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Abstract: Rice disease detection is of great significance to rice disease management. It is difficult to
identify the rice leaves with different colors in different disease periods by RGB image and without
aided eyes. Traditional equipment and methods are relatively inefficient in meeting the needs of
current disease detection. The accurate and efficient detection the infected areas from hyperspectral
images has become a primary concern in current research. However, current spectral target detection
research pays less attention to the time and computing resources consumed by detection. A disease
detection method based on random forest (RF) and adaptive coherence estimator (ACE) is proposed
here. Firstly, based on the spectral differences between diseased and healthy leaves, 18 characteristic
spectral wavelengths with the highest importance were selected by an RF algorithm, and the spectral
images of those characteristic wavelengths were synthesized. Then, the ACE model was established
for the disease recognition of full wavelength spectral images, characteristic wavelength spectral
images, and RGB images. At the same time, three other familiar target detection methods were
selected as the control experiments. The detection results showed a similarity between the detection
performance of the four detection methods for full wavelength spectral image and characteristic
wavelength spectral image. This detection performance was higher than that of the RGB image,
indicating that characteristic wavelength spectral image can replace full wavelength spectral image
for disease detection. The detection performance of the ACE algorithm was better than other
algorithms. The detection accuracy of 18 characteristic wavelengths was 97.41%. Compared with
the hyperspectral full wavelength image detection results, the accuracy decreased by 1.12%, and the
detection time decreased by 2/3, which greatly reduced the detection time. Based on these results,
the target detection method combining the RF algorithm and the ACE algorithm can effectively and
accurately detect rice bacterial blight disease, which provides a new method for automatic detection
of plant disease in the field.

Keywords: rice disease phenotype; ACE; hyperspectral; bacterial blight disease; disease detection

1. Introduction

The detection of diseases in rice protection and breeding fields is of significant research
value [1,2]. Given the growth of sensor technology and data acquisition technology, the
identification of rice diseases has grown immensely. Bacterial blight, one of the three
primary rice diseases, has occurred in all rice-planting regions in China, adversely affecting
rice production. The disease has caused losses of 20–30% and 50–60% of the yield in
several occurrences. In the most severe cases, the loss is so intense that there is no harvest,
consequently posing a great threat to the country’s food security [3]. The rapid spreading
of bacterial blight in rice and the distinct colors of the impacted areas makes it difficult
to spot the disease using RGB images and unaided eyes. Presently, the technique that
can accurately and effectively detect bacterial blight in rice does not exist. Further, in
existing research, the reports on rice bacterial blight detection are rather few [4,5]. The
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key to taking effective control and preventive measures and achieving correct pesticide
application lies in the accurate and real-time determination of distribution areas and the
extent of rice bacterial blight damage [6,7]. The most commonly utilized technique for rice
bacterial blight detection is the reliance on experienced farmers or plant protection experts
for disease detection. This method requires human observation in the field to understand
the degree of disease damage and distribution, which is laborious, time-consuming and
challenging to carry out on a large scale. More notably, it is easy to misjudge because of
the observer’s experience limitations [8]. There is therefore an urgency to develop new
techniques that can overcome the challenges of traditional detection methods and efficiently
and precisely diagnose rice bacterial blight.

