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Abstract: Watershed Best management Practices (BMPs) spatial optimal layout would be affected by
uncertainty, and there are still three problems which are worthy of studying in the present studies of
watershed BMPs spatial optimal layout under uncertainty: (1) how to integrate multiple uncertainties
in optimization model effectively; (2) how to avoid subjective weight in multi-objective uncertainty
model; (3) how to develop more elastic schemes for uncertainty impact. To solve the mentioned
problems, this study takes Zhegao river watershed, China as an example, interval stochastic fuzzy
fractional programming (ISFFP) integrated with SWAT hydrology model is applied for BMPs spatial
optimal layout in watershed to reduce non-point source (NPS) pollution. The result shows that the
ISFFP method could solve the problems effectively, and the method could be adapted to different
types of uncertainty, also the method has seldom been used in uncertainty BMPs spatial optimal
layout, and the method is worth of popularization.

Keywords: best management practices; spatial optimal layout; uncertainty; SWAT; interval stochastic
fuzzy fractional programming

1. Introduction

The spatial optimization layout of watershed BMPs could alleviate watershed non-
point source (NPS) pollution by setting the categories and number of BMP facilities in the
watershed space optimally [1]. It is also proven to be an effective method for NPS pollution
control in the watershed. However, uncertainty factor, which widely exists in nature
and human society, influences the expected effect of watershed BMP spatial optimization
layout [2]. Studying the watershed BMP spatial optimization layout under uncertainty is
meaningful to reduce the uncertainty disturbance and ensure the treatment effect of the
NPS pollution.

Literature Review

In many cases, the BMP spatial optimal allocation is a multi-objective problem. The
problems which are considered by decision makers or planners always include how to
maximize the pollution control effect and how to minimize the cost or the establishment.
Two major methods are developed for the problem, one is plan-based method [3], and
the other is the optimization algorithm-based method [4]. For the plan-based method,
the schemes of BMP spatial layout are designed with expert knowledge or by the previ-
ous field studies. However, the method could not always achieve the optimal category
selection and placement for BMPs. For the optimization algorithm-based method, with
optimization programming and mathematical algorithm, the obtained schemes are more
reasonable and are closer to the optimal results, and the methods include genetic algorithm
(GA), non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary
algorithm 2 (SPEA2) and so on [5,6]. The methods of recent related studies are always
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hydrology models integrated with optimal algorithms. Hydrology models are used for
simulating the distribution of NPS pollution, and optimal algorithms are used for deter-
mining optimal schemes on the basis of NPS pollution simulation. Several distributed
hydrological model, such as SWAT (Soil and Water Assessment Tool), HSPF (Hydrological
Simulation Program-FORTRAN), and AnnAGNPS (Annualized Agricultural Non-Point
Source), have been widely used for hydrology and water quality simulation [7,8]. For
example, SWAT could inform adaptive water management by facilitating quantitative
analysis of different components of the water condition within a watershed. The model
could simulate hydrological process and water quality under the impacts of water and land
management practices [9,10]. The SWAT model always is integrated with GA, NSGA-II or
SPEA2 for BMPs spatial optimization layout.

Uncertainties exist inevitably in nature and human society. From the mathematical
viewpoint, uncertainty value could be classified into interval number, fuzzy number and
stochastic number [11]. Uncertainty would influence the rationality of the scheme of BMPs
spatial optimal allocation by affecting the NPS pollution treatment efficiency and the cost
of BMPs facility. For example, the P treatment process of BMPs refers to many factors
such as BMPs reaction time, temperature, season and plant species, microbial species, and
others [12,13]. Variance in any one of them would cause changes in pollutant removal effi-
ciency. The distribution pattern of most BMPs efficiency values were not evident through
visual inspection, because the uncertainties which influence the pollution treatment effi-
ciency of BMPs are always stochastic variances; therefore, it was always assumed to follow
a normal distribution. In the related studies, the P treatment efficiency of BMPs which
pass the normality test could be regarded as stochastic numbers of normal distribution,
and the numbers which fail the test could be regarded as the interval number [14]. For the
economic cost, the economic cost of BMPs is subject to market fluctuations, and the price
always follows fuzzy number distribution [15].

Most BMP spatial optimal layouts are under certain condition, and very few related
studies are under uncertainty. Four problems should be solved when conducting uncer-
tainty BMP spatial optimal layout.

(1) How to identify and represent uncertainty. Most of the uncertainties in BMP spatial
optimal layout include the efficiency uncertainty in BMPs and the uncertainty in cost
and budget. The root of efficiency uncertainty is variance factors, which include tem-
perature, rainfall, season, vegetation form, and microbial species, and the distribution
pattern of the uncertainty and the uncertainty interval values have been measured
by the researchers using experiment methods in related studies [16]. In mathematical
models, uncertainty could be in forms of stochastic number, fuzzy number, and inter-
val number. Economic uncertainty stems from market fluctuation and the possible
variance of government grant [17]. Economic uncertainty interval could be determined
by analyzing or forecasting market price fluctuation. The price uncertainty always
follows fuzzy distribution, and budget uncertainty is usually expressed in interval
number or in multiple scenarios.

