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Abstract: The distribution of the surface suspended sand concentration (SSSC) in the Yangtze River
estuary is extremely complex. Therefore, effective methods are needed to improve the efficiency and
accuracy of SSSC inversion. Hyperspectral remote sensing technology provides an effective technical
means of accurately monitoring and quantitatively inverting SSSC. In this study, a new framework for
the accurate inversion of the SSSC in the Yangtze River estuary using hyperspectral remote sensing
is proposed. First, we quantitatively simulated water bodies with different SSSCs using sediment
samples from the Yangtze River estuary, and analyzed the spectral characteristics of water bodies
with different SSSCs. On this basis, we compared six spectral transformation forms, and selected the
first derivative (FD) transformation as the optimal spectral transformation form. Subsequently, we
compared two feature band extraction methods: the successive projections algorithm (SPA) and the
competitive adaptive reweighted sampling (CARS) method. Then, the partial least squares regression
(PLSR) model and back propagation (BP) neural network model were constructed. The BP neural
network model was determined as the best inversion model. The new FD-CARS-BP framework
was applied to the airborne hyperspectral data of the Yangtze estuary, with R2 of 0.9203, RPD of
4.5697, RMSE of 0.0339 kg/m3, and RMSE% of 8.55%, which are markedly higher than those of other
framework combination forms, further verifying the effectiveness of the FD-CARS-BP framework in
the quantitative inversion process of SSSC in the Yangtze estuary.

Keywords: surface suspended sand concentration; first derivative; competitive adaptive reweighted
sampling; neural network; feature band extraction; hyperspectral remote sensing

1. Introduction

Estuarine coastal areas are partially enclosed water bodies where the majority of
land–sea interactions occur, and various processes are coupled and are associated with
complex evolutionary mechanisms. Sediment movement plays a linking role [1] among
these interactions, making the study of sediment movement patterns in estuarine coastal
areas a common concern in related disciplines. Suspended sediment is an important water
color element and water quality parameter that constitutes the spectral characteristics of
estuarine and near-shore water bodies. Its content directly affects the water quality and
optical properties of water bodies, such as turbidity and transparency [2]. The distribution
of suspended sediment in the surface layer of estuaries is a specific reflection of estuar-
ine sediment movement, and many scholars have studied the distribution dynamics of
suspended sediment along estuarine coasts and their dispersion and transport patterns to
different degrees [3–6]. The Yangtze River is the largest river in China, with 8.88 × 1011 m3

of water and 3.76 × 108 t of sediment transported into the East China Sea by the South
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Channel, North Channel, North Port, and North Branch every year. The large amount of
water and sand discharge has a significant impact on water temperature, sedimentation,
and the ecological environment, not only in the Yangtze River estuary, but also in the
adjacent shelf seas [7]. The Yangtze River estuary is one of the three major estuaries in
China; it is a medium tidal estuary with branching estuaries and four mouths into the
sea [8]. The complex topographic and hydrodynamic conditions cause a more complex
distribution of suspended sand concentration. Therefore, the study of suspended sediment
content and distribution in the Yangtze estuary has important scientific significance and
application value.

In recent years, many scholars at home and abroad have carried out many studies
based on remote sensing methods. Remote sensing inversion is characterized by the
ability to achieve large-scale simultaneous observation and periodicity, and the inversion
of suspended sediment concentration in the surface layer of estuarine coast by remote
sensing means has become an important research tool. Remote sensing tools applied to
the quantitative inversion of SSSC include multispectral and hyperspectral remote sensing.
Studies based on multispectral remote sensing mainly use satellite images as data sources,
including Landsat (Landsat MSS/TM/ETM+/OIL) [9–11], meteorological satellites (NOAA,
FY) [12,13], and water color satellites (SeaWIFS, MERIS, GOCI, etc.) [14–17]. However,
multispectral remote sensing has a smaller number of spectral bands and lower resolution.
Hyperspectral remote sensing with its nanometer-scale spectral resolution can not only
distinguish different water body types, but also better capture the spectral characteristics
of water bodies for accurate inversion of SSSC [18]. Yang [19] used in situ hyperspectral
data and corresponding water chemistry data from 7–8 March to 6–7 July, 20 September,
and 7–8 December 2004, to establish regression algorithms for water quality parameters.
Their results show that the peak water ionization radiance (R 700) at approximately 700 nm
varies proportionally with chlorophyll-a (chl-a) concentration and shifts to the infrared
when algal blooms occur. Wang [20] investigated the potential of satellite hyperspectral
data, i.e., Hyperion images, for mapping the total suspended solids (TSS) concentration of
coastal water in Liaodong Bay, China. After processing and atmospheric correction, the
reflectance of the water extracted from the Hyperion images was used to express the spectral
characteristics of different TSS concentrations. Gao [21] used in situ hyperspectral data
and TSM concentration data for Changdang Lake, China, to establish a TSM concentration
inversion model. The model was applied using 60 Sentinel-2 images acquired from 2016 to
2021 to determine the temporal and spatial distribution of TSM concentrations. Kwon [22]
developed a robust machine learning (ML) model for SSC estimation based on hyperspectral
images by considering the optical variability of suspended sediments in the water column.

Hyperspectral data possess the characteristics of large data volume and high covari-
ance between bands, which leads to the problems of large computational volume, complex
model structure, and poor stability of the inverse model of SSSC constructed using full
bands or bands with high correlation [23,24]. Therefore, the effective selection of charac-
teristic bands is a key issue in constructing a robust hyperspectral inverse model. In the
study of SSC inversion, the commonly used method is correlation analysis, that is, the
correlation coefficient between the spectral reflectance and the measured SSSC is calculated,
and the spectral band corresponding to the high correlation coefficient is defined as the
sensitive band. Then, the inversion model is built. Based on Landsat 5 thematic map (TM)
images and a set of field datasets, J Kong [25] developed a