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Abstract: To achieve sustainable economic growth, a significant amount of private capital must be
invested in green industries. However, risk management in the green industry stock market has
drawn much attention recently due to the uncertainty and high risk present in this market. By
applying the spillover index model of Diebold and Yilmaz, the frequency-domain spillover approach
developed by Baruník and Křehlík, and the dynamic conditional correlation (DCC) model, this
paper focuses mainly on the heterogeneity of the volatility spillovers among six green industry
equities and other financial assets in China, under various market economy situations. Based on
the empirical results obtained in this paper, we find that the green industry stock markets have the
least impact on the gold and energy futures markets. Additionally, based on asymmetric analyses,
it can be concluded that the green bond market has experienced the smallest shocks from the six
green industry stock markets. By utilizing frequency-domain analyses, the energy futures market
experiences the least amount of volatility from green stocks. Additionally, the COVID-19 pandemic
affects the interconnectedness of markets. Prior to the COVID-19 pandemic, energy futures were the
most suitable portfolio instrument for green industry stocks. When the COVID-19 pandemic occurred,
however, gold proved to be the most advantageous portfolio asset. The research findings of this
paper demonstrate the impact of COVID-19 on the selection of the best investment instruments for
green industry stocks, which is beneficial for reducing the investment risk of green financial market
participants and increasing the demand for green stock markets, while also providing practical advice
for environmentally conscious investors and policymakers.

Keywords: green industries; financial markets; risk spillovers; portfolio management; COVID-19
pandemic; variance decomposition

1. Introduction

With its rapid industrialization and modernization, China has achieved both eco-
nomic growth and financial development targets [1], succeeding in becoming the world’s
second-largest economy [2]. However, from the perspective of energy consumption, China
still ranks the first and is currently the largest carbon emitter worldwide [3]. To address
ecological imbalances and environmental pollution in China, the proposal to develop green
industries emphasizing energy conservation, low pollution, and low emissions has been
widely recognized. Meanwhile, under the carbon neutrality commitment, affected by
investor sentiment and profitability, investors will favor green companies, which leads to
more capital inclined to green industries and promotes their sustainable development [4].
Compared with developed countries, whose green industry advancement relies on market
leadership, China’s green sector development is driven mainly by the government. Ac-
cording to the forecast of the National Climate Strategy Center, CNY 3 to 4 trillion must be
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invested in green industries each year to achieve carbon emission reduction targets (the
data can be obtained from China’s Policies and Actions for Addressing Climate Change
(2020), available at http://www.ncsc.org.cn/yjcg/cbw/, accessed on 6 September 2022).
Nevertheless, due to fiscal budget constraints, the government can provide only approxi-
mately 10–15% of the funds needed for green investments. As a result, a large amount of
private capital must be invested in green industries.

In this context, in 2019, China published the “Green Industry Guidance Catalogue” (see
https://en.ndrc.gov.cn/policies/, accessed on 6 September 2022). Based on the country’s
economic and social development state, industrial stage, resources, and ecological environ-
ment features. The catalog divides China’s green industries into six major sectors—namely,
the energy conservation and environmental protection industry (EPI), clean production
industry (CPI), clean energy industry (CEI), ecological environment industry (EEI), green
infrastructure industry (GII), and green service industry (GSI)—and puts forward the key
points of green industry development. The document is of great significance for clarifying
the boundaries of green industries, establishing a national unified green standard system,
and guiding funds to focus on the most critical green industries and projects.

There are two basic types of private capital investment modes, namely, indirect financ-
ing modes such as green credit and direct financing modes such as green bonds and stocks.
In comparison to green credit and bonds, the green stock market is always characterized
by higher investment risk [5,6], leaving investors with difficult options. By 2020, the scale
of China’s green credit stock was close to CNY 12 trillion, making the country first in the
world on this indicator, and the cumulative quantity of green bond issuance had reached
CNY 1.15 trillion, putting China second globally. However, the amount of financing ob-
tained by green companies through the stock market is less than 10 percent of that secured
through the bond market, indicating that China’s green industry is still in its infancy, and
few funds are invested directly in the form of green stocks. Therefore, given the massive
gap in private investment in China’s green industries, it is crucial for green stock investors
to study risk management strategies that provide them with advice for reasonable asset
allocation and combinations, thus reducing portfolio risk and ultimately promoting green
development [7].

To the best of our knowledge, the research on risk management in the green stock
market considers mainly the global clean energy market as a representative case. In
addition, in terms of portfolio choices, frequently considered assets include crude oil [8–10],
gold [11], the volatility index (VIX) [5], nonferrous metals [12], the carbon price index [13],
and coal [14]. With the advancement of the green bond market, several investigations have
concluded that the performance of green bonds is weakly associated with that of stocks and
clean energy in general [15–20], which suggests that green bonds might have the potential
to be used as a portfolio instrument for risk diversification by clean energy shareholders.
Since green bonds and stocks of green industries both offer environmental benefits from
emission reduction, environmentally friendly investors are more likely to add green bonds
to their green stock portfolios than other assets [20]. Due to their higher average yield than
traditional bonds [21], green bonds are considered a stable and sustainable investment for
long-term projects, making them favored among green investors [18].

Since China has issued the “Green Industry Guidance Catalogue”, which classifies
green industries into six broad categories (including not only the generally perceived
clean energy industry but also other green industries, namely, the energy conservation
and environmental protection industry, clean production industry, ecological environment
industry, green infrastructure industry, and green service industry), how to manage the
risks of these green industries is a concern for environmentally conscious investors and
policymakers. However, little attention has been paid to exploring the most suitable
safe-haven assets for green industries other than the clean energy industry. In addition,
there is evidence that uncertainty in market spillovers is becoming more pronounced and
that system connectedness increases significantly under extreme conditions [22–24]. The
COVID-19 epidemic, one of the most destructive global events in recent years, triggered
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a global economic crisis and led to extreme market conditions, ranking among the most
significant crisis events in history. Moreover, in recent decades, as the concept of green
economy has become increasingly popular around the globe, the influence of COVID-19
on the relationship between green financial markets and conventional financial markets
has become increasingly prominent. In light of the COVID-19 crisis, it is also essential to
conduct an analysis of the risk management of various green industry stocks.

With these considerations in mind, this paper employs the data on China’s green bond
and green stock markets from 2016 to 2022, aiming to address the following questions.
What is the correlation between green industry stocks and other financial assets? Which
asset performs the best as a portfolio instrument to manage the stock market risks of
different green industries? How has the COVID-19 pandemic affected the portfolio choices
of green stock investors? The main contributions of this paper can be summarized as
follows. First, this paper applies the spillover index model of Diebold and Yilmaz [25] to
explore the volatility spillover relationship between China’s six major green industry stock
markets and other financial markets. We find that the energy futures market receives the
fewest shocks from the EPI, CPI, EEI, and GII, while the gold market receives the fewest
shocks from the CEI and GSI. Second, this paper illustrates asymmetric connectedness
by decomposing the series of returns into positive and negative returns, then calculating
their volatility, respectively, and finds that the shocks received from the six green industry
stock markets to the green bond market are the lowest. Third, by employing the frequency-
domain spillover approach developed by Baruník and Křehlík [26], this paper analyzes the
frequency-domain connectedness in their volatility and obtains the difference in spillovers
across different periods. Fourth, this paper divides the sample into three stages: before,
during, and after the COVID-19 outbreak. The dynamic spillover results further show the
dynamic differences in the correlation between green stocks and other markets. Finally,
through portfolio weights analysis, it is found that in the full sample period, pre-COVID-19
period as well as post-COVID-19 period, energy futures is the most suitable portfolio tool
for green industry stocks, while the occurrence of crisis events makes gold to be the best
portfolio instruments.

This paper focuses on the risk spillover effect between China’s green industry stocks
and other financial markets under different market conditions, particularly the COVID-19
epidemic, in order to provide effective recommendations for environmentally friendly
investors and policymakers to reduce the risks of investing in the green stock market and
to stimulate the demand for the development of China’s green industry.