(2) How to identify the uncertainty influence on BMPs spatial optimal layout. Uncertainty
factors could be regarded as the independent variable in BMP spatial optimal layout,
and the dependent variable could be seen as system pollution control efficiency and
the total costs, when the optimal system follow linear mathematics characteristics,
the distribution interval of the dependent variable could be obtained according to the
independent variable [18]. However, in reality, the optimal systems are always complex
non-linear mathematics model with interaction effects between the parameters, in this
case, Monte Carlo method is usually used to judge the impact of uncertainty, through
multiple and randomly set data within the interval of the independent variable,
multiple corresponding results could be obtained, and then the distribution interval of
system results could be considered [19].

(3) How to integrate uncertainty into BMP spatial optimal layout. In the mathematics
model for BMP spatial optimal layout model, uncertainty could be integrated into the
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optimal model with digital form and in uncertainty scenario form. Genetic algorithm
(GA) is widely used for uncertainty in BMPs layout [20]. It can integrate uncertainty
factors in mathematical form. However, with GAs, all the related variables need to be
set as uncertain values, but in practice, except for part of the variables are uncertain
numbers, the others are definite variables.

(4) How to avoid subjective weight in multi-objective optimization for uncertainty BMP
spatial optimal layout. The related studies always use Analytic Hierarchy Process
(AHP) method or expert evaluation method to set the weight for each objective pro-
gramming; however, subjectivity is inevitable in the setting [21].

Thus, the previous studies could identify and represent uncertainty, as well as identi-
fying the influence of uncertainty on the results of BMP layout system effectively. Three
problems deserve further study: (1) the problem of integrating multiple uncertainty factors;
(2) the problem of avoiding subjective weight in multi-objective programming; (3) the prob-
lem of setting elastic scheme, Pareto approximation algorithm is widely used in the related
multi-objective studies, although many solutions are produced in calculation processing,
and the final chosen solution is the optimum result, the result is still unique. However,
in reality, problems that the decision maker would modify in the scheme provisionally or
the chosen BMP facility is limited by the geological constraint. Therefore, it is effectual to
set an elastic interval for schemes to process the influence of uncertainty, that is, that the
obtained schemes are reasonable and could manage the influence of uncertainty when the
schemes are in the interval.

Based on it, the purpose of the study is to establish a universal method for watershed
BMPs spatial optimal layout under uncertainty, and the three problems will be solved:
(1) how to integrate multiple kinds of uncertainty into optimization model; (2) how to
avoid subjective weight in multi-objective optimal model; (3) how to develop more elastic
schemes to cope with the impact of uncertainty. The developed method could help the
decision maker or the planner deal better with complex problems or uncertainty in BMPs
spatial optimal layout.

2. Description of Area Studied

In this study, a small watershed named Zhegao river watershed (31◦36′8′′ N–31◦55′40′′ N,
117◦34′43′′ E–117◦55′57′′ E) is selected as the study area, Zhegao river watershed is located
on the north side of Chaohu Basin, and it is also located in Hefei city, Anhui province,
China. The total length of Zhegao River is 35 km. The river flows from north to south
into Chaohu Lake. In this study, the middle and lower reaches of the Zhegao River (which
has an area of 431.2 km2) are selected as the study area. This area is higher in the north
and lower in the south. It is located in a plain polder area, which refers to a plain river
network or lakeside and other low-lying waterlogging areas. This area is formed through
embankments, sluices, and pumping stations. The purpose of constructing a polder area is
to resist floods and waterlogging. The study area is characterized by a north subtropical
humid monsoon climate, with annual precipitation of 1000–1158 mm, annual evaporation
of 1469–1629 mm, and rainfall concentrated mostly in summer [22]. At present, the main
part of the study area is agricultural land, and the rest consists of grassland, woodland, and
residential land.

The eastern Chaohu Lake is in the state of mild eutrophication yearly. The water
pollution of Chaohu Lake are mainly excessive total phosphorus and total nitrogen. A total
number of 7 phylas, 42 generas and 93 species phytoplankton plants were identified in
Chaohu Lake, among which green algae are the dominant species (50 species). The phyto-
plankton community structure is unstable and susceptible to the external environment. A
total number of 4 phylas, 35 generas and 70 species zooplantkter were identified in Chaohu
Lake, with the largest number of rotaworm species, 16 genera and 32 species. Chaohu Lake
has abundant zooplankton diversity and good stable community structure [23].

The study area is listed in Figure 1.
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Figure 1. The study area.

The study area faces problems of eutrophication and algae growth, and P is a key
factor. P comes from NPS pollution caused by local agricultural activities.

The purpose of this study is to reduce the total P release of the study area through
BMP spatial optimal allocation. Taking July, when NPS pollution is worst, as an example,
this study analyzes the schemes of BMP spatial allocation layout under different reduction
targets of P pollution, specifically, 20%, 40%, and 60%.

The problems need to be solved in the research include: (1) setting objective of op-
timization layout: maximizing the NPS pollution control efficiency and minimizing the
cost; (2) achieving the goal of NPS pollution control; (3) setting place for BMPs facility
installation, and Selecting the category and the number of BMPs facility; (4) representing
the uncertainty in the model; (5) developing a flexible optimal scheme with floating range.
Additionally, the problems are the specific form of the problems of uncertainty BMPs spatial
optimal layout in practical case.