Hyperspectral imaging technology is a new testing technology that is non-destructive
and integrates traditional imaging technology and spectral technology. This technology
records an image through every wavelength in the spectrum to show the spectral informa-
tion of every spatial pixel, making up for technology’s limitations in imaging and traditional
spectral analysis [9,10]. This study presents that hyperspectral imaging may obtain the re-
search object’s spectral and spatial distribution information simultaneously and can fleetly
and accurately carry out non-destructive detection of plant diseases. This fully shows the
advantage of hyperspectral imaging technology [11,12]. Numerous scholars and experts
have carried out meaningful research reports regarding how to fleetly and accurately detect
plant diseases from hyperspectral images [13–15]. Remarkably, the high dimensionality of
hyperspectral images brings a huge challenge to computational complexity, which is an
urgent problem to be solved in detecting of plant diseases using hyperspectral images [16].
The characteristic spectral wavelength and characteristic index combined with the ma-
chine learning method are utilized to detect plant diseases [17]. Zheng et al. [18] used
hyperspectral technology to gather the hyperspectral data of the wheat canopy at distinct
stages of development. They screened out the sensitive spectral index of yellow rust at
different stages of growth. The study showed that the three wavelengths’ photochemical
reflection indices and anthocyanin reflection indices had excellent monitoring effects on
yellow rust at the early-mid and mid-late growth stages. Yuan et al. [19] made use of the
random forest algorithm to screen out the top 12 hyperspectral characteristic wavelengths
that significantly affect the bacterial streak of rice. They carried out the detection of the
bacterial streak and saw favorable detection outcomes. Huang et al. [20] implemented a
technique involving monitoring the rice leaf roller disease based on hyperspectral data. The
findings were that 38 leaf-level spectral indicators and 29 canopy-level spectral indicators
were linked to the rice leaf roller disease. Guo et al. [21] developed a partial least squares re-
gression prediction model through the spectral index, spectral ratio index, and normalized
difference spectral index of hyperspectral images to inverse the disease index of winter
wheat take-all and accurately monitor wheat take-all in a large region. Vincent et al. [22]
utilized the ACE algorithm to recognize houses and vegetation in hyperspectral images
of ground objects and achieved good outcomes. Zhao et al. [23] proposed an ensemble
based constrained energy minimization (E-CEM) method to recognize targets in remote
sensing hyperspectral images with strong nonlinearity and non-Gaussianity. The outcomes
show that this method has higher detection accuracy and better robustness. Li et al. [24]
suggested extended spectral angle mapping (ESAM) algorithm to detect citrus HLB disease,
and compared its performance to those of the Mahalanobis distance method and K-means
algorithm. The results show that the ESAM algorithm performs better.

Most current studies focus on the correlation of spectral parameters constructed by
varied crop diseases and other band algebraic combinations. To identify rice diseases,
they cannot fully use the spectral differences between hyperspectral images of rice leaf
disease regions and healthy regions. They also do not consider the computational time and
resources consumed in detection. This paper proposes a hyperspectral disease detection
technique that combines a random forest algorithm and adaptive coherence estimator, using
the spectral differences of distinct disease spots to identify diseases. Using the hyperspectral
image of rice leaves infected with bacterial blight as the research object, the full-optical
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spectral wavelength hyperspectral image, the characteristic wavelength hyperspectral
image selected based on the RF algorithm (starting now referred to as the characteristic
wavelength spectral image), and the RGB wavelength spectral image were constructed to
compare the effects of the spectral information contained in different spectral wavelengths
on the detection performance of bacterial blight, which will provide a time-saving and
efficient method for the detection of plant disease in the field.

2. Materials and Methods
2.1. Test Material

In this experiment, rice variety Nanjing 9108 was used (Nanjing, China). It was rated a
super rice variety by the Ministry of Agriculture in 2015. Whole seeds were picked, soaked,
and germinated before being planted and sown in the College of Plant Protection of Nanjing
Agricultural University greenhouse on 17 August 2020. Each cup containing 3–5 seeds was
implanted evenly. There were a total of 100 cups managed in a similar environment. After
germination, rice is transported outdoors and grown under natural conditions. The strain
of bacterial blight selected in the test was provided by the Institute of Plant Protection,
Jiangsu Academy of Agricultural Sciences, a highly pathogenic Xanthomonas strain. The
cultivation diagram of the bacterial blight pathogen is demonstrated in Figure 1.
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Figure 1. Diagram of pathogen cultivation.

After the rice seedlings grew the fifth leaf, they were injected with bacterial blight.
Whilst being injected, the leaves of the rice plants with similar plant height were selected
for treatment. The leaf-cutting technique for inoculation was assumed; scissors dipped in
the bacterial solution were used to cut the top of healthy rice leaves by around 1 cm and
managed them usually until the appearance of disease symptoms.

2.2. Hyperspectral Imaging System

The push-broom hyperspectral imaging system (HSI-VNIR-0001, Shanghai ISUZU
Optics Co., Ltd., Shanghai, China) used in this test is shown in Figure 2. The acquisition
software consists of the spectral image imaging software and HSI Analyzer software.
The spectral wavelength range of rice leaves collected by this hyperspectral system is
378~1033 nm, with a total of 306 wavelengths. 35 mm imaging lens is selected, the object
distance is 27 cm, and the light source value is 100 lx.
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3—Stage).