2. Literature Review
2.1. Portfolio Diversification of Green Stock Markets

The literature on the risk management of green stocks mainly takes the global clean
energy markets as representative cases. In terms of combining clean energy and tradi-
tional energy commodities such as oil, the existing investigations analyze the correlation
relationships between these assets through vector autoregression (VAR) under the causal-
ity framework. For instance, the authors of [27] find that clean energy stock prices are
significantly affected by oil prices. Furthermore, the authors of [28] employ the general-
ized autoregressive conditional heteroskedasticity (GARCH) model and concludes that
a portfolio of clean energy stocks and oil futures is appropriate, where oil futures act as
a hedge against the risk of clean energy stocks. Ref. [29] applies three indices of global
renewable energy stocks and three clean energy sectoral indices to represent renewable
energy markets and concludes that oil markets offer limited hedging opportunities for
clean energy investors. Additionally, the authors of [30] discover that the clean energy
index can provide a profitable hedging opportunity in combination with crude oil futures.
Moreover, the authors of [31] argue that compared with long-term investors, short-term
investors could use oil as a hedge for renewable energy investments to achieve portfolio
volatility reductions. Ref. [32] finds that under bearish market conditions, investors should
increase their clean energy investment to hedge against high negative oil returns.
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As the above-mentioned literature review would suggest, scholars pay attention
mostly to clean energy markets and seldom consider stocks of other green industries.
Additionally, the current research rarely examines the differences in portfolios and risk
management strategies across different green industries. With these considerations, this
paper studies the relationship between a variety of green industry subsectors and low-risk
financial assets to develop effective diversification strategies.

2.2. The Effect of Green Bonds on Green Stock Markets

With the rapid development of the green bond market, there is a growing body of
literature investigating the relationship of spillovers between the stock markets of the six
green industries and the green bond market. Ref. [33] notes that although green bonds and
green stocks share common climate-friendly characteristics, there is hardly any evidence
about the relationship between these two assets. The results of [20] indicate a negligible
relationship between green bond and clean energy market performance, which means that
these assets can be combined into portfolios under normal circumstances. In addition, the
authors of [34] find that extreme upside or downside risks in the clean energy market are
transmitted to the green bond market, with downside risk exerting a greater spillover effect.
Ref. [35] explores the relationship between green bond indices and clean energy indices
during the COVID-19 pandemic, concluding that this relationship was often stronger than
usual during the pandemic period. To establish a more synthetic measure for the green
stock market, the authors of [19] employ not only the clean energy index but also the green
building index, the green transportation index, and the global water index. In doing so, the
authors of [19] argue that green stocks and green bonds are relatively unconnected under
normal market conditions but that the connectedness becomes stronger during periods of
extreme market volatility. These preceding studies primarily study the relationship between
green stocks and other markets, with little attention paid to distinctions in portfolio choices
with other traditional safe-haven assets.

Additionally, in the literature, green stocks are often represented by global indices such
as the NASDAQ OMX Green Economy family, MSCI Global Environment, and Dow Jones
Sustainability World Index. Due to the considerable investment demand and policy support
in China, the associations with the stock market performance of China’s six green industries
are worth discussing. To the best of our knowledge, few studies have yet been conducted
based on data for China. Nevertheless, there are several exceptions. Ref. [36] uses Chinese
data from 2015 to 2020 and finds that the green bond market is affected by unidirectional
risk spillovers from green stocks, industrial stocks, and industrial commodities. Ref. [14]
examines the static and dynamic connectedness between China’s carbon, traditional energy
commodities (oil and coal), new energy and materials markets, and finds that China’s
carbon market is more correlated with energy markets. This paper uses the CSI Green
Economy family of indices to represent the stock markets of China’s six green industries
and focuses on not only the differences in risk diversification between green bonds and
other assets with respect to green stocks but also the coordinated movement of green
industry stock prices at the subsector level and the heterogeneous volatility of low-risk
financial assets.

2.3. The Effect of Special Conditions on Green Stock Markets

Crisis events and negative market impacts in one market may spill over into other
markets in different ways, making the special conditions in the green stock market critical
for investors. First, only a few papers have included asymmetric volatility, especially the
asymmetry in volatility of China’s green financial markets, in the study of risk management.
Ref. [37] identifies that the contribution of fossil energy price changes to renewable energy
returns has a strong time-varying pattern and that the total connectedness of the positive
return network slightly outweighs that of the negative return network. Similarly, the
authors of [18] report that green bonds exhibit asymmetric volatility and behave differently
from the stock market. Meanwhile, recent studies show that market spillovers are stronger
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during bear market periods than during normal or bullish periods [38–40], which is crucial
for investors. From this perspective, this paper applies data on China’s green stock markets
and compares the performance of green bonds and traditional safe-haven assets under
negative returns on green stocks to explore the viability of portfolios under asymmetric risk.

Second, regarding crisis situations, the authors of [11] observe that gold has a positive
impact on clean energy stock returns in extreme cases. Ref. [33] examines the dependence
between green financial products and traditional asset classes during various crisis situ-
ations and conclude that during turbulent periods, the relationship between green and
traditional asset classes is frequently stronger than that during the entire sample period.
Ref. [41] examines the nature of the time-varying market risk of investment in green stocks
across the US, Europe, and the Asia-Pacific region during the periods of two recent global
crises and find that for the Asia-Pacific green stocks, there is no spillover from the local
market. The COVID-19 pandemic is an extreme crisis and a source of systemic risk (Sharif
et al., 2020) that is regarded as one of the most disruptive global events since the Great
Depression and the 2008 global financial crisis (GFC) [42]. Ref. [43] finds that due to the im-
pact of the COVID-19 pandemic, volatility spillovers between global financial markets have
increased. Ref. [44] further proves stronger effects on the connectedness of the COVID-19
outbreak than of the financial crisis. Ref. [45] finds that the return spillover effects between
oil and agricultural products have been more pronounced during the COVID-19 pandemic
than in normal times. The authors of [42] discover that during the COVID-19 period, the
connectedness between climate-friendly investments and traditional stocks may have been
augmented. Ref. [14] observes a strengthened connectedness between carbon, traditional
energy, and new energy stocks after the outbreak of COVID-19. According to [19], the
performance of green bonds and green stocks has been more closely linked during the
COVID-19 pandemic.

The COVID-19 crisis has undoubtedly negatively impacted the stability of global
financial markets [46], and investors and portfolio managers are facing unprecedented
challenges in the face of this catastrophic event. In this context, this paper employs the [25]
spillover approach to analyze the connectedness between green stocks and bonds and
other safe-haven assets. To investigate the impact of the COVID-19 emergency on the
correlation between markets, this paper further subdivides the sample into three periods:
before, during, and after the COVID-19 outbreak. Moreover, by conducting the portfolio
weights analysis, this paper studies the portfolio weight and its effectiveness between green
stocks and other financial markets under different market conditions. In doing so, this
paper captures the respective spillovers under the circumstances of downside risks and
provides suggestions for investors and policy implications specific to the different periods
of the COVID-19 pandemic.

3. Theoretical Research and Practical Implications
3.1. Mechanism between Green Stocks and Other Financial Markets

According to modern portfolio theory, when there is a strong correlation between
financial markets, there is a significant trend of changes in the same direction or opposite
direction between financial assets, so the decentralized investment strategy cannot play
a risk aversion role when the market plummets. Conversely, if the correlation between
financial markets is low, the impact of abnormal fluctuations in one market on other markets
is limited. The systemic risk can be avoided by diversifying an investor’s investment
portfolio in order to increase their overall income.

Currently, as a result of the development of economic globalization and the improve-
ment of financial deepening, the interaction between financial markets is intensifying, and
there is a certain degree of market integration, resulting in a more complex correlation
between markets due to the price linkage mechanism. Regarding the green bond market,
green industry stocks and green bonds have developed rapidly over the past few years, be-
coming an integral part of the green financial system and the primary green asset allocation
component for financial institutions. As an important lever for low-carbon enterprises to
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obtain financial support, when the green bond market is generally good, investors expect
that the low-carbon industry stock market will also strengthen under the influence of
economic fundamentals, forming a linkage effect between markets. As far as the traditional
stock market is concerned, there is a convergence of ups and downs between the traditional
stock market and the green stock market, meaning that when the green stock market is in
crisis, the risk impact will be transferred significantly to the highly correlated traditional
stock market, resulting in a high correlation between markets. Concerning the gold market,
as a unique precious metal commodity, gold possesses the triple attributes of commodity,
currency, and finance on the gold market. As a traditional hedge asset, it possesses the
currency attribute and the ability to hedge, and is less vulnerable to the risk associated
with other markets. It can also provide risk diversification for green stock investments.
For the energy futures market, the relationship between the energy futures market and
the financial market is gradually strengthened as the financial characteristics of energy
increase. As an essential basic means of production, energy has a rigid demand in social
and economic development, and its price fluctuations impact the real economy, influencing
the performance of the stock market and forming a risk spillover relationship between
markets. Based on the above analyses, this study proposes Hypothesis 1.

Hypothesis 1. There is a correlation between the green stock market and other financial markets,
and different financial assets have varying risk impacts on green stocks. Diversified investment
strategies may reduce the investment risk of green industries.

Based on the aforementioned research assumptions, this paper also incorporates
traditional hedge assets gold, energy futures with weak correlation with the stock market,
emerging green bonds, and traditional stocks with high-risk characteristics into the research
system, analyzes their differential impact on green industry stocks. Moreover, this paper
explores the most appropriate hedge assets in the green stock market, so as to provide
effective recommendations for green industry stock investors to effectively invest in the
green stock market.