Sustainability 2022, 14, 13088 5 of 18

3. Materials and Methods

To solve the aforementioned problems, the study develops a theoretical framework
to process BMPs spatial optimal layout under uncertainty. The framework includes:
(1) Applying hydrological model for simulating NPS pollution emission. (2) BMPs facility
selection and uncertainty analysis. (3) Based on the analysis above, applying mathematical
optimal model for BMPs spatial optimal layout under uncertainty.

The research framework and the flow diagram are detailed as follows:
The procedure of the study is detailed as follows:

(1) Applying hydrological model for simulating NPS pollution emission. SWAT model
is applied to discriminate the sub watershed in the study area and to simulate the
distribution of NPS pollution. This task includes collecting basic data on the study
area, establishing the basic database of the research area (e.g., DEM, soil, and land
use), using the SWAT model to divide the study area into sub-basins, and simulating
the P emissions in each sub-basin.

(2) BMPs facility selection and uncertainty analysis. These tasks involve the selection
of suitable BMPs facilities (e.g., vegetation buffer zones, Ponds system, wetland)
and facility parameters (e.g., scale, depth, width and so on) and the analysis of the
uncertainty of BMPs (cost uncertainty and P treatment efficacy uncertainty).

(3) Applying mathematical optimal model for BMPs spatial optimal layout under uncer-
tainty. The integrated interval stochastic fuzzy fractional programming (ISSFP) model
is applied for the BMP spatial optimal layout under uncertainty. The results of optimal
schemes and NPS pollution reduction effect and total cost could be obtained.

The flow diagram is listed in Figure 2.
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ISFFP

Formally, a linear fractional programming is defined as the problem of maximiz-
ing/minimizing a ratio of affine function over a polyhedron, and it could be written
as [24,25]:

maxmize
cTx + α

dTx + β
(1)

Subject to Ax ≤ b

where x represents the vector of variables to be determined, c, d ∈ Rn are vectors of (know)
coefficients, α,β ∈ R are constants, A ∈ Rm×n is a (know) matrix of coefficients, b ∈ Rm

are vectors of (know) coefficients, T denotes the transpose.
The general uncertainty fractional model could be expressed as:

Maxf± =
∑n

i=1
(
C±i x±i + α±

)
∑n

i=1
(
d±i x±i + β±

) (2)

n
∑

i=1
A±ij x±i ≤ B±j i = 1, 2 . . . n; j = 1, 2 . . . m

x±i ≥ 0 i = 1, 2 . . . n

where A±ij , B±j , C±i , x±i are the uncertainties, and the uncertainties could be interval num-
bers or stochastic numbers. In the uncertainty model above, the two types of uncertainties
are all in the interval number form with the deterministic and closed boundary, in which
the stochastic number could be transformed into the interval number by its probability dis-
tribution, and the ‘−’ represents the lower bound, and the ‘+’ represents the upper bound.

Besides the interval number and stochastic number, another type of uncertainty num-
ber is fuzzy number. In the case of the three types of uncertainties appear in the objective
function or in the constraints, the uncertainty optimization programming could be ex-
pressed as:

Maxf± =
∑n

i=1{(C±i +
∼
C
′
i)·x±i + α±}

∑n
i=1{(d

±
i +

∼
d
′
i)·x±i + β±}

(3)

Subject to
n
∑

i=1
A±ij x±i ≤ B±j i = 1, 2 . . . n; j = 1, 2 . . . m

n
∑

i=1

∼
A
′
igx±i ≤ B±g i = 1, 2 . . . n; g = 1, 2 . . . m

x±i ≥ 0 i = 1, 2 . . . n

wherein
∼
A
′
ig and

∼
C
′
i are the fuzzy numbers, and

∼
A
′
ig and

∼
C
′
i could be triangle fuzzy numbers

or trapezoidal fuzzy numbers. If
∼
A
′
ig and

∼
C
′
i are trapezoidal, the fuzzy numbers could be

expressed as
∼
A
′
ig =

(
A−ig, Aig1, Aig2, A+

ig

)
and

∼
C
′
i =

(
C−i , Ci1, Ci2, C+

i
)
.

The α-cut method could be used to represent the distribution interval of fuzzy num-

ber. The distribution interval of fuzzy numbers
∼
A
′
ig and

∼
C
′
i could be represented as[

(1− α)·A−ig +α·Aig1, (1−α)·A+
ig +α·Aig2

]
and

[
(1−α)·C−i +α·Ci1, (1−α)·C+

i +α·Ci2
]
.

Wherein α is the membership.
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4. Study Process
4.1. Discriminating the Sub Watershed and Simulating P Distribution in Each Sub Watershed
4.1.1. Model Introduction

The SWAT model, which was used many times in related studies, is applied in the
study [26]. The SWAT model can divide the studied watershed into a sub-watershed
and simulate the transformation and migration of P in each sub watershed. The SWAT
model could calculate the amount of P emission and P reduction, P emission is mainly
from inorganic fertilizers and manure used in agricultural activity, and P reduction is
mainly from crop absorption, surface runoff, flow measurement, infiltration, and soil
erosion [27]. The SWAT model can fully consider the changes in regional land use, and soil
and agricultural tillage in the simulation of P transformation and migration [28].