2.3. Hyperspectral Data Acquisition and Correction

The bacterial blight incubation period was 3 days, and the outbreak period was
3–7 days. Bacterial blight spreads rapidly. Since the rice leaves were thin strips, hyperspec-
tral image acquisition was carried out on the 7th day after inoculation to take a complete
picture of all leaves. All the leaves of the spectrum to be measured were cut from the
rice plant, and 6–8 isolated rice leaf samples were placed on a linear translation table for
imaging. A total of 200 hyperspectral images of rice disease leaves were gathered.

To decrease the impact of noise information on the quality of hyperspectral curves
and enhance the accuracy and stability of qualitative analysis models of spectral curves,
black-and-white correction was performed for hyperspectral curves [16], and the image
correction formula is as follows (1):

R(i) =
Ir(i)− Id(i)
Iw(i)− Id(i)

(1)

where:

R(i)—the relative reflectance of the corrected image;
Ir(i)—reflectivity of the original image of the test spectrum;
Iw(i)—bright current spectral reflectance after whiteboard correction;
Id(i)—dark current spectral reflectance after blackboard correction.

2.4. Data Analysis and Processing Methods

The test platform was Windows 10 operating system of 16 GB RAM, 256 GB SSD,
1TBHD, Intel Quadcore i7-8700, 4.2 GHz. Python 3.7 (Vilmington, DE, USA), Matlab 7.1
(Natick, MA, USA) and scikit-learn 2.2 were used to implement the algorithm, and the
hyperspectral image processing was completed on the HSI Analyzer and Envi 5.3 software
platform (Boulder, CO, USA).

2.4.1. Spectral Image Preprocessing

Four preprocessing methods were chosen for this experiment, including SG convo-
lution smoothing [10], multiple scattering sorrection (MSC) [14], standard normal variate
(SNV) transformation [15], and first derivative method (FDM) [17].

Figure 3 shows the preprocessing results of the 400~900 nm wavelength spectrum
by the above methods. The spectral curve after SG convolution smoothing is shown in
Figure 3a. The smoothed spectral curve becomes smooth. After 760 nm, the reflectivity
difference between spectral curves was widened, and the curves were not concentrated.
The spectral curve after MSC processing is shown in Figure 3b, and the reflectivity remained
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in the range of 0~0.6, with concentrated curves and obvious contours. The spectral curve
after SNV treatment is shown in Figure 3c and was smooth and concentrated. However, the
spectral reflectance was expanded to −1.5~1.5, which was beyond the range of 0~0.6 of the
original spectral curve inconsistent with the actual situation. The spectral curve processed
by the first derivative method was shown in Figure 3d. After smoothing, not only was the
trend of the original spectral curve changed, but also the range of spectral reflectance was
altered, which was inconsistent with the actual situation.
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By comparing the results of the above four methods to preprocess the spectral curve
of rice leaves, it can be seen that MSC preprocessing was the best. Therefore, this paper
used MSC to pre-process the hyperspectral image of rice leaves.

2.4.2. Preparing of Spectral Image Data Set

The biggest problem in hyperspectral image analysis was extracting practical informa-
tion from spectral images and reducing the consumption of computing time and resources.
Thus, for not losing the effective characteristic wavelength spectral information, it was
indispensable to compress the amount of data through dimensionality reduction to reduce
the cost of subsequent processing [25].

To determine the most favorable detection model, MSC was utilized to preprocess the
hyperspectral images of 200 diseased leaves. On this basis, three spectral image data sets
with distinct wavelengths were prepared:
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(1) Full wavelength spectral image

Given the existence of systematic errors, there was great noise at both ends of the
sample spectral curve and the overlapping of spectral segments. Too many dimensions
resulted in the surge of analysis time. Hence, the hyperspectral data with a total of
234 wavelengths between 400–900 nm were chosen as the full wavelength spectral image
data set during spectral analysis.