3.2. Impact Mechanisms of Asymmetric Risks, Special Events, and Different Frequency Domains

According to the investor sentiment theory, positive and negative market information
will elicit different responses from investors, with the risk spillover resulting from negative
market information typically being greater. When the price of the green stock market
falls as a result of negative information, investors tend to increase their risk perception
and aversion to uncertainty, adjust their portfolios, and demand higher risk premiums,
thereby increasing the risk of the market. In a negative income environment, the green
stock market consequently has a greater spillover effect. Nonetheless, unexpected events
may also directly contribute to a decline in investor sentiment, thereby exacerbating market
risk. As a significant special event in recent years, the COVID-19 epidemic has a significant
effect on the economy as a whole. Consequently, the impact of the epidemic will have
a multiplier effect on the market for the green industry. In addition, when investors
in green stocks establish portfolios in various markets, they will pay close attention to
the portfolio’s components with varying cycle lengths and use expected utility for asset
valuation. Therefore, the market’s cyclical factors will generate heterogeneous shocks,
resulting in varying short- and long-term spillover effects in the green stock market. Based
on this, this paper proposes Hypothesis 2.

Hypothesis 2. China’s green stock market demonstrates an asymmetric risk spillover effect. Sudden
special events will exacerbate the risk spillover effect in the market, and the risk spillover effects vary
depending on the cycle frequency.

According to the aforementioned research hypotheses, it is possible to conclude
that the correlation between the green stock market and other financial markets varies
based on market conditions, and that portfolio management is more important in extreme
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market conditions. When allocating assets, investors should not only consider single-
period investment decisions, but also pay more attention to dynamic portfolio selection,
as investors’ investment behavior is frequently long-term. This paper then offers effective
recommendations for investors’ long-term dynamic risk management.

4. Methodology
4.1. Time-Domain Spillover Index Model of Diebold and Yilmaz

Spillovers are a widely employed characterization of interdependence and connect-
edness in a dynamic system that measures the transmission of information across assets
or markets. The time-domain spillover index model is constructed based on the general-
ized version of the variance decomposition of forecast errors of a VAR system proposed
by [47,48], which provides a practical framework to quantify the magnitude and direc-
tion of spillover effects across different time scales. Although several methods have been
proposed to estimate return and volatility spillovers [5,9,29,49,50], the Diebold–Yilmaz
(DY) approach [25] has become popular for researchers and has many merits over other
previously developed spillover measurement techniques.

Compared to the conventional model, the DY spillover index model offers the fol-
lowing benefits: first, it eliminates the results’ dependence on the lag order. It can also
determine the net disseminator of risk spillovers and the role mechanism of various as-
sets in the transmission of market information. In addition, when combined with rolling
window technology, we can calculate the dynamic spillover index and track the dynamic
changes of the market spillover effect.

Initially, the p-order VAR model of covariance stability can be mathematically de-
scribed as

Vt =
p

∑
i=1

ψiRt−i + εt, (1)

where Vt represents the n-dimensional variance sequence, ψi is the n× n coefficient matrix,
and ε ∼ (0, ∑) is a vector of independently and identically distributed disturbances with
zero and ∑ covariance matrix. The moving average expression of Vt is given by

Vt =
p

∑
i=1

Aiεt−i, with Ai = ψ1 Ai−1 + ψ2 Ai−2 + · · ·+ ψp Ai−p, (2)

where Ai is the n× n coefficient matrix of the vector moving average (VMA), while A0 is
the n× n identity matrix that satisfies Ai = 0 for i < 0. In addition, the generalized forecast
error variance decomposition can be written as

θij(H) =

σ−1
jj

H−1
∑

h=0
(e′i Ah ∑ ej)

2

H−1
∑

h=0
(e′i Ah ∑ A′hei)

. (3)

In Equation (3), θij represents the contribution of the jth variable of the system to the
variance of forecast error of the element i, and σjj represents the standard deviation of the
error term of variable j. Notably, ei is an N × 1 vector, with one as the ith element and zero
otherwise. Additionally, ∑ represents the covariance matrix of the vector of errors ε. Given
that ∑N

j=1 θij(H) 6= 1, a normalization of Equation (3) can thus be obtained as follows:

θ̃ij(H) =
θij(H)

N
∑

j=1
θij(H)

. (4)
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Obviously, we find that Equation (4) can be applied to estimate pairwise connectedness
from j to i at time horizon H. In addition, in Equation (4), we must, respectively, have

N

∑
i,j=1

θ̃ij(H) = N, (5)

N

∑
j=1

θ̃ij(H) = 1. (6)

Accordingly, the total spillover index, the directional spillover index, and the net
spillover index can be derived. First, we add up the influence of the cross-variance share in
the error variance to construct the total spillover index, which can be given by

TSI(H) =

N
∑

i,j=1,i 6=j
θ̃ij(H)

N
∑

i,j=1
θ̃ij(H)

× 100 =
1
N

N

∑
i,j=1,i 6=j

θ̃ij(H)× 100. (7)

Specifically, the total spillover index explains the proportional contribution of the
spillover effect between N markets and the total forecast error variance and averages the
off-diagonal elements. In relation to Equation (7), the closer the values of TSI(H) are
to 1, the stronger the connections across the variables in the VAR system. Through the
generalized VAR model, the DY spillover index model can be further employed to quantify
the size of the directional spillover effect between different markets. Consequently, the
spillover index from market i to j and that from market j to i can be expressed as

DSIi←j(H) =

N
∑

j=1,i 6=j
θ̃ij(H)

N
∑

i,j=1
θ̃ij(H)

× 100, (8)

DSIj←i(H) =

N
∑

j=1,i 6=j
θ̃ji(H)

N
∑

i,j=1
θ̃ji(H)

× 100. (9)

Furthermore, we use the net spillover index to measure the net spillovers of a single
market to all other markets, based on which we can deduce which market may act as the
risk receiver and which as the risk transmitter. Specifically, the net spillover index can be
given by

NSIij(H) = DSIj←i(H)− DSIi←j(H). (10)

In Equation (10), a positive NSIij(H) suggests that market i is a net transmitter of
shocks. Nevertheless, a negative NSIij(H) might imply that market i is a net receiver of
shocks.

4.2. Frequency-Domain Spillover Method of Baruník and Křehlík

As a supplement to the Diebold and Yilmaz index quantifying the spillover effect in
the time domain, the authors of [26] propose a methodology to analyze the connectedness
in the frequency domain. Under this framework, the directional spillovers are decomposed
across different frequencies (e.g., the short term, medium term, and long term). We consider
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a frequency response function including Ψh that captures the coefficients of the Fourier
transform, with i2 = −1, given by

Psi(e−iω) =
∞

∑
h=0

e−ihωΨh, (11)

where ω denotes the frequency. Thus, the generalized causation spectrum over frequencies,
ω ∈ (−π, π), can be defined as follows:

( f (ω))j,k ≡
σ−1

kk

∣∣∣(Ψ(e−iω)Σ)j,k

∣∣∣2(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

))
j,j

, (12)

where Ψ(e−iω) represents the Fourier transformation of the impulse response function Ψ
and ( f (ω))j,k is the proportion of the spectrum of the jth variable at frequency ω based on
the shocks in the kth variable. To obtain a natural decomposition of the original generalized
forecast error variance decomposition (GFEVD) into frequencies, we can simply weight
( f (ω))j,k by the frequency share of variance of the j variable, where the weighting function
is given by

Hj ≡

(
Ψ
(
e−iω)∑ Ψ′

(
e+iω))

j,j
1

2π

∫ π
−π

(
Ψ
(
e−iλ

)
∑ Ψ′

(
e+iλ

))
j,jdλ

. (13)

As shown in Equation (13), it represents the jth variable power at the given frequency
ω, which must satisfy sums of the frequencies to a constant value of 2π. It should be
noted that the Fourier transform of the impulse response is a complex valued quantity,
although the generalized spectrum is the squared coefficient of the weighted complex
numbers, hence producing a real valued quantity. Therefore, we can obtain a frequency
band as d = (a, b) : a, b ∈ (−π, π), a < b, and the GFEVD on a specific frequency band d is
computed as

(θd)j,k =
1

2π

∫ ∞

d
Hj(ω)( f (ω))j,kdω. (14)

Moreover, the generalized variance decomposition is scaled under the frequency band
as follows: (

θ̃d
)

j,k = (θd)j,k/ ∑
k
(θ∞)j,k. (15)

In the following analysis, we consider three frequency bands: 1∼5 days (the short
term), 5∼30 days (the medium term), and 30 or more days (the long term). These frequency
bands also correspond to different horizons from an investment perspective.