4.1.2. Database Preparation

The SWAT model consists of spatial and meteorological databases. The spatial database
includes a digital elevation model (DEM), soil, land use, and others. The elevation data are
the 30 m resolution DEM data provided by the international scientific data service platform.
The land-use database was derived from the interpretation data of watershed Landsat TM
images in 2018. There are 6 types of land use in the river basin in 2018: these are paddy
fields, dry fields, woodland, grassland, water bodies, residential areas, and paddy fields
in the main area. The soil database uses the soil type (1:1 million) provided by Nanjing
soil as input data for the simulation. The Zhegao river basin consists of yellow brown,
yellow brown loam, paddy, coarse bone, limestone, and rinsing paddy soil. The main
area mainly consists of paddy soil. The meteorological attribute database consists of the
data obtained from a local meteorological observatory, including daily water drop, daily
maximum/minimum temperature, daily solar radiation, wind speed, and daily average
relative humidity.

4.1.3. Spatial Analysis of NPS Pollution Emission

(1) Discriminating sub watershed. DEM is used for discriminating river system and sub
watershed [29].

(2) Discriminating hydrologic response unit (HRU). Land use type, soil type, slope and so
on are used for discriminating HRU in each sub watershed. The amount of P emission
in each HRU could be calculated by SWAT model, and the total amount of P emission
in each sub watershed could also be get.

4.1.4. Parameter Validation and Calibration

When no observation data are available, the calibration and validation of the param-
eters could refer to the parameters of other watersheds at the same latitude and natural
conditions [30]. As there is no long-term effective hydrological observation data in the
study area, this study transplanted the parameters of the Xinanjiang River Basin under the
same latitude and natural conditions [31]. At the same time, the previous studies in the
case area are considered as a reference [32], and the relevant parameters needed for the
simulation of NPS P pollution are finally obtained (Table 1).

4.1.5. Relevant Data of Sub-Watershed

Through SWAT simulation, the study area is divided into 31 sub-basins. The area of
each sub-basin, surface water quantity, and P release amount are shown in Table 2.
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Table 1. Validated value of SWAT modeling parameters.

Parameter Validated
Value Parameter Validated

Value Parameter Validated
Value

CN2.mgt FRST 59.54 CANMX.hru 12.616 ALPHA_BF.gw 0.1282
RICE 71.88 ESCO.hru 0.1188 GW_DELAY.gw 36.182
PAST 61.12 GWQMN.gw 1274.91 SMTMP.bsn 0.0418

URML 58.06 Usle.mgt 0.1367 CMN.bsn 0.002
WATR 85.33 Spexp.bsn 0.76 NPERCO.bsn 0.26
AGRL 73.00 SPCON.bsn 0.0543 PSP.bsn 0.7

PPERCO.bsn 15 CH_K2.rte 38.951 BC2.bsn 2
BC4.bsn 0.01 TIMP.bsn 0.29 BC3.bsn 0.23
AI1.wwq 0.08 PHOSKD.bsn 165 AI2.wwq 0.02

CH_N2.rte 0.1597 BC1.bsn 0.22 RCDCO.bsn 0.05

Table 2. The area of each sub-basin, surface water quantity, and P release amount in each basin.

Serial Number Area (ha) Volume (m3) P Emission (kg)

1 2905.30 949,596.18 13,460.24
2 2735.05 812,091.78 11,301.24
3 1.15 472.45 4.73
4 372.37 208,756.04 1399.38
5 2551.61 863,261.32 11,665.97
6 234.10 71,532.67 1402.94
7 4097.82 1,034,086.06 17,456.73
8 1501.46 429,672.59 6184.51
9 64.43 25,940.94 427.14
10 3476.11 746,042.74 14,842.99
11 131.39 49,412.60 1044.83
12 1829.82 481,754.04 7434.54
13 2754.15 404,336.85 6742.16
14 3053.00 730,766.05 12,886.71
15 652.70 198,354.89 3957.96
16 1374.90 448,548.42 8901.12
17 1461.62 509,054.26 7154.65
18 1465.23 324,709.64 6275.58
19 1373.02 443,786.87 7658.69
20 1.72 708.07 8.65
21 986.46 162,490.48 3440.79
22 1004.91 499,378.59 3939.24
23 1735.96 692,615.28 10,700.49
24 1641.29 657,912.61 8895.81
25 500.81 203,230.43 3374.49
26 1390.07 555,748.78 8261.17
27 1678.92 668,359.80 8780.73
28 170.41 69,879.21 1317.25
29 36.97 15,198.90 270.08
30 1199.74 488,726.56 7341.22
31 741.22 299,609.15 4965.44

4.2. BMP Selection and Relevant Uncertainty Analysis
4.2.1. Analysis of BMP Character

Based on the analysis of preceding research, three types of BMPs vegetation buffer
zone, ponds system and constructed wetlands are selected as the study objects. Because
there is heavy rain and flat terrain in the study area, and the three BMPs are suitable for
layout for rainwater processing.
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(1) Vegetation buffer zone

The shore vegetation buffer zone is usually composed of trees and other vegetation
that climb to the slopes on both sides of the riverbank. The main ways to intercept P in the
vegetation filtration zone include plant absorption and soil adsorption [33]. The way for
plants to remove P is root absorption. Sediment removes P by absorbing it, and vegetation
filtration zones can intercept P, especially granular P, by intercepting sediment [34–36].