(2) Characteristic wavelength spectral image

Hyperspectral data was in a high-dimensional space. Its wavelengths each can be
viewed as a feature. Consequently, hyperspectral image characteristic selection equals
wavelength selection, which selected the dominant subset of wavelengths from all other
wavelengths. This paper utilized the RF algorithm to choose characteristic wavelengths.
This technique’s basic idea was to rearrange the order of every characteristic wavelength
that consists of a random forest according to its significant score and compare the effects of
varied characteristic wavelengths on the accuracy of model prediction. Characteristic wave-
lengths with great significance hugely impacted the accuracy of model prediction [17]. The
importance of a characteristic wavelength X in a random forest was calculated as follows:

Step 1: for each decision tree in the random forest, use the corresponding out-of-bag (OOB)
data to calculate its OOB error, which was recorded as ERROOB1.
Step 2: randomly add noise interference to the characteristic wavelength X of all OOB
samples (you may randomly change the value of the sample at the characteristic wavelength
X), and calculate its OOB error again, recorded as ERROOB2.
Step 3: suppose there are Ntreetrees in the random forest, then for the importance of feature

X, IM = ∑
(ERROOB2− ERROOB1)

Ntree
, if the accuracy of the OBB decreases significantly after

adding noise to a certain characteristic wavelength X, it shows that this feature has a great
impact on the classification results of samples, that is to say, its importance is relatively high.

The initial spectral image size is 1280× 1024× 306, select 18 characteristic wavelengths
with the highest importance, and the size became 1280 × 1024 × 18 spectral image subset.
This not only significantly reduced the data dimension, but also retained the spectral
information with strong importance. As shown in Figure 4, the diagram of characteristic
wavelengths was shown. The abscissa was the order of band importance, the left ordinate
was the wavelength (nm) of rice leaf spectrum, and the right ordinate was the importance
score expanded by 5000 times.
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(3) RGB image

Hyperspectral images consist of essential spectral information. To better differentiate
the disease spot region and the healthy area, the average spectra of the two areas of interest
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were contrasted, and the three wavelengths with the greatest difference in the red, green
and blue edge ranges were obtained respectively. They were then synthesized into RGB
images and made into the RGB image data set to be detected in this study.

2.4.3. Target Detection Algorithm

This part introduced four frequently used target detection algorithms that could be
divided into geometric and statistical models according to the algorithm model. The
ACE highlighted in this paper was an algorithm for statistical description of background
patterns, which had accrued immeasurable attention because of its good target detection
performance. In invariable or partially uniform environments, the ACE detector was
equivalent to the generalized likelihood ratio test (GLRT).

Additionally, the three most common hyperspectral target detection algorithms were
chosen to differentiate their performance with the ACE algorithm. They included con-
strained energy minimization (CEM) [23], orthogonal subspace projection (OSP) [26], and
spectral angle mapper (SAM) [24]. CEM was homogeneous to ACE, which also statistically
traced the background pattern. Moreover, two algorithms, OSP and SAM, were selected
for the geometric description of the background.

The ACE is obtained from the GLRT algorithm with characteristics of constant false
alarm rate (CFAR) [27]. The background covariance of the algorithm is well known and
can be expressed as Formula (2):

DACE(x) =
(dT Γ−1x)2

(dT Γ−1d)(xT Γ−1x)
(2)

where:

D(x)—spectral similarity measurement;
d—target spectral matrix;
dT—transpose of target spectral matrix;
x—spectral matrix of the pixel to be evaluated;
Γ—background covariance matrix.

In Formula (2), the ACE algorithm gauges the detection statistics in varied manners,
obtaining greater severance between the target and the background. Furthermore, ACE
allows for the setting of a PFA. In prior research, the ACE algorithm offers the ultimate
performance when compared to other algorithms [28].

The CEM algorithm is a filter with restricted impulse response. It can divide the
target and minimize the output energy produced by the background, except for the target,
meaning that a filter vector is determined via hyperspectral image data and that the
formerly known target and the perceived outcome can be achieved through passing the
image through the filter vector. The role of the filter vector is to filter out the nontarget
pixels in the image so that the target of interest can easily pass through and suppress the
filter output energy presented by other signals simultaneously. Formula (3) delineates the
CEM algorithm. The covariance of the correlation matric is used to distinguish the contents
of the unknown background.

DCEM(x) =
dT Γ−1x
dT Γ−1d

(3)

OSP algorithm first designs an OSP projector to filter the non targets in the response
pixels. It then uses the matched filter to find the match of the desired targets in the data.
The OSP algorithm may be expressed by Formula (4).

