality evaluation criterion. However, it ignores
the central frequency bandwidth constraint of real α and over decomposition. As a result,
the value of K continuously increases in pursuit of low mode mixing degree [46]. Few
AVMDs use the prior knowledge obtained from data analysis to fix the value of K and
introduce the mode mixing degree evaluation metric to find an appropriate value of α. This
type of AVMD is only suitable for processing the data of some specific types and is not
universally applicable [47]. The AVMD proposed in this paper is based on sample data
analysis instead of prior knowledge. Therefore, it can be automatically and flexibly applied
to different types of data.

3.3. Performance Evaluation Indices

In this paper, MAPE, MAE, and RMSE are used as performance evaluation metrics to
evaluate the prediction accuracy of the model. These metrics are mathematically expressed as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ỹi − yi
yi

∣∣∣∣× 100% (11)

MAE =
1
n

n

∑
i=1
|ỹi − yi| (12)

RMSE =

√
1
n

n

∑
i=1

(ỹi − yi)
2 (13)

where, ỹi is the i-th prediction value and yi is the i-th real value. It can be seen from the
above formulas that the MAE calculates the difference between the predicted value and the
real value, and then takes the average value of the sum of absolute values. n is the length
of the time series.

Please note that the learning rate affects the experimental results. If the value of
learning rate is too large, the neural network does not converge. If the value of learning rate
is too small, the neural network is likely to fall into a local minima. In order to avoid the
unstable factors caused by improper setting of learning rate, all the tests in the experiment
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use dynamic learning rate, with the batch size set to 24 and epochs set to 150. The initial
value of learning rate is set to 0.0007 and is attenuated by 0.5 times after every 40 epochs.

3.4. Comparison of the PMNet with Other Prediction Methods

Considering their good performance in the previous PM2.5 prediction, LSTM and
GRU are used as baseline models to compare with PMNet. In addition, the multivariate
time series prediction model StemGNN is also compared. Considering that the multi-step
PM2.5 prediction is challenging for the baseline models, the prediction results with a time
step of 3 h are chosen for comparison (see Table 2).

Table 2. The results of different models for PM2.5 concentration prediction in different time periods.

Methods Metric +1 h +2 h +3 h Average

StemGNN MAPE(%) 16.126 22.167 30.212 22.835
MAE 2.014 3.268 4.726 3.336
RMSE 2.917 5.228 7.808 5.681

LSTM MAPE(%) 11.991 19.332 24.618 18.647
MAE 1.728 2.755 3.911 2.798
RMSE 2.598 4.811 7.001 5.129

GRU MAPE(%) 12.594 17.513 25.688 18.598
MAE 1.802 2.805 4.059 2.889
RMSE 2.790 4.697 6.990 5.122

PMNet MAPE(%) 5.401 5.112 5.103 5.205
MAE 0.558 0.646 0.666 0.623
RMSE 0.731 0.855 0.863 0.816

As compared with other models, the PMNet achieves the best performance in terms
of all evaluation metrics in the test of 3-h PM2.5 prediction. It is worth noting that the
performance of PMNet does not decrease significantly with an increase in time step, and
the baseline models exhibit poor performance in multi-step prediction. The value of PM2.5
is comparatively tiny compared to fluctuations, making the value of MAPE more sensitive.
The partial real value tracking curves can be seen in Figure 7. The curve predicted by
PMNet most of the time follows the natural value curve. LSTM and GRU can track the
approximate direction of the actual value but have lower prediction accuracy. The result
predicted by StemGNN is considerably different from the real value curve and has the
most insufficient confidence. The scatter plot containing the forecast effect at all times of
the test data is shown in Figure 8. R2 represents the correlation coefficient between the
actual values and the predicted values, and the larger the R2 value, the smaller the error
between the predicted values and the actual values. PMNet predicted, and truth values
are always clustered around the diagonal, indicating the lowest prediction error and the
best prediction performance. LSTM and GRU have a certain discreteness when predicted
values are significant, but most scattered points fall within the purple dotted lines on both
sides of the MAPE of 10%. Many scatter points in the StemGNN prediction are beyond the
dashed lines on both sides of the MAPE of 10%, which has the lowest reference value in the
3-h PM2.5 forecast.