4.3. DCC-GARCH Model

The dynamic conditional correlation (DCC) model estimates the correlation matrix
directly by utilizing the standardized residuals which reduces the number of parameters to
be estimated and makes inferences regarding the hedging effectiveness. Traditional models,
such as the COPULA function, have considerable difficulties in defining dependency
structures above two dimensions when describing time-varying dependencies because of
the multiple parameters and increasing computational complexity. DCC-GARCH, on the
other hand, can be utilized to represent the volatility spillovers between various financial
time series as well as the high-dimensional dynamic correlation between them. The
advantage of this is that it eliminates the requirement to comprehend the distribution
of model errors in order to estimate model parameters consistently. Therefore, to find
effective diversified portfolio tools for green industry stocks, this paper uses the dynamic
conditional correlation multivariate GARCH model (DCC-GARCH model) from [51] to
calculate the dynamic conditional correlation coefficient series between two assets.
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The DCC-GARCH model is implemented in two steps. Firstly, the univariate GARCH
process of each asset return series is estimated. Secondly, the parameters of the dynamic
correlation structure are estimated by the standardized residual of the obtained conditional
variance. From a bivariate perspective, the DCC process is as follows:

rt = µt + ωrt−1 + εt, (16)

εt = H
1
2
t zt. (17)

In Equation (16), rt is a matrix of logarithmic returns for the commodity implied
volatility and clean energy stock indexes, µt designates a matrix of fixed parameters, rt−1
indicates potential serial correlation, εt indicates the noise term, and zt indicates that

the error term follows the Student-t distribution. Moreover, H
1
2
t refers to the matrix of

conditional volatilities. The covariance matrix is expressed as:

Ht = DtRtDt, (18)

Dt = diag(
√

hi
t′

√
hj

t), (19)

where hi
t′ and hj

t are the conditional volatilities of asset of the i market and the j market,
respectively. Dt is a diagonal of time-varying standard deviations and Rt is the conditional
correlation matrix of the standardized returns. It is expressed as:

Rt = diag(Qt)
− 1

2 Qtdiag(Qt)
− 1

2 , (20)

where Qt is the time-varying conditional correlation of residuals. According to the authors
of [51], Qt is defined as:

Qt = (1− a− b)Q̄ + azt−1z′t−1 + bQt−1, (21)

where a and b are non-negative scalar parameters, Q̄ refers to the matrix of unconditional
correlations for the standardized innovations zt.

In order to further analyze the dynamic portfolio, the conditional variance and co-
variance estimates extracted from the above DCC-GARCH model are used to calculate
the dynamic optimal portfolio weight, hedge ratio and hedge effectiveness. At time t, the
optimal weight ratio of asset j in the portfolio of “asset i/asset j” of each unit is:

wij,t =
Σii,t − Σij,t

Σii,t − 2Σij,t + Σjj,t
, (22)

where wij,t refers to conditional covariance between asset i and asset j at time t, Σii,t and
Σjj,t are the conditional variances of asset i and asset j at time t, respectively. When the
market does not allow short selling, there are restrictions on Σij,t:

Therefore, at time t, the optimal weight proportion of asset i in the portfolio of “asset
i/asset j” of each unit is 1− wij,t. Further, we refer to the method of Antonakakikis et al.
(2020b) to evaluate the time-varying effectiveness of portfolio and hedging, as follows:

HEi = 1−
var(rp)

var(ri)
, (23)

where var(rp) represents portfolio variance and var(ri) refers to variance of asset i. HEi
indicates that asset i is the percentage of variance reduction of hedging positions. The
higher the value, the more risk reduction.
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4.4. Asymmetric Spillover Measure

To examine the asymmetric spillovers among green stocks, green bonds and other
financial assets, this paper follows the common decomposition approach in [52–54] and de-
composes the returns series into negative and positive returns to construct the asymmetric
connectedness network. Specifically, the negative returns series are calculated as follows:

r− =

{
ri, if ri < 0,
0, otherwise .

(24)

In Equation (24), ri represents the overall returns series. The positive returns series are
given as follows:

r+ =

{
ri, if ri > 0,
0, otherwise .

(25)

In the following analysis, we should note that we focus mainly on the differences between
the spillovers calculated based on the total returns and those based on the negative ones.

5. Data Description
5.1. Data

To investigate the connectedness among China’s six green industry stock markets,
green bond market and several other conventional financial markets, this paper utilizes the
data of the daily closing prices of the corresponding assets. The sample period ranges from
1 January 2016 to 24 June 2022, with the initial date of this sampling period determined
by the availability of data on the green bond market in China. The data used in this paper
come mainly from the Wind database and China Securities Index Co., Ltd.

Table 1 describes the variables used in the analysis. This study determines six cat-
egories of green industries according to the green industry guidance catalogue, considers
the degree of match between the index and green industry companies, and then selects
representative market segments under each category. Finally, this paper selects the green
indexes of various industries in Wind Green Economy family, including the Energy Saving
Lighting Concept Index and the Charging Pile Concept Index under the Energy Conservation
and Environmental Protection Industry (EPI), the Air Governance Concept Index and the
Wastewater Treatment Concept Index under the Clean Production Industry (CPI), the Power
Concept Index and the Pv Concept Index under the Clean Energy Industry (CEI), the Smart
Agriculture Concept Index and the Forest Industry Index under the Ecological Environment
Industry (EEI), the Building Energy Efficiency Concept Index and Intelligent Transportation
Concept Index under the Green Infrastructure Industry (GII), and the Contract Energy Manage-
ment Concept Index under the Green Service Industry (GSI). The ChinaBond Green Bond Index
(CGB) (although there are several other green bond indices, e.g., the ChinaBond China Green
Bond Select Index and the ChinaBond China Climate-Aligned Bond Index, they all belong to the
ChinaBond index, the volatility difference of which is less than 0.0015) is used as a proxy for
the green bond market. For the sake of comparison, we further introduce several traditional
assets to test their safe-haven characteristics, namely, the China Securities Index 300 (HS300),
SHFE Aurum Commodity Index (AU), and China Securities energy futures composite index (EF).



Sustainability 2022, 14, 13178 12 of 24

Table 1. Descriptions of variables.

Primary Market Secondary Market Index Abbreviation

Green Stock Market

Energy Conservation
andEnvironmental
Protection Industry

Energy Saving Lighting
Concept Index EPI1

Charging Pile
Concept Index EPI2

Clean Production
Industry

Air Governance
Concept Index CPI1

Wastewater Treatment
Concept Index CPI2

Clean Energy Industry
Power Concept Index CEI1

Pv Concept Index CEI2

Ecological Environment
Industry

Smart Agriculture
Concept Index EEI1

Forest Industry Index EEI2

Green Infrastructure
Industry

Building Energy
Efficiency Concept

Index
GII1

Intelligent
Transportation
Concept Index

GII2

Green Service Industry
Contract Energy

Management
Concept Index

GSI

Green Bond Market Green Bond ChinaBond Green
Bond Index CGB

Traditional Stock
Market General Stock China Securities

Index 300 HS300

Safe-Haven Asset
Market Gold SHFE Aurum

Commodity Index AU

Energy Market Energy Futures
China Securities Energy

Futures Composite
Index

EF

5.2. Trend of Market Index Returns

Figure 1 displays the trend of China’s green industry as well as the results from other
financial market indexes. The yield of the standard stock market index and the green
stock market index both exhibit noticeable long-term volatility. Financial markets, such
as the ones for gold and green bonds, exhibit less volatility in comparison, indicating
greater stability and the potential for usage as a diversified risk management tool for
green stocks. The yield of each market significantly changed at the same time when the
COVID-19 epidemic broke out in early 2020, indicating that the occurrence of crisis events
will exacerbate the anomalous oscillations in market returns.
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Figure 1. Time series diagram of different market returns.



Sustainability 2022, 14, 13178 14 of 24

6. Empirical Results
6.1. Preliminary Analysis

Table 2 reports the descriptive statistics for submarket returns. As shown in Table 2, the
average returns of all markets are close to 0, and the fluctuation ranges are similar. From the
kurtosis and skewness coefficients, it can be seen that the kurtosis of all returns series is high,
indicating that they show leptokurtic distributions. Additionally, the returns of markets
are negatively skewed, Furthermore, the Jarque–Bera test rejects the null hypothesis of
normal distributions. In terms of the augmented Dickey–Fuller (ADF) test and the Phillips
and Perron (PP) test, the results clearly show that all return series have stationarity at
the 1% significance level. Finally, based on Akaike information criterion (AIC), this paper
determines that the optimal lag order of VAR model with volatility spillover effect is 1
according to the criterion of minimum information value.