DOSP(x) =
dT P⊥U x
dT P⊥U d′

(4)
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where:

P⊥U = IL∗L −UU#—orthogonal subspace;
L—number of wavelengths;
U—non- target spectral matrix;

U# =
(
UTU

)−1UT—pseudo inverse matrix of U.

The OSP algorithm is an algorithm that uses structured background model to charac-
terize spectral variability.

The SAM algorithm influences the algorithm of two spectral similarities by calculating
the angle between two vectors: the target spectral vector and the pixel spectral vector to
be detected. If the similarity becomes higher than the threshold, it is the target vector.
Otherwise, it is not the target vector. Any pixel in the HIS has a two-dimensional vector
equivalent to the number of bands in the HIS. The SAM algorithm expression is shown in
Formula (5):

DSAM(x) =
dTx

(dTd)
1
2 (xTx)

1
2

(5)

SAM algorithm has both low computational complexity and computational cost, and
does not need any statistical information on site.

2.4.4. Performance Index of Target Detection Algorithm

The performance evaluation formula of the target detection algorithm contains nu-
merous indicators like confusion matrix and ROC curve. In this paper, disease pixels were
interpreted as positive cases and healthy pixels as negative cases. TP was the number
of samples that were disease pixels and are divided into disease pixels by the classifier;
FP was the number of samples that were healthy pixels but divided into disease pixels
by the classifier; FN was the number of samples that were disease pixels but classified as
healthy pixels by the classifier; TN was the number of samples that were healthy pixels
and divided into healthy pixels by the classifier. The performance indicators of the four
detection algorithms can thus be defined as follows:

Precision (P) refers to the proportion of the number of correct samples in the actual
number of input samples.

P =
TP

TP + FP
× 100% (6)

Recall (R) refers to the proportion of positive samples that are predicted to be positive.

R =
TP

TP + FN
× 100% (7)

P and R fluctuate: If P is high, R will decline. To give consideration to P and R, F1
is derived.

The comprehensive evaluation index F1 (F1-measure) is the harmonic average of P
and R. When the predicted samples are all positive, there are no true negatives and false
negatives. If there are many false positives, the R is high, and the P is low. On the contrary,
when the prediction is negative, and only one is positive, the P is high, and the R is poor.
Therefore, the P and R simultaneously for the problem of uneven sample numbers should
be considered

F1 =
2PR

P + R
× 100% (8)

Accuracy (A) refers to the proportion of the number of samples (TP + TN) with correct
model classification to the number of all samples. Generally, the higher the A, the better
the performance of the detection algorithm.

A =
TP + TN

TP + TN + FP + FN
× 100% (9)
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Based on the above formulae for target detection evaluation indicators, the P, R, F1
and A of the detection can be calculated.

3. Results and Discussion
3.1. Spectral Reflectance Analysis

The 18 spectral wavelengths with the highest importance were selected by the RF
algorithm. The specific ranking of wavelength importance scores is shown in Table 1.

Table 1. Band importance ranking.

Wavelength Serial Number Wavelength (nm) Feature Importance Score × 5000

139 667.02 592.895
132 651.89 589.395
51 480.17 425.11
52 482.25 419.97
49 476.03 412.565

122 630.35 304.1
120 626.05 292.955
110 604.6 291.825
105 593.91 286.905
130 647.58 281.355
131 649.73 280.805
58 494.72 219.195
41 459.5 205.98
45 467.75 195.9
61 500.98 192.225

155 701.73 5.33
135 658.37 1.79
46 469.82 1.715

3.2. Test Performance Analysis

The four aforementioned target detection algorithms were utilized to detect disease
spots in three distinct spectral images: full hyperspectral wavelength, characteristic wave-
length spectral, and RGB image. The detection performance indicators were depicted
in Table 2. From this table, it can be seen that the four detection algorithms contain the
best detection performance for full wavelength spectral images. The ACE algorithm’s
P was 95.11%, the R was 97.22%, the F1 was 96.15%, and the A was 96.11%. The CEM
algorithm’s performance index was lower than the ACE algorithm’s. On the other hand,
CEM’s detection time was more than that of the ACE algorithm. This showed that ACE
was more fitting for hyperspectral target detection compared with CEM in the detection
algorithm of statistical description of background patterns. SAM and OSP algorithms for
the geometric description of the background were both lower in detection time compared
with algorithms for the statistical description of the background. However, their detection
performance was also lower than the background’s statistical report. Notably, the detection
time of the SAM algorithm was the shortest, around 1/2 of the detection time of the former
algorithm. Nevertheless, every detection performance indicator had significantly lessened,
equivalent to approximately 2/3 of the precursory algorithm, and was consistent with the
detection outcomes of literature [26].