3.5. Ablation Experiment

To better understand the effectiveness of different components in the PMNet, three
incomplete versions of the PMNet are designed to compare with the complete PMNet.

The incomplete and complete models are used to perform 12-h P2.5 prediction test.
The average errors of the models are calculated and compared. The results are shown in
Table 3.
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Table 3. A comparison of the average effect of different models predicting PM2.5 in the next 12 h.

Methods MAPE (%) MAE RMSE

PMNet 7.348 0.834 1.201
w/o MtemGNN 11.909 1.403 1.978

w/o GRU 26.020 3.168 4.387
w/o AVMD 61.711 8.459 14.454

w/o MtemGNN: The MtemGNN module is removed from the PMNet to observe
its impact. The Table 3 shows that the addition of the MtemGNN module in the PM2.5
prediction model reduces MAPE, MAE, and RMSE by 38.30%, 40.556%, and 39.282%,
respectively. The experimental results show that MtemGNN extracts the correlation features
between PM2.5 and other air pollutants efficiently, which greatly improves the accuracy of
the model.

w/o GRU: The GRU module is removed from the PMNet to observe its impact.
The Table 3 shows that the addition of the GRU module in the PM2.5 prediction model
reduces the MAPE, MAE, and RMSE by 71.76%, 73.674%, and 72.624%, respectively. The
experimental results show that the GRU learns the long-term time dependence of time series
efficiently. Therefore, it significantly improves the accuracy of PM2.5 prediction, which
demonstrates that the GRU is an indispensable part of an accurate PM2.5 prediction model.

w/o AVMD: The AVMD module is removed from the PMNet to observe its impact.
The Table 3 shows that the addition of the AVMD module in the PM2.5 prediction model
reduces MAPE, MAE, and RMSE by 88.093%, 90.141%, and 91.691%, respectively. The
experimental results show that the addition of AVMD results into a dramatic improvement
in the performance of the PM2.5 prediction model, which can be attributed to the ability
of AVMD to transform non-stationary time series into a series of stable IMFs. These IMFs
have prominent frequency characteristics and represent the spectral characteristics of time
series PM2.5 data, which is of great help to PM2.5 prediction model.

Figure 9 depicts partial (72 h) real value tracking curves of the ablation experiment.
Even if PM2.5 is predicted for the 12th hour in the future, the PMNet prediction curve still
closely follows the actual value curve, which indicates that the PMNet still has a reliable
prediction effect in the PM2.5 prediction at the 12th hour. In general, the model without
MtemGNN also has a good prediction effect. However, the prediction performance at the
peaks and troughs is still lacking, which reveals that adding MtemGNN significantly im-
proves multi-step prediction. w/o GRU and w/o AVMD did not perform well, highlighting
the importance of AVMD and GRU for half-day PM2.5 prediction.

The distribution of all the actual values and the predicted values in the ablation
experiment can be further displayed from the scatter plot in Figure 10. Compared with
PMNet, w/o MtemGNN has a more significant dispersion of scattered points, which
means that the correlation between the predicted and actual values is slightly worse. The
prediction effect of w/o GRU is worse than that of w/o MtemGNN, which reveals that
the long-term memory properties of time series are more important than the correlation
among multivariate time series. The predicted values of w/o AVMD are so different from
actual values that the prediction of PM2.5 at 12 h is no longer reliable. This demonstrates
that AVMD contributes the most to the model, followed by GRU and MtemGNN last.
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4. Discussion