6.2. Static Spillover Connectedness

Table 3 reports the description of the static spillover index for the volatility of the six
green industry stock markets, green bond market and major traditional financial markets.
Specifically, the diagonal of the matrix demonstrates the proportion of risk carried by
each submarket. The off-diagonal row sums (termed “From”) and column sums (termed
“To”) show the entire directional connectedness from and to the corresponding market,
respectively. Moreover, the bottom right corner presents the total connectedness. In general,
we may safely conclude that approximately 73.79% of the forecast error variances can be
attributed to volatility spillovers, indicating high interdependence between the volatility of
the various markets. With respect to directional connectedness, this paper focuses mainly
on green industry stock markets, and special attention is paid to their risk spillovers with
other markets.

First, a strong correlation among green stocks can be observed in Table 3, and the
traditional stocks are strongly connected as well. Specifically, the spillovers from the green
industry stock markets to the general stock markets are 8.97%, 6.42%, 8.44%, 7.01%, 5.57%,
6.66%, 8.78%, 7.80%, 7.88%, 8.00%, and 7.51%, which are all greater than those from the
general stock markets. The results indicate that the development of China’s green industry
is still in its infancy and that the stock markets of this industry are more volatile than the
general stock market. Moreover, the return spillovers of green industry stocks to green
bonds, gold, and the energy futures market appear to be relatively weaker. Notably, the
shocks transmitted from the six green industry stocks to green bonds are, without exception,
significantly lower than the volatility spillovers transmitted from the green industry to the
traditional stock market, indicating that green bonds and green stocks have different return
characteristics. Therefore, investors are advised to consider green bonds as fixed-income
investments and green stocks as equity investments.

Moreover, as seen in Table 3, the spillover effect of green stocks on energy futures and
gold is weak. We further find that there is heterogeneity in the volatility spillover effect
of different green industry stocks, among which, the energy futures market receives the
fewest shocks from the EPI, CPI, EEI, and GII, while the gold market receives the fewest
shocks from the CEI and GSI.
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Table 2. Summary descriptive statistics.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF

Mean −0.0022 −0.0021 −0.0085 −0.0331 0.0156 0.0413 −0.0143 −0.0321 0.0228 −0.0240 0.0199 0.0168 0.0151 0.0348 0.0996
Median 0.0700 0.1000 0.1000 0.0600 0.0800 0.1100 0.0600 0.0800 0.1200 0.0600 0.1400 0.0200 0.0500 0.0300 0.1100

Maximum 5.7500 7.6100 5.3500 5.3900 9.3300 7.8700 5.2100 6.6600 5.1300 6.4900 6.1800 0.8000 5.7800 5.4000 8.1700
Minimum −10.8100 −10.4400 −9.6800 −10.2200 −10.3600 −10.2600 −10.5500 −10.2800 −10.1400 −10.5200 −10.5600 −0.8200 −8.2100 −4.8100 −8.6000

Std.Deviation 1.8219 1.9508 1.7271 1.6721 1.8873 1.8959 1.6114 1.8412 1.6983 1.9323 1.8087 0.0817 1.2471 0.8349 1.7353
Skewness −0.8291 −0.6900 −0.9165 −0.8751 −0.4129 −0.5600 −0.9021 −0.8022 −0.8225 −0.8285 −1.0356 −0.4673 −0.6737 −0.0882 −0.3013
Kurtosis 6.5911 6.4032 6.7140 6.7482 6.6558 6.1228 7.7485 6.5796 6.3977 6.7573 7.4203 23.4844 7.4842 7.8138 5.3293

Jarque-Bera 1025.47 *** 883.93 *** 1124.26
***

1121.54
*** 920.64 *** 721.38 *** 1691.19

***
1008.50

*** 933.98 *** 1105.22
***

1561.80
***

27,559.22
*** 1436.91 *** 1520.81

*** 379.40 ***

ADF −38.57 *** −40.30
***

−39.22
***

−39.98
***

−40.06
*** −39.23 *** −37.72

***
−37.82

***
−38.81

***
−38.81

***
−39.31

***
−16.43

*** −40.85 *** −39.43 *** −40.58 ***

PP −38.57 *** −40.27
***

−39.22
***

−39.98
***

−39.99
*** −39.18 *** −37.69

***
−37.84

***
−38.81

***
−38.80

***
−39.26

***
−27.53

*** −40.92 *** −39.74 *** −40.58 ***

Notes: Jarque–Bera tests for the null hypothesis of a normal distribution. ADF tests the estimates of the augmented Dikey–Fuller (1979) unit roots tests. *** denotes significance at the 1%
levels.
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Table 3. Total volatility spillover matrix.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF FROM

EPI1 11.67 8.23 9.73 7.83 5.72 7.27 8.68 6.92 9.04 9.31 8.61 0.18 6.69 0.1 0.02 88.33
EPI2 9.42 11.7 9.36 7.95 6.39 8.04 8.38 6.67 8.48 8.4 9.28 0.13 5.66 0.1 0.06 88.3
CPI1 9.33 8.26 11.93 9.44 5.93 6.32 8.86 7.31 8.57 8.44 8.61 0.15 6.69 0.13 0.04 88.07
CPI2 8.61 7.99 10.45 11.82 6.16 6.21 9.09 7.36 8.86 8.11 8.47 0.24 6.38 0.15 0.1 88.18
CEI1 8.05 8.48 8.28 7.44 12.92 9.97 8.64 6.26 7.71 6.95 8.79 0.17 6.18 0.03 0.14 87.08
CEI2 9.17 8.5 8.31 6.98 7.97 12.88 8.44 6.62 8.07 7.64 8.81 0.1 6.35 0.04 0.12 87.12
EEI1 8.97 7.86 9.21 8.17 6.19 6.83 12.7 7.59 8.18 8.28 8.28 0.35 7.11 0.2 0.07 87.3
EEI2 8.65 7.67 9.39 8.08 5.94 6.53 9.29 13.18 7.91 8.11 7.67 0.19 7.2 0.13 0.06 86.82
GII1 9.39 7.99 9.29 8.65 5.93 6.95 8.77 7.3 11.48 8.48 8.8 0.18 6.62 0.09 0.05 88.52
GII2 10.09 8.2 9.34 7.99 5.87 6.85 8.73 7.2 8.53 11.88 8.58 0.19 6.42 0.09 0.03 88.12
GSI 9.22 8.74 9.32 8.14 6.73 7.58 8.68 6.72 8.74 8.17 11.49 0.15 6.21 0.06 0.07 88.51
CGB 3.84 2.57 2.93 3.74 2.02 1.81 3.24 2.63 3.03 3.74 2.6 63.22 3.48 0.49 0.66 36.78

HS300 8.97 6.42 8.44 7.01 5.57 6.66 8.78 7.8 7.88 8 7.51 0.36 16.34 0.18 0.06 83.66
AU 1.19 1.07 1.2 1.13 0.34 0.33 1.98 1.22 0.57 1.13 0.19 0.24 1.82 86.4 1.2 13.6
EF 0.12 0.36 0.2 0.39 1.35 0.59 0.53 0.21 0.35 0.21 0.36 0.12 0.18 1.49 93.56 6.44
TO 105 92.33 105.46 92.94 72.12 81.94 102.11 81.81 95.9 94.97 96.56 2.75 76.97 3.28 2.68 1106.82

NET 16.67 4.03 17.39 4.76 −14.97 −5.17 14.81 −5.01 7.38 6.85 8.06 −34.04 −6.69 −10.32 −3.75 73.79

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike informa-
tion criterion) and generalized variance decompositions of 10-day-ahead forecast errors.

6.3. Asymmetric Spillover Analysis

In this subsection, we conduct asymmetric spillover analysis by decomposing the
returns into positive and negative returns and calculating volatility, respectively. Since
investors are more susceptible to bad news, we mainly analyze the differences between the
overall system and the negative system. As we compare the results shown in Tables 3 and 4,
we can generally conclude that the total connectedness in the negative returns system
(72.62%) is not greater but in fact lower than that in the overall system (73.79%).

First, we are concerned about the spillover relationship between green industry stock
markets and traditional stock markets. In the negative volatility system, the green industry
stocks are still strongly correlated with the traditional stock market.

Second, we concentrate on the connectedness between the green industry stock mar-
kets and the green bond market. To be specific, we can observe from Table 4 that the shocks
received from the six green industry stock markets to the green bond market are the lowest,
which is significantly lower than the total spillover index in the overall system.