(2) Pond system

A pond system uses soil microbial plant system to intercept, deposit, absorb, and
transform P through physical, chemical, and biological processes to achieve efficient pu-
rification of P pollution [37]. Furthermore, the pond system promotes the growth of green
plants and achieves resource utilization and innocuity of P through the biogeochemical
cycle of nutrients and water [38].

(3) Constructed wetlands

Constructed wetlands remove P through the combined action of substrates, aquatic
plants, and microorganisms [39,40]. The substrate is the filler, and its main way to remove
P is through adsorption, that is, when runoff flows through the constructed wetland, the
substrate purifies and removes P from the runoff through certain physical and chemical
pathways such as absorption, filtration, ion exchange, and complexation reaction [41].
Aquatic plants can transfer inorganic P to organic components of plants through plant
absorption and assimilation, and the P absorbed by plants can be removed by regular
harvesting. The micro-organisms can transfer the organ P into P phosphate and also
increase the solubility of the organic P through the metabolic activity of P bacteria. In this
way, the P in the runoff is removed [42].

4.2.2. Relevant Parameters of BMPs

The volume of NPS treatment of the wetland and pond system depends on its volume
and permeability, and the vegetation buffer zone depends on its surface area. In this study,
five different scales of BMP facilities were set for the three types of BMPs. The widths of the
coastal vegetation zones are 2, 5, 10, 15, and 20 m. With the increase of the width, the area
of the vegetation buffer increase correspondingly, and it would affect crop planting if the
width is too wide, then the upper limit of the buffer’s width is set as 20 m. The basis of
width setting refers to the related study [43].

The depth of the Ponds system is set to 1.6 m. The number of surface areas is set
to 5, namely, 0.2%* Asub.i, 0.4%* Asub.i, 0.6%* Asub.i, 0.8%* Asub.i, and 1.0%* Asub.i, where
Asub.i represents the area of the i-th subbasin. The depth of the wetland is set to 0.7 m. The
number of surface area types is set to 5, namely, 0.2%* Asub.i, 0.4%* Asub.i, 0.6%* Asub.i,
0.8%* Asub.i, and 1.0%* Asub.i, where Asub.i represents the area of the i-th subbasin. The
depth of the ponds system and wetlands are reference to the related study [44,45]. (Note:
The area of the pond system and wetland does not cover only one-unit BMPs, but the total
area of the BMPs is no more than the set value).

Although the capacities of ponds and wetlands are constant values, and the ponds
and wetlands involve evaporation and infiltration of water bodies, the formula for calcu-
lating the volume of treated water in the ponds and wetlands is as follows: BMP surface
area × (depth of facility + permeability of facility + evaporation).

The water evaporation in July is 0.134 m, the permeability of the Pond is 3.25 m, and
that of the wetland is 1.38 m [46].

The categories of each BMPs are listed in Table 3.
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Table 3. The categories of each BMPs.

Category 1 2 3 4 5

Vegetation buffer 2 m 5 m 10 m 15 m 20 m
Ponds system 0.2%* Asub.i 0.4%* Asub.i 0.6%* Asub.i 0.8%* Asub.i 1.0%* Asub.i

Wetlands 0.2%* Asub.i 0.4%* Asub.i 0.6%* Asub.i 0.8%* Asub.i 1.0%* Asub.i

Additionally, the volume of P treatment of the ponds system and the wetlands are
calculated as follows

Trj = RePj·EfPj (4)

RePj = TPi·ReSj/TSi (5)

ReSj = Aj·
(
DePj + Ev + Inj

)
(6)

where
Trj The volume of treated P of j-th BMPs
RePj The volume of retained P of j-th BMPs
EfPj The efficiency of P treatment of j-th BMPs
TPi Total volume of P emission in i-th sub basin
ReSj The retained surface water of j-th BMPs
TSi Total volume of surface water in i-th sub basin
Aj The area of j-th BMPs
Depj The depth of j-th BMPs
Ev The evaporation rate of the study area in a month
Inj The infiltration rate of j-th BMPs in a month

4.2.3. The Uncertainty Analysis

Different type of uncertainty corresponds to the different distribution interval. The
distribution interval of stochastic number depends on the confidence probability setting,
and the interval of fuzzy number depends on the α-cut setting.

The P treatment efficiency of BMPs could be regarded as the variables with stochastic
number and interval number properties. The distribution of P process efficiency of BMP
is listed in accordance with relevant studies [47,48]. The uncertain distribution of cost is
listed in accordance with relevant studies [49]. Additionally, the confidence probability and
α-cut in the study are all set as a single value.

The uncertainty of P treatment efficiency and cost of the three BMPs are listed in
Table 4.

Table 4. The uncertainty of P treatment efficiency and cost of the three BMPs.

P Treatment Efficiency Cost (EUR/ha)

Ponds system 80~90% [14.7, 34.3]
Wetlands 25~90% [53.9, 80.7]

Vegetation buffer (2 m) 30.09~38.06% [451.66, 1053.86]
Vegetation buffer (5 m) 41.00~50.92% [451.66, 1053.86]

Vegetation buffer (10 m) 54.22~65.68% [451.66, 1053.86]
Vegetation buffer (15 m) 69.00~78.95% [451.66, 1053.86]
Vegetation buffer (20 m) 77.31~82.96% [451.66, 1053.86]

Additionally, the volume of P which could be processed by BMPs in different grades
could be calculated according to the formula and the related parameters. The values are
listed in attached tables.