For the detection performance of the RF characteristic wavelength spectral image,
the RF algorithm was used to screen the characteristic wavelengths of the hyperspectral
image of the rice leaves, and the number of wavelengths used for detection is reduced
from 234 to 18, a great decrease in the number of wavelengths and the calculation amount.
As Table 2 shows, the A of the ACE algorithm was 97.41%, R was 94.24%, F1 was 95.86%,
and P was 94.25% using the image detection results of 18 characteristic wavelengths
screened based on the RF algorithm. Compared with the hyperspectral full wavelength
image detection results, P and A decreased by 0.92% and 1.12% and R and F1 increased
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by 0.09% and 0.49%, respectively. Although A was reduced, the model structure was
more compact, the computational complexity was reduced, and the model accuracy could
be basically maintained while the detection time was cut by half. The results showed
that the characteristic wavelength spectral image can be a better alternative to the full
wavelength spectral image for target detection, which can detect rice bacterial blight in a
more efficient way.

Table 2. Comparison of detection effect and detection time of three kinds of data images by different
detection algorithms.

Detection
Algorithm

Full Spectrum Wavelength Image RF Characteristic Wavelength Spectral Image RGB Wavelength Image

P/% R/% F1/% A/% T/ms P/% R/% F1/% A/% T/ms P/% R/% F1/% A/% T/ms

ACE 95.17 94.15 95.37 98.53 38 94.25 94.24 95.86 97.41 13 75.31 75.17 76.24 78.64 7
CEM 93.87 94.32 94.83 97.65 45 93.10 92.81 93.26 95.53 18 76.26 75.32 77.33 79.15 10
OSP 74.11 75.13 76.52 79.42 42 71.21 71.03 70.89 72.26 15 63.26 65.73 66.27 68.12 9
SAM 62.09 65.03 64.55 68.21 22 61.07 65.15 64.23 68.16 11 62.11 65.01 63.55 68.09 5

Although the RGB image only had three wavelengths, which can greatly reduce the
number of wavelengths and the amount of calculation, the detection effect based on RGB
image was also greatly reduced. By comparing the detection results and corresponding
detection time of three image datasets with different algorithms, it can be found that the
combination of RF algorithm and ACE algorithm can accurately and efficiently detect rice
leaf bacterial blight.

3.3. Visualization Effect of Rice Bacterial Blight Detection

To compare the ACE detection algorithm more intuitively, the detection effect of images
with different wavelengths was visualized as shown in Figure 5. From the primordial HIS
image of diseased leaves depicted in Figure 5a, it is evident that bacterial blight spreads
along the vascular bundles of rice leaves and causes changes in the color of the leaves. In
Figure 5b–d, the dark blue regions were healthy, and the rest were diseased. The redder the
color, the deeper the degree of infection was. By contrasting the detection outcomes of three
spectral images with distinct wavelengths, it was clear that for full spectral wavelength
images, the spectral information contained was the most complete. The ACE algorithm can
detect all spots of the disease, especially grayish-white and grayish-green disease spots. The
effect of recognition was significantly better than spectral images based on characteristic
wavelengths and RGB images. For the characteristic wavelength images screened by RF
algorithm, the recognition effect of yellowish green disease spots was similar, but the
recognition effect of grayish green disease spots was poor. RF only extracts the spectral
information of rice leaves, which essentially weakens the background information of
shading, compared with the full wavelength images. For the RGB wavelength images,
only yellowish green spots with great color distinctions can be seen since they contain less
spectral information.