This paper verifies the effect of the PM2.5 prediction model combining AVMD and
MtemGNN from multiple perspectives. First, the decomposition development is analyzed
by visualizing the sequence and spectra of IMFs in Figures 5 and 6. The proposed AVMD
effectively reduces the mode mixing problem while avoiding over-decomposition. This
result may be explained by the fact that AVMD considers reconstruction error and mode
mixing error to improve the quality of IMFs while choosing the smallest K. Secondly,
according to Table 2, Figures 7 and 8, comparing the prediction effects of PMNet and the
baseline model, PMNet is the most stable and accurate in multi-step PM2.5 prediction. It
is illustrated that AVMD and MtemGNN in the PMNet model have improved the PM2.5
prediction accuracy. Finally, the effect of each component inside PMNet is analyzed through
ablation experiments. Finally, the impact of each element inside PMNet is analyzed through
ablation experiments. Table 3 presents that AVMD is the most important, followed by
GRU and MtemGNN. This result implies that the PM2.5 smoothing process is the first
factor that should be considered in PM2.5 prediction, and the long-term and short-term
memory characteristics of time series are also required. Adding MtemGNN reduces
RMSE by 39.282%, which is still very helpful for improving the accuracy of multi-step
PM2.5 prediction.

To discuss the contributions of this paper more broadly, other studies in related fields
are described in Table 4. To be sure, all the studies made some progress. A note of caution
is due here since the RMSE of Huang et al. is much higher than others in the list, which
may be due to the use of the Beijing Capital Airport dataset with large and volatile data
values. The RMSE of Yang et al. is the lowest in the list but still slightly worse than the
RMSE = 0.731 predicted by PMNet at 1 h. An interesting finding is that the decomposi-
tion algorithm was used to stabilize PM2.5 in three studies, which again illustrates the
importance of PM2.5 stabilization and the guiding role of AVMD for subsequent analyses.
Another important finding is that six studies used variants of recurrent neural networks
(LSTM, GRU, biLSTM), which indicates that it is universally adaptable to extract long-
and short-term time-dependent features in PM2.5 predictions. Several studies proposed
using multiple input variables to predict PM2.5 but did not consider the correlation fea-
ture extraction between multivariate inputs that have been proven effective in PMNet. In
future research, combining the spatiotemporal relationship to improve PMNet may be an
important research direction.

Table 4. The recent studies on PM2.5 forecasting.

Authors and Ref. Forecast Horizon Data Sources Outcome Algorithms

Huang et al. [30] One hour Beijing RMSE = 11.372 EMD-GRU
Li et al. [31] One day Beijing RMSE = 1.2289 CEEMDAN-DSE-BVMD-CSA-KELM 1

Yang et al. [48] One hour Xi’an RMSE = 0.8909 AIVMD-RBF-IOWA-LSTM-EC 2

Gao et al. [49] One hour Gansu RMSE = 3.405 Graph-based Long Short-Term Memory (GLSTM)
Zhu et al. [50] One hour Shanghai RMSE = 4.2489 1D-CNN-biLSTM
Lei et al. [51] One hour Macao RMSE = 3.72 Random forest (RF)
Ho et al. [52] One day Korea RMSE = 8.2 LSTM
Yeo et al. [53] One hour Seoul RMSE = 7.962 CNN-GRU

1 Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), differential symbolic
entropy (DSE), variational mode decomposition improved by butterfly optimization algorithm (BVMD), and
kernel extreme learning machine optimized by crow search algorithm (CSA-KELM). 2 Agreement index variational
mode decomposition (AIVMD), radial basis function neural network (RBF), induced ordered weighted averaging
(IOWA) operator, long short-term memory neural network (LSTM) and error correction (EC).