4.3. Construction of Optimization Model

The objective of the model is P treatment maximization and cost minimization under
uncertainty. The constraints of the model include total volume of P treatment, allowed area
of BMP installation, and number of installed BMPs in each sub-watershed.
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4.3.1. Objective Function

P treatment maximization:

Maximize =
m

∑
i=1

n

∑
j=1

TPi·xij·TrE±ij i = 1, 2, . . . m; j = 1, 2, . . . n (7)

TPi: The total volume of P emission in the i-th sub basin.
Trij: The P treatment efficiency of the j-th BMPs facility in the i-th sub basin.
Cost minimization:

Maximize =
m

∑
i=1

n

∑
j=1

xij·C±j i = 1, 2, . . . m; j = 1, 2, . . . n (8)

Cj: the cost of the j-th BMPs facility.
The two above objective functions include maximum function and minimum function,

and the two functions could be integrated by fractional programming. The integrated
function is as follows.

Maxf(x) =
∑m

i=1 ∑n
j=1 TPi·xij·TrE±ij

∑m
i=1 ∑n

j=1 xij·C±j
i = 1, 2, . . . m; j = 1, 2, . . . n (9)

4.3.2. Constraint Function

The volume of the treated P in the i-th sub basin cannot be less than the specific
proportion of the total volume of P emission in the same sub basin.

m

∑
i=1

n

∑
j=1

TPi·xij·TrE±ij ≥
n

∑
j=1

TPi·SP i = 1, 2, . . . m; j = 1, 2, . . . n (10)

SP: specific proportion of the total volume of P emission in the i-th sub basin, and the
SP in the study are 20%, 40% and 60%, respectively.

The volume of the treated P in the i-th sub basin cannot be more than the total volume
of P emission in the same sub basin.

m

∑
i=1

n

∑
j=1

TPi·xij·TrE±ij ≤
n

∑
j=1

TPi i = 1, 2, . . . m; j = 1, 2, . . . n (11)

SP: specific proportion of the total volume of P emission in the i-th sub basin.
The allowed area of BMPs installation in the i-th sub basin cannot be more than 1% of

the area of the same sub basin.
n

∑
j=1

xij·Aij ≤ 1%·Asub.i i = 1, 2, . . . m; j = 1, 2, . . . n (12)

Asub.i: the area of the i-th sub basin.
None negative for the variables

n

∑
j=1

xij ≥ 0 i = 1, 2, . . . m; j = 1, 2, . . . n (13)

01 setting for BMPs installation

xij = 0|1 i = 1, 2, . . . m; j = 1, 2, . . . n (14)

4.4. Uncertainty Scenario Analysis

Three scenarios of P reduction objectives which include 20%, 40%, 60% P reduction
target were set in the study, and the upper limit scenario as well as the lower limit scenario
are set in each scenario of P reduction target.

The upper limit value of the BMPs facility cost and the lower limit value of P pollution
control are considered in the lower limit scenario, while the values are opposite in the upper
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scenario. The lower limit scenario and the upper limit scenario represent the boundaries of
the uncertainty results.

5. Results

(1) Through integrating ISFFP model and SWAT, the uncertainty BMP spatial optimiza-
tion layout schemes are obtained. The schemes include the upper scenarios and
the lower scenarios for 20%, 40%, and 60% P reduction targets in July. In each sub
watershed, the number of the allocated BMPs is only one (the results are shown in
Table 5). The total cost and total volume of P under each scenario are shown in Table 6.
Statistics on the number of all BMP facilities under each scenario are shown in Table 7
and Figure 3.

(2) Table 4 shows that under the condition of the same area, whether in the upper or lower
limit, according to the P treatment capacity, green buffer zone > Ponds system > wetland.
Taking the sub watershed 1 as an example, Table 8 corresponds to the BMP treatment
effect of sub watershed 1, and the P control effect of each BMP facility can be observed.
Table 9 shows the ratio of P treatment capacity of the green buffer zone to the wetland
and ponds system.

Table 5. The spatial optimization layout of BMPs in each scenario.

No. 20H 20L 40H 40L 60H 60L

1 Pond 1% Pond 1% Buffer 20 m Buffer 20 m Pond 1% Buffer 15 m
2 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
3 Buffer 20 m Buffer 20 m Pond 1% Pond 1% Pond 1% Pond 1%
4 Buffer 10 m Buffer 20 m Pond 1% Buffer 20 m Buffer 20 m Buffer 20 m
5 Wet 0.2% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
6 Pond 1% Buffer 20 m Pond 1% Buffer 20 m Buffer 20 m Buffer 15 m
7 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Pond 1%
8 Pond 1% Pond 1% Pond 0.8% Buffer 20 m Pond 1% Buffer 20 m
9 Buffer 20 m Pond 1% Pond 0.8% Pond 1% Buffer 20 m Pond 1%