It is especially worth noting that the detection of early asymptomatic lesions of rice
leaf blight is particularly important for disease prediction and early warning. Figure 5a
shows that bacterial blight spreads from the artificially inoculated wound to the bottom of
the leaves. When the amount of bacteria is not enough to make the leaves have obvious
color changes, we can find that there are early asymptomatic lesions by spectrum. By
comparing the detection effect diagram in Figure 5b–d, it can be found that for the detection
of asymptomatic areas, the detection effect based on the full spectrum and the sensitive
wavelength spectrum is due to the detection effect based on RGB. Therefore, we can say
that the early asymptomatic disease of bacterial blight in rice can be detected based on
hyperspectral imaging.
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3.4. Discussion

Our results show that hyperspectral imaging technology is better than RGB imaging
in detecting bacterial blight in rice, especially for early asymptomatic lesions that cannot
be detected by RGB imaging technology. Previous studies have shown that there is redun-
dancy in the raw hyperspectral spectra, leading to increased computational complexity [24].
Therefore, feature extraction is necessary. In this study, RF can extract sensitive feature
bands from raw hyperspectral data, which is the same as the results of Cao et al. [17]. The
characteristic wavelength spectral image extracted based on the RF algorithm removes
valuable information for disease feature recognition and eliminates redundant wavelengths.
While guaranteeing high recognition accuracy, the number of wavelengths was ably de-
creased and the computational complexity and time were greatly reduced. Even though
the RGB image contained only three wavelengths, which minimized the number of wave-
lengths, the detection accuracy was the lowest because the three wavelengths can provide
less spectral information.

We found that the healthy, asymptomatic, and symptomatic pixels of rice leaves are
sensitive to different wavelengths. According to Kaitlin [9], the invasion of bacterial blight
disease will cause internal changes in pigment, cell structure, and leaf water content. The
spectral reflectance of different diseased areas is mainly affected by the internal changes
of leaves, which provides a theoretical basis for disease detection based on hyperspectral
imaging. Compared with RGB images, hyperspectral imaging can not only obtain texture



Sustainability 2022, 14, 13168 12 of 14

and color information but also obtain spectral information of changes in rice leaves. This
early detection can guide growers to prevent and apply pesticides in advance so as to
avoid the outbreak of bacterial blight disease. On the other hand, the detection method for
bacterial blight disease proposed in this paper can also be ap-plied to the detection of other
plant diseases.

This study used a target detection algorithm combining RF and ACE to detect bacterial
blight. Taking the hyperspectral images of diseased rice leaves as the research object, the
performances of ACE, CEM, OSP, and SAM algorithms were compared. The detection
accuracy of the ACE algorithm and CEM algorithm based on the statistical model was
higher than that of the OSP algorithm and SAM algorithm based on the geometric model.
Given the ACE algorithm and CEM algorithm based on a statistical model do not ne-
cessitate the background information of the image, they only need the detected a priori
spectral information (i.e., the target spectrum). The OSP algorithm needed not only a
priori knowledge of the target but also a priori knowledge of the background in the image.
However, the study could not obtain all the a priori information, which made the accuracy
of target detection decline. The SAM algorithm regards the spectrum of each pixel in the
image as a high-dimensional vector and measures the similarity between the spectra by
calculating the angle between the two vectors. Since the spectrum curve of the grey-green
diseased area of rice leaves was similar to that of healthy leaves, the SAM algorithm had
the worst recognition effect for the disease in this region.

4. Conclusions

This is the first study to use RFand an ACE to detect the infection of rice bacterial leaf
blight disease through hyperspectral imaging. In this paper, three data sets with distinct
wavelengths were constructed, and four algorithms were used to detect the disease spots
in hyperspectral images. The results of the study show that the sensitive wavelengths
extracted by RFcan better express the information of the entire spectral; when compared
with the other three disease detection algorithms, the ACE algorithm has the best compre-
hensive detection performance, with the highest accuracy of 98.53%. In terms of detection
accuracy and detection time, the ACE algorithm based on 18 sensitive wavelengths has
the best overall performance, with an accuracy of 97.41%, which is only 1 percentage point
lower than the detection accuracy of the ACE algorithm based on full wavelengths, but
the detection time is reduced by 2/3. Through hyperspectral imaging, combined with RF
and ACE algorithms, rice bacterial blight could be detected quickly and efficiently, which
provides a new method for plant disease detection in the field.
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