5. Conclusions

This paper proposes a novel PM2.5 prediction model by combining AVMD and
MtemGNN, named PMNet. PMNet obtained outstanding results on a real dataset ac-
quired in Beijing. The AVMD not only effectively mitigates the mode mixing, but also
avoids the occurrence of over decomposition and effectively solves the difficulty of pa-
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rameter selection in VMD. The target PM2.5 data are automatically decomposed into a
series of stable IMFs by AVMD. Each IMF has prominent frequency domain characteristics.
As a result, it is easy to extract the intrinsic features from PM2.5 time series and signifi-
cantly improve the accuracy of PM2.5 prediction. The addition of GNN provides a fresh
idea for presenting the correlation between PM2.5 and other air pollutants, as well as for
extracting features from a time series. The results of ablation experiments demonstrate
that the addition of MtemGNN to the PM2.5 prediction model significantly improves the
prediction accuracy, which proves the effectiveness of MtemGNN. In addition, the use of
GRU provides the capability of learning the long-term and short-term characteristics of the
time series processed by AVMD and MtemGNN, which further improves the performance
of the PMNet. As compared with the baseline models, the proposed hybrid model achieves
much better performance in terms of all three-evaluation metrics. The PMNet also achieves
very high accuracy in predicting PM2.5 concentration for the next 12 h. This information
is used to provide the guidance for ordinary people to take the protective measures and
helps the government to control air pollution. All parts of the proposed PM2.5 hybrid
prediction model are data-driven, which means that the PMNet can be flexibly applied to
PM2.5 prediction in other regions. In future research, multi-task learning will be introduced
into PMNet to incorporate the Spatio-temporal correlation and enable PMNet to predict
PM2.5 concentrations in multiple regions simultaneously.
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Appendix A. VMD

VMD is a novel and theoretically sound non-recursive signal decomposition algorithm
proposed by Dragomiretskiy and Zosso in 2014 [34]. Contrary to the traditional wavelet
decomposition and EMD, VMD uses Wiener filter as the narrowband priori in frequency
domain to constrain the decomposed sub-modes in the specific bandwidth around the
central frequency, thereby effectively avoiding the mode mixing in signal decomposition.
The working principle of VMD is to decompose the original signal into K IMFs, with each
IMF being confined within a specific bandwidth around the center frequency.

The idea of constraining the IMF within the bandwidth around the center frequency
originates from Wiener filtering, which performs Hilbert transform [54] on each sub-signal
uk to obtain the corresponding analytical signal fA.

fA = (δ(t) +
j

πt
) ∗ uk(t) (A1)

https://air.cnemc.cn:18007/
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Each analytic signal is mixed with the exponential term e−jωkt for modulating the sub
signal spectrum with the baseband. Then, the bandwidth is represented by the Gaussian
smoothness. The variational constraint problem is represented by the following expression:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[
(δ(t) +

j
πt

) ∗ uk(t)
]

e−jωkt
∥∥∥∥2

2

}
(A2)

s.t.∑
k

uk = f (A3)

where, {uk} and {ωk} represent the set of all modes uk and the set of all center frequencies
ωk, respectively.

In order to easily estimate the sub-signal uk and center frequency ωk, this work uses
the augmented Lagrange L to transform the original variational constraint problem into an
unconstrained variational problem:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+

〈
λ(t), f (t)−∑

k
uk(t)

〉
+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2

(A4)

The augmented Lagrangian saddle point is solved using the alternate direction method
of multipliers [55], on the basis of which the sub-signal uk and center frequency ωk
are solved.

ωk is treated as a constant. Thus, the problem of updating uk is transformed into a
minimization problem as expressed below:

un+1
k = argmin

uk∈X


α
∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

uk(t) +
λ(t)

2

∥∥∥∥2

2

 (A5)

uk is treated as a constant, thus the problem of updating ωk is also transformed into a
minimization problem as expressed below:

ωn+1
k = argmin

ωk

{∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
(A6)

Appendix B. Submodularity and Supermodularity

The submodularity and supermodularity are properties of set functions. The sub-
modular function monotonically increases with an increase in the number of set elements.
Its second derivative is greater than or equal to zero and approaches saturation with an
increase in the number of set elements. The supermodular function is the converse of
submodular function. The definitions of these two types of functions are as follows:

Given a set function f : 2V → R , if it satisfies A⊆B⊆V, and for all s ∈ V\B, it satisfies:

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B)

then, set function f is a submodular function.
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