Table 4. Total spillover matrix for negative volatility.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF FROM

EPI1 10.64 8.3 8.15 8.36 7.79 8.36 8.08 7.6 9.27 8.34 8.24 0.01 6.65 0.03 0.18 89.36
EPI2 8.68 10.38 8.89 9.03 7.58 7.83 8.27 7.93 8.33 8.84 8.56 0 5.53 0.01 0.13 89.62
CPI1 8.12 8.54 9.96 9.19 7.54 7.39 8.82 8.3 8.31 8.91 9 0 5.81 0.01 0.1 90.04
CPI2 8.39 8.59 9.05 10.52 7.88 7.42 8.27 8.44 8.58 8.44 8.53 0 5.7 0.01 0.17 89.48
CEI1 8.61 8.04 8.16 8.52 11.07 9.29 7.69 7.85 8.64 7.52 8.01 0.01 6.28 0.01 0.29 88.93
CEI2 8.86 8.05 7.96 8.02 9.01 11.27 7.6 7.7 8.77 7.62 7.79 0.01 7.06 0.01 0.26 88.73
EEI1 8.21 8.07 9 8.57 7.27 7.08 10.73 8.63 8.03 8.8 9.04 0.01 6.46 0 0.11 89.27
EEI2 8.05 7.99 8.54 8.93 7.58 7.46 8.71 11 8.22 8.57 8.18 0.02 6.48 0 0.26 89
GII1 9.2 8.05 8.39 8.48 8.02 8.35 7.75 7.67 11.25 7.86 8.47 0.02 6.26 0.02 0.22 88.75
GII2 8.6 8.56 9.09 8.67 7.07 7.14 8.88 8.34 8.04 10.79 8.99 0 5.74 0.01 0.08 89.21
GSI 8.4 8.18 9.22 8.64 7.48 7.45 8.96 7.98 8.65 8.89 10.52 0.01 5.52 0.01 0.08 89.48
CGB 0.14 0.06 0.02 0.02 0.06 0.02 0.01 0.02 0.08 0.08 0.09 98.5 0.04 0.16 0.71 1.5

HS300 8.4 6.9 7.1 7.36 7.75 8.29 7.97 8.03 8.1 7.22 7.02 0.01 15.58 0.01 0.25 84.42
AU 0.31 0.29 0.35 0.16 0.24 0.41 1.08 0.56 0.29 0.35 0.41 0.32 0.69 94.48 0.07 5.52
EF 1.44 1.01 1.03 1.48 2.06 1.3 0.94 1.65 1.42 0.69 1.09 0.01 1.45 0.41 84.04 15.96
TO 95.42 90.62 94.94 95.44 87.34 87.79 93.05 90.69 94.73 92.14 93.43 0.43 69.66 0.69 2.92 1089.29

NET 6.05 1 4.9 5.96 −1.59 −0.94 3.78 1.69 5.99 2.93 3.94 −1.08 −14.76 −4.84 −13.04 72.62

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike informa-
tion criterion) and generalized variance decompositions of 10-day-ahead forecast errors.

Third, from the results shown in Table 4, we can see that when green stocks fall, the
spillover effect of each green stock market on gold decreases, and the result is no more than
0.6%, that is, gold is relatively less affected by the decline of green stock market.

Finally, the spillover effect of each green stock market on energy futures is stronger
than that of the overall spillover in the negative volatility system, even more than 2%,
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indicating that energy futures are vulnerable to the fluctuation spillover effect of green
stocks in the downwind direction.

6.4. Frequency-Domain Spillover and Network Connectedness

The connectedness between the stock markets of the six green industries and other
financial markets could vary across different frequency domains. Based on the frequency
domain decomposition spillover index model proposed in [26], the original sequence
frequency domain is decomposed into high frequency and low frequency, where the
frequency band of high frequency is 3.14 to 0.63, representing the period of 1 to 5 days, the
frequency band of intermediate frequency is 0.63 to 0.10, representing 5 to 30 days, and the
frequency band for low frequencies is 0.10 to 0, representing 30 or more days.

Figure 2 demonstrates the network connectedness among markets at different fre-
quencies. In Figure 2, the green node represents a receiver, while the red node represents a
transmitter. The edge colors rank the strength of the pairwise directional connectedness
from blue (strongest) to purple, pink, and light yellow (weakest). Additionally, the arrow
thickness reflects the strength of the pairwise directional connectedness. Figure 2a illus-
trates the pairwise directional connectedness during the whole sample period, echoing
the results in Table 3. It is noted that there are reasonably solid pairwise spillovers be-
tween similar markets. For instance, strong connectedness can be observed between green
stock markets and traditional stock markets. These findings suggest that the time-domain
spillovers seem to be more relevant to the classification of markets.

(a) (b)

(c) (d)

Figure 2. Network connectedness. (a) The whole sample period; (b) 26 March 2018 to 31 December
2019; (c) 1 January 2020 to 31 December 2020; (d) 1 January 2021 to 5 November 2021.

By comparing Figure 2a,c,d, we can see that in the long term, the connectedness
between the stock markets of the six green industries and traditional stocks market is the
largest, and in the short run, the connectedness of variables in the system decreases, which
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can be explained by the fact that the information transmission is more rapid in the long
term than in the intermediate and the short term.

6.5. Dynamic Spillover and the Impact of COVID-19

Considering the time-varying characteristics of the return spillover index, we further
estimate the volatility spillover movements between the stock markets of the six green
industries and other financial markets using a rolling time window. The forecast horizon
is 10 and the window width is 200. Figure 3 plots the total volatility spillovers estimated
by the rolling-window analysis. It is evident that around January 2020, the volatility
spillover indices experienced an abnormal rise. The COVID-19 pandemic might be the
major cause of the 2020 fluctuations that negatively affected global stock markets. In turn,
the negative emotions caused by the abnormal fluctuations in the financial markets further
strengthened the dynamic spillovers in the corresponding submarkets. Since the effects of
the epidemic have gradually diminished in China, the correlation between markets has
gradually returned to the normal level. This further verifies that major emergencies in
various financial submarkets are highly contagious.

Figure 3. Rolling-window estimation of total connectedness.

In addition, to further investigate the impacts of the COVID-19 pandemic, the sample
period is subdivided into three subperiods: the pre-COVID-19 period (1 January 2016 to
31 December 2019), the COVID-19 period (1 January 2020 to 30 September 2020), and the
post-COVID-19 period (1 October 2020 to 24 June 2022). (On December 31, 2019, Wuhan
Municipal Health Commission reported a cluster of cases of novel pneumonia, which was
eventually identified as Coronavirus disease 2019 (COVID-19) by the WHO. Therefore,
the start date of the COVID-19 is therefore assumed to be December 31, 2019, and the
COVID-19 epidemic period is defined as the daily data from January 1 to September 30,
2020.) The selection of the subperiods is based on Figure 2, and then, we calculate the
directional spillovers in the pre-COVID-19, COVID-19, and post-COVID-19 periods. This
may provide some detailed insights into spillover effect transmission trends across the
markets under investigation. As shown in Tables 5–7, the total connectedness is 73.76%,
83.99%, and 64.99% in the three periods, respectively. The total spillovers increase, which
could be explained by the stronger market interaction following the COVID-19 outbreak.

More specifically, from Table 5 it can be concluded that before COVID-19 the spillovers
of green stocks to energy futures were the smallest. According to Table 6, during the
COVID-19 pandemic, not only did the total connectedness increase, but the spillover effect
of green stocks on green bonds and energy futures has also increased significantly. In
contrast, the volatility spillover effect between green stocks and gold is relatively low.
Moreover, gold exerted the least impact on other markets.
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Table 5. Spillover matrix in pre-COVID-19 outbreak.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF FROM

EPI1 10.4 7.98 9.18 7.3 8.06 8.76 8.62 7.79 8.18 8.31 8.68 0.01 6.59 0.1 0.04 89.6
EPI2 8.78 10.54 8.71 7.74 8.12 9.16 8.57 7.91 7.99 7.87 8.76 0 5.74 0.07 0.01 89.46
CPI1 8.8 7.82 10.7 8.58 7.84 8.18 8.69 7.92 8.34 7.79 8.42 0.01 6.76 0.13 0.02 89.3
CPI2 8.13 7.88 9.54 10.79 7.94 8.36 8.23 8.04 8.4 7.58 8.57 0.01 6.38 0.13 0.03 89.21
CEI1 8.59 8.3 8.6 7.72 9.53 9.06 8.44 8.13 8.31 7.52 9.09 0.01 6.6 0.06 0.02 90.47
CEI2 8.83 8.68 8.58 7.55 8.52 10.19 8.4 7.86 8.21 7.71 8.69 0 6.67 0.09 0.02 89.81
EEI1 8.74 8.02 8.86 7.35 8.06 8.54 10.83 8.24 7.89 7.64 8.58 0.01 7.05 0.15 0.02 89.17
EEI2 8.42 7.88 8.82 7.61 7.95 8.38 8.93 11.24 8.03 7.43 8.16 0 7.08 0.06 0 88.76
GII1 8.48 7.93 8.88 8.07 8.2 8.62 8.26 8.09 10.09 7.65 9.02 0.01 6.62 0.08 0.01 89.91
GII2 9.38 8.16 8.8 7.54 7.98 8.53 8.48 7.74 8.05 10.02 8.67 0.01 6.51 0.12 0.01 89.98
GSI 8.58 8.04 8.6 7.83 8.34 8.54 8.69 8.02 8.23 7.59 10.79 0 6.65 0.07 0.04 89.21
CGB 1.98 1.36 1.54 2.06 1.27 1.12 1.12 0.9 1.36 2.42 1.56 79.95 0.95 0.37 2.05 20.05