10 Pond 1% Pond 1% Pond 1% Pond 0.8% Pond 1% Pond 1%
11 Buffer 15 m Pond 1% Pond 1% Pond 1% Buffer 20 m Buffer 20 m
12 Pond 1% Pond 1% Buffer 15 m Pond 1% Buffer 20 m Pond 1%
13 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Pond 1%
14 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
15 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Pond 1%
16 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
17 Pond 1% Pond 1% Buffer 20 m Pond 0.8% Buffer 20 m Buffer 20 m
18 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 15 m
19 Pond 1% Pond 1% Buffer 20 m Pond 1% Buffer 20 m Buffer 20 m
20 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
21 Pond 1% Pond 1% Pond 1% Pond 1% Pond 1% Buffer 20 m
22 Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m Pond 1%
23 Pond 1% Pond 1% Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m
24 Pond 1% Pond 1% Buffer 20 m Buffer 20 m Pond 1% Buffer 20 m
25 Pond 1% Pond 1% Pond 1% Buffer 15 m Buffer 15 m Buffer 15 m
26 Pond 1% Pond 1% Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m
27 Pond 1% Pond 1% Buffer 15 m Buffer 15 m Buffer 20 m Buffer 20 m
28 Buffer 20 m Pond 1% Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m
29 Buffer 20 m Buffer 20 m Buffer 20 m Buffer 20 m Pond 1% Buffer 20 m
30 Pond 1% Buffer 20 m Buffer 15 m Buffer 20 m Buffer 20 m Buffer 20 m
31 Buffer 20 m Buffer 20 m Pond 1% Buffer 20 m Pond 1% Buffer 20 m

Note: The number of BMPs installed in each sub basin is 1, respectively.
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Table 6. The total cost and the total volume of the treated P.

20% 40% 60%

+ − + − + −
Total cost (EUR) 3990.58 6585.58 5699.22 10,955.14 6573.14 17,509.48

Total treated P (kg) 38,904.15 40,483.60 89,900.35 80,739.23 80,622.07 121,235.31

Table 7. The number of installed BMPs in each scenario.

Type of BMPs
20% 40% 60%

+ − + − + −

wetland

0.20% 1 0 0 0 0 0
0.40% 0 0 0 0 0 0
0.60% 0 0 0 0 0 0
0.80% 0 0 0 0 0 0
1.00% 0 0 0 0 0 0

Pond

0.20% 0 0 0 0 0 0
0.40% 0 0 0 0 0 0
0.60% 0 0 0 0 0 0
0.80% 0 0 2 3 0 0
1.00% 22 23 17 14 17 8

Vegetation buffer

2 m 0 0 0 0 0 0
5 m 0 0 0 0 0 0
10 m 1 0 0 0 0 0
15 m 1 0 3 2 0 4
20 m 6 8 9 12 14 19

Total number of BMPs 31 31 31 31 31 31
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Table 8. The BMP treatment effect of sub watershed 1.

Type of BMPs Scenario 0.2% 0.4% 0.6% 0.8% 1%

Pond
− 328.14 656.27 984.41 1312.54 1640.68
+ 369.15 738.31 1107.46 1476.61 1845.76

Wetland
− 45.59 91.18 136.76 182.35 227.94
+ 164.12 328.23 492.35 656.47 820.59

Vegetation buffer − 4038.07 5518.70 7268.53 9287.56 10,364.38
+ 5114.89 6864.72 8883.76 10,633.59 11,172.00

Table 9. The ratio of P treatment capacity of the green buffer zone to the wetland and pond system.

Ratio 0.2% 0.4% 0.6% 0.8% 1%

Vegetation
buffer/Wetland

− 88.57 60.53 53.15 50.93 45.47
+ 31.17 20.91 18.04 16.20 13.61

Vegetation
buffer/Pond

− 12.31 8.41 7.38 7.08 6.32
+ 13.86 9.30 8.02 7.20 6.05

Tables 8 and 9 show that the P treatment capacity of the green buffer zone is much
larger than that of the Ponds system and wetland under the same scenario. A 1% scenario
is used as an example, the P treatment capacity of the green buffer zone is 6.05 times as
much the capacity of the pond in the upper limit scenario and 6.32 times in the lower limit
scenario. The ratio of the green buffer zone to wetland is 13.61 times in the upper limit and
45.47 times in the lower limit.

6. Discussion

(1) ISFFP model is used effectively to solve the three problems of BMPs multi objective
spatial optimization layout in introduction section. (1) ISFFP could reflects and
integrates the uncertainty factors which are in the forms of stochastic, fuzzy and
interval, and the uncertainties mainly existed in P treatment efficiency and economic
cost of BMPs. (2) Subjective problem, which existed in the weight setting between
multi objective programming, could be avoided by using ISFFP. (3) The schemes,
which are in the interval form, are get in the different scenarios, and the intervals
represent the range of the reasonable schemes.

(2) The other specific problems in the case are also solved by ISFFP model. (1) The objec-
tives of P emission treatment maximization and cost minimization are all achieved.
(2) The targets of the amount of the P treatment are all reached or exceed in each sce-
nario, and the total treated P are [38,904.15, 40,483.60] kg in 20% scenario,
kg in 40% scenario, and [80,622.07, 121,235.31] kg in 60% scenario, respectively. (3) The
specific amounts and types of BMPs are allocated in each sub watershed.

(3) ISFFP model is developed for BMPs spatial optimization layout, the results shows that
the different schemes for BMPs spatial optimization layout are developed according to
the different objectives of water environment treatment, and also all of the objectives
are achieved in the study.