HS300 8.46 6.58 8.45 6.96 7.65 8.07 8.17 8.15 7.79 7.22 8.05 0 14.26 0.17 0.02 85.74
AU 0.7 0.8 0.97 0.76 0.26 0.63 1.58 0.26 0.6 0.56 0.31 0.22 1.68 89.83 0.85 10.17
EF 0.7 0.17 0.43 0.35 0.61 0.64 0.58 0.16 0.23 0.41 0.23 0.02 0.4 0.65 94.41 5.59
TO 98.6 89.61 99.96 87.42 90.78 96.59 96.75 89.22 91.62 87.69 96.8 0.31 75.66 2.24 3.13 1106.4

NET 8.99 0.16 10.66 −1.78 0.32 6.78 7.59 0.46 1.71 −2.29 7.58 −19.73 −10.08 −7.93 −2.45 73.76

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike informa-
tion criterion) and generalized variance decompositions of 10-day-ahead forecast errors.

Table 6. Spillover matrix during-COVID-19 outbreak.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF FROM

EPI1 10.52 7.46 9.6 8.78 5.82 6.08 5.83 5.05 10.14 10.2 8.14 2.77 9.01 0.04 0.56 89.48
EPI2 9.58 9.74 9.17 7.96 6.31 7.73 5.64 4.23 9.81 9.38 9.55 1.8 8.23 0.02 0.84 90.26
CPI1 9.39 7.37 11.57 9.37 5.41 4.94 6.44 5.85 9.99 9.47 7.7 2.82 8.89 0.02 0.77 88.43
CPI2 8.5 6.84 9.93 10.7 6.25 4.96 7.43 5.25 10.37 8.74 7.84 3.43 8.85 0.08 0.82 89.3
CEI1 8.01 7.57 7.89 7.6 9.58 8.67 6.53 5.74 8.92 7.9 8.82 2.31 8.96 0.35 1.13 90.42
CEI2 8.83 7.75 7.61 7.15 7.69 10.14 6.81 5.4 8.99 8.46 9.26 1.84 8.29 0.19 1.6 89.86
EEI1 8.02 6.53 8.03 7.98 6.89 5.74 10.77 6.01 8.27 9.11 8.21 4.49 9.19 0.1 0.67 89.23
EEI2 8.13 6.26 9.08 6.97 6.86 6.19 6.82 12.03 7.74 9.64 6.4 2.49 10.08 0.89 0.42 87.97
GII1 8.87 6.8 9.28 9.6 5.93 5.46 6.72 5.05 12.49 8.73 8.46 3.09 8.85 0.03 0.63 87.51
GII2 9.83 7.31 8.82 7.5 6.29 6.72 6.75 5.33 8.11 11.94 8.09 3.21 9.48 0.12 0.49 88.06
GSI 9.06 7.87 8.67 8.4 6.28 6.97 6.5 4.34 10.48 8.79 10.36 3.28 8.08 0.06 0.86 89.64
CGB 7.35 5.16 7.62 7.22 6.22 4.5 7.31 5.6 7.59 7.99 7.43 15.82 9.05 0.17 0.99 84.18

HS300 8.6 6.62 8.79 7.11 6.65 6.11 6.22 6.64 7.88 9.59 7.29 3.92 13.71 0.47 0.4 86.29
AU 5.53 1.24 2.08 0.5 0.21 1.1 1.91 1.96 0.52 5.28 2.46 10.04 2.02 63.28 1.89 36.72
EF 6.11 6.17 5.92 4.62 5.32 7.25 5.74 4.14 6.73 6.58 7.02 1.79 5.02 0.13 27.45 72.55
TO 115.82 90.96 112.5 100.76 82.12 82.42 86.65 70.58 115.54 119.85 106.67 47.29 114.01 2.67 12.06 1259.91

NET 26.34 0.7 24.07 11.46 −8.3 −7.43 −2.57 −17.39 28.03 31.79 17.03 −36.89 27.71 −34.05 −60.49 83.99

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike informa-
tion criterion) and generalized variance decompositions of 10-day-ahead forecast errors.

Table 7. Spillover matrix in post-COVID-19 outbreak.

EPI1 EPI2 CPI1 CPI2 CEI1 CEI2 EEI1 EEI2 GII1 GII2 GSI CGB HS300 AU EF FROM

JNHB1 18.26 6.52 12.19 8.99 0.56 3.74 10.12 3.9 12.23 11.79 6.37 0.01 5.27 0.03 0.02 81.74
JNHB4 12.08 17.51 12.52 8.16 1.85 5.37 8.97 2.35 9.35 7.56 9.04 0.02 5.08 0.06 0.08 82.49
QJSC1 11.12 6.61 19.83 14.37 1.43 1.69 11.24 5.29 6.64 7.31 6.83 0.07 7.37 0.07 0.16 80.17
QJSC2 9.84 4.84 15.46 19.94 2.19 1.44 13.86 5.53 7.81 6.9 5.77 0.08 6.14 0.09 0.11 80.06
QJNY1 4.65 6.28 7.42 8.52 30.92 13.14 13.06 1.04 3.46 2.4 4.92 0.72 2.82 0.07 0.59 69.08
QJNY2 13.53 5.83 8.22 6.33 4.99 24.86 9.89 1.81 8.05 5.35 6.62 0.75 3.59 0.13 0.06 75.14
STHJ1 10.03 4.32 11.86 13.11 1.16 2.22 25.11 4.43 9.07 7.03 5.37 0.25 5.23 0.62 0.17 74.89
STHJ3 9.73 3.19 11.36 10.43 1.26 1.51 11.19 24.07 6.46 9.03 4.31 0.02 6.88 0.47 0.09 75.93
JCSS1 13.23 5.62 10.39 10.29 0.92 3.03 11.93 5.03 16.91 11.08 5.39 0.04 6.05 0.02 0.08 83.09
JCSS2 13.41 4.84 10.47 8.56 1.06 2.48 7.91 5.66 12.47 22.57 5.5 0.16 4.87 0.02 0.01 77.43
LSFW 11.63 8.13 12.83 9.31 2.61 4.47 11.44 3.35 8.06 7.34 14.67 0.13 5.55 0.21 0.29 85.33

GB 0.11 0.13 0.72 2.3 0.49 0.83 0.49 0.09 0.45 0.55 0.88 92.09 0.24 0.56 0.07 7.91
STOCK 8.92 3.56 7.59 5.71 0.41 2.33 10.08 3.94 7.53 8.27 4.34 0.2 34.55 2.17 0.42 65.45
GOLD 0.24 0.5 0.32 0.06 0 0.62 1.02 0.45 0.14 0.69 1.13 5.16 1.4 84.8 2.36 14.09

EF 0.71 1.9 0.58 0.07 3.78 0.65 0.53 2.25 0.04 0.06 0.87 0.03 0.52 8.97 79.04 20.96
TO 119.22 62.26 121.92 106.21 22.71 43.52 121.74 45.12 91.75 85.35 67.35 7.62 61.02 13.5 4.49 974.87

NET 37.49 −20.23 41.75 26.15 −46.37 −31.62 46.85 −30.82 8.66 7.93 −17.99 −0.29 −4.43 −1.71 −16.47 64.99

Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike informa-
tion criterion) and generalized variance decompositions of 10-day-ahead forecast errors.

6.6. Portfolio Weights Analysis

To deepen our understanding further on the investment implications of our study,
we report in Table 8 the summary statistics of the bilateral portfolio weights (weight) and
portfolio effectiveness (HE) of the first and second assets, in which weight refers to the



Sustainability 2022, 14, 13178 20 of 24

proportion of safe-haven assets in the investor’s portfolio and HE indicates how much
risk can be reduced adding risk averse assets to the portfolio. The greater the HE value,
the stronger the effectiveness of the portfolio. Table 8 reports the statistics for the whole
sample period and sub period, including pre-COVID-19 period, COVID-19 period, and
post-COVID-19 period.

Table 8. Bilateral portfolio weights and effectiveness.

Whole Period Pre-COVID-19 Period COVID-19 Period Post-COVID-19 Period

Weight HE (%) Weight HE (%) Weight HE (%) Weight HE (%)

JNHB1/GB 0.9964 1.75 0.9968 0.59 0.9912 7.86 1.0000 0.29
JNHB2/GB 0.9966 1.74 0.9969 0.61 0.9919 6.66 1.0000 0.46
QJSC1/GB 0.9962 1.90 0.9968 0.58 0.9905 6.03 1.0000 0.62
QJSC2/GB 0.9957 2.04 0.9973 0.49 0.9887 7.46 1.0000 0.34
QJNY1/GB 0.9960 2.05 0.9963 0.68 0.9913 6.46 1.0000 0.60
QJNY2/GB 0.9961 1.86 0.9961 0.67 0.9927 5.56 1.0000 0.26
STHJ1/GB 0.9959 1.57 0.9963 0.49 0.9930 3.95 1.0000 0.27
STHJ2/GB 0.9966 1.45 0.9968 0.59 0.9922 5.46 1.0000 0.18
JCSS1/GB 0.9951 2.18 0.9955 0.90 0.9915 5.74 1.0000 0.33
JCSS2/GB 0.9968 1.63 0.9975 0.52 0.9913 6.86 1.0000 0.32
LSFW/GB 0.9958 4.37 0.9960 0.78 0.9901 7.38 1.0000 0.43

JNHB1/GOLD 0.7993 23.00 0.8105 23.73 0.7852 18.79 0.7944 23.56
JNHB2/GOLD 0.8194 20.60 0.8254 22.15 0.7855 18.65 0.8406 17.21
QJSC1/GOLD 0.7811 25.71 0.8007 25.66 0.7090 24.48 0.7883 25.03
QJSC2/GOLD 0.7686 27.63 0.7999 25.98 0.6746 28.39 0.7504 30.22
QJNY1/GOLD 0.8033 22.42 0.7961 25.65 0.7561 21.22 0.8658 14.10
QJNY2/GOLD 0.8082 21.35 0.7938 25.29 0.7907 17.90 0.8707 13.18
STHJ1/GOLD 0.7521 27.21 0.7631 29.28 0.7392 20.63 0.7426 26.71
STHJ2/GOLD 0.8062 21.38 0.8025 24.25 0.7915 14.96 0.8262 18.82
JCSS1/GOLD 0.7785 1.41 0.7967 25.94 0.7412 27.46 0.7668 26.95
JCSS2/GOLD 0.8123 21.75 0.8359 21.55 0.7601 19.93 0.7866 23.80
LSFW/GOLD 0.7924 23.67 0.8007 25.24 0.7240 24.63 0.8256 18.57

JNHB1/EF 0.5412 39.85 0.5209 43.66 0.8503 7.28 0.3939 54.30
JNHB2/EF 0.5759 37.03 0.5475 40.44 0.8487 7.58 0.4704 50.91
QJSC1/EF 0.5181 40.91 0.5107 43.24 0.7415 14.71 0.3866 54.41
QJSC2/EF 0.5044 42.54 0.5124 42.78 0.6881 21.07 0.3514 59.62
QJNY1/EF 0.5586 37.35 0.5004 43.95 0.8273 8.49 0.5388 42.58
QJNY2/EF 0.5576 37.78 0.4932 45.02 0.8786 5.56 0.5223 44.43
STHJ1/EF 0.4614 45.86 0.4461 48.77 0.7586 14.61 0.2926 61.57
STHJ2/EF 0.5452 36.89 0.5090 42.53 0.8618 5.12 0.4217 47.36
JCSS1/EF 0.5141 41.23 0.5034 42.97 0.7730 13.56 0.3653 57.72
JCSS2/EF 0.5650 38.11 0.5727 38.03 0.7802 13.71 0.3781 58.46
LSFW/EF 0.5351 39.34 0.5117 42.66 0.7690 13.31 0.4315 51.03

Notes: This table summarizes the results of the optimal portfolio weights and the corresponding
effectiveness.

During the whole sample period, the HE value of EF is the largest, which means
that incorporating EF into the portfolio of green industry stocks can effectively reduce
investment risk, namely, EF is the most suitable tool for diversified portfolio of green
industry. At the same time, the weight proportion of almost all hedging assets is greater
than 50%, which means that investors should hold more green bonds, gold and energy
futures than green industry stocks, so as to reduce the risk of green stock investment.
Specifically, in the portfolio of green stocks and energy futures, the average optimal weight
of EPI2 and EF is the highest, which is 0.5759, indicating that for the portfolio of CNY 100,
CNY 57.59 will be invested in EF, and the remaining CNY 43.41 will be invested in EPI2.
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6.7. Robustness Checks

To further verify the robustness of the above-mentioned results, we change the H-step-
ahead forecasting period to 2 and 5 days and adjust the rolling windows to 100 to 180 days.
Figures 4 and 5 show the time-varying spillover graphs of the total spillover index under
different forecast horizons and rolling window size combinations. It can be observed that
there are comparable trends, indicating that the main empirical results are robust.

(a) (b) (c)

Figure 4. Robustness checks by applying the 2-day forecast horizon: (a) 100-day rolling windows;
(b) 150-day rolling windows; (c) 180-day rolling windows.

(a) (b) (c)

Figure 5. Robustness checks by applying the 5-day forecast horizon: (a) 100-day rolling windows;
(b) 150-day rolling windows; (c) 180-day rolling windows.

7. Discussion

Using the spillover index model of Diebold and Yilmaz and the frequency-domain
spillover approach developed by Barun’ik and Kvrehl’, this paper aims to examine the risk
spillovers and the asymmetric connectedness between the green industry stock markets,
green bond market, and other traditional financial markets in China. Using rolling time
windows, this paper captures the dynamic risk spillovers between six green industry stock
markets and other financial markets and investigates the impact of COVID-19. In addition,
the DCC-GARCH model is used to analyze the optimal portfolio tool for green industry
stocks under various market economy conditions. The following is a summary of the key
findings of this paper.

First, this paper demonstrates through a static spillover analysis that the correlation
between the six green industry stocks and various financial markets varies. Specifically, for
EPI, CPI, EEI, and GII, the energy futures market experiences the fewest shocks, whereas
the CEI and GSI have the smallest effect on the gold market’s volatility.

Second, by decomposing the returns into positive and negative returns and calculating
volatility, this study concludes that under the downside risk of the green stock market, the
spillover effects between green stocks and green bonds are the smallest.

Third, using the frequency-domain spillover approach developed by Barun’ik and
Kvrehl’ and demonstrating network connectedness, this paper concludes that the corre-
lation between green industry stocks and other financial assets fluctuates over time. In
addition, a segmented analysis is used to examine the impact of the COVID-19 pandemic
on the volatility spillover effect of stocks in the six green industries. In this regard, the
final conclusion of this paper is that the spillovers of green stocks to energy futures were
smallest prior to COVID-19. During the COVID-19 outbreak, gold experienced the fewest
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shocks. The spillover effects between the green stock market and other financial markets
are heterogeneous in the post-COVID-19 era.

8. Conclusions, Implications, and Limitations

A considerable amount of private capital must be invested in green industries in
order to achieve sustainable economic growth. As the primary source of direct financing,
investors who hold a substantial number of equity assets are exposed to relatively high
risk. In order to reduce the investment risk of participants in the green financial market and
stimulate the demand for the green stock market, this paper focuses on the impact of the
COVID-19 epidemic on the dynamic risk spillover and the selection of optimal investment
tools between China’s green industry stock market and other financial markets, and offers
effective recommendations for environmentally friendly investors and policymakers.

First, static spillover results indicate that the correlation between green stocks, gold,
and energy futures markets is relatively weak. Therefore, investors can construct diversified
portfolios of green stocks using the two asset classes. In order to maximize the benefits
of each market and to achieve the coordinated development of the green industry and
other financial markets, policymakers should simultaneously consider the differences in
the relevance between markets. Moreover, when the green industry stock market presents
downside risks, investors should increase their green bond holdings and decrease their
energy futures holdings. Moreover, the risk contagion between markets is stronger over
the long term, so environmentally conscious investors should diversify the investment risk
of long-term financial assets appropriately.

Second, based on the results of different stages of time under the influence of the
COVID-19 epidemic, investors should invest more in the energy futures market prior to the
epidemic, i.e., during periods of relative economic stability. When the epidemic and other
crises occur, investors should reduce their investments in energy futures and green bonds,
but increase their investments in the gold market to ensure the security of their assets and
mitigate the negative impact of crisis events on their investments. Policymakers should
thoroughly consider the impact of extraordinary events and market fluctuations on the risk
contagion of the green industry, and provide support for the effective risk management of
China’s green industry by establishing an effective risk early warning mechanism.

In future research, if the data can be subdivided and quantified more precisely, and
if the time interval can be extended, more precise and timely conclusions and policy
recommendations will be obtained. Concerns for future research include, for instance,
further analysis of the impact of sudden crisis events, such as the Russian–Ukrainian war,
on green industries, as well as research on more detailed green industry markets and more
diverse financial markets, so as to more effectively promote the development of various
types of green industries.
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