(4) With the increase of the targets of water environment treatment, the more BMPs
facilities with higher P treatment efficiency as well as higher costs are applied in BMPs
spatial layout schemes, and total costs increase accordingly.

(5) In the study area, there are different amounts of P emission in each sub watershed,
and the types of the installed BMPs in each sub watershed are not the same. The P
emission depends on the features of each sub watershed, and the features include
area, agrotype, land type and so on. The BMPs with more P treatment efficiency are
installed in the sub watershed with the higher P emission.

(6) In this study, 31 BMPs were assigned under each scenario. However, no upper limit is
set for the installed number and the types of BMPs per subbasin in the constraints.
The reason is that one-unit BMP is sufficient to cope with the P pollution of the
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subbasin. Thus, it does not need more than one-unit BMP in a subbasin, and it can
be attributed to the strong pollution control ability of the green buffer zone, which
can absorb 77.31–82.96% of P. The pollution control target, which is under this limit,
could be achieved through 20 m of green buffer zones. This study does not limit the
budget. In the lower limit scenario of 60% P treatment scenario, the highest budget is
17,509.48 EUR. If the budget is lower than this amount, then it will limit the setting
of the high-cost green buffer zone. This condition would also lead to the simulation
results in which more ponds and wetlands are installed, and three BMPs are low
effective but also low cost of low-effective but also low-cost ponds and wetlands.

(7) According to the results, with the increase of the P pollution reduction target, the num-
ber of installed BMPs with higher pollution control effect is increase. In the lower
limit scenarios of 20%, 40%, and 60% P reduction target, the number of green buffer
zones installed are 6, 9, and 14, respectively. In the upper limit scenario, the assigned
amounts are 8, 12, and 19. As the total number of BMPs in each scheme is the same,
the number of green buffer zones with the highest treatment effect increases, and the
number of other types of BMP decreases accordingly.

(8) As the upper limit value of the BMP facility cost and the lower limit value of P
pollution control quantity are considered in the lower limit scenario, then on the
premise of completing the pollution control target of each grade, the total cost in
the upper limit scenario is less than the total cost in the lower limit scenario. In the
20%, 40%, and 60% scenarios, the total cost of the upper and lower limit scenarios
are [6585.58 (lower scenario), 3990.58 (upper scenario)], [10,955.14 (lower scenario),
5699.22 (upper scenario)], and [17,509.48 (lower scenario), 6573.14 (upper scenario)],
respectively.

(9) As the lower limit of the BMP pollution control efficiency is set in the lower limit
scenario, and the upper limit is set in the upper limit scenario, the number of green
buffer zones with high cost and high pollution control effect in the upper limit scenario
under each control target is also smaller than that in the lower limit scenario. This
condition means that solving the same volume requires a smaller number of BMP
facilities with high P pollution treatment efficiency and high cost.

(10) As the cost and P treatment efficacy in this study are considered as the upper and
lower limit values, the uncertain values of the cost and treatment efficiency of BMPs
are also expressed as interval numbers. Thus, the results are in the form of the upper
and lower limit scenarios. The results represent the upper and lower limits of the
corresponding schemes under uncertainty impact, which means that the schemes are
reasonable when their results are in the interval range.

(11) The developed method could be extended to other areas. The SWAT model could
be applied to simulate NPS emission in different types of land, and the ISFFP model
could be used to reflected multiple types of uncertainties, and the model could change
according to the types of uncertainties in actual situations.

(12) The limitation of the study includes two aspects, one is that only two objectives of
maximization and minimization are set, and the model would not avoid subjective
weight setting completely when there are more objectives such as minimizing land
use for BMPs setting, maximizing N emission treatment, and so on. How to apply
more appropriate model for the problem would be studied in the future. The other is
that the scheme is allocating the appropriate BMPs in each sub watershed; however,
in practice, many other problems need to be considered, such as the natural condition
for BMPs setting, cultivated land occupied for the setting, and so on, and the related
problems also needs considering.

7. Conclusions

(1) The innovation of the study is that it introduces a new method for solving the uncer-
tainty in BMP spatial optimal layout, and the ISFFP method integrated with SWAT
model has rarely been used for this purpose. The advantages of the method include
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the following: (1) it can reflect multiple uncertainty characters; (2) it could process
the weight setting in maximum and minimum programming; and (3) it could achieve
flexible schemes with alternative boundaries.

(2) SWAT model is used in the study to discriminate each sub watershed and simulate P
distribution in each watershed. Determining the location of BMP installation based
on the results of SWAT model simulation is reasonable.

(3) The ISFFP model in the study could be converted into different models according to
the types of uncertainties.

(4) According to the spatial layout scheme that corresponds to the upper and lower
limit scenarios under different P pollution reduction targets, the upper and lower
limit scenarios represent the limit of uncertainty impact on the scheme. The scheme
is reasonable when it is in the interval. The total costs in the research results and
practical terms are interval numbers.

(5) The developed method provides the schemes that correspond to the upper and lower
limit scenarios. The method can provide more reasonable schemes for decision makers
under uncertain conditions.

(6) Given that identifying the uncertainty distribution mode in practice is always dif-
ficult, the advantage of the method used in the study is that it does not need all
variables as the uncertainty number nor does it need to set the average value for
uncertainty numbers. Therefore, the method developed in this study can be used
better in practical condition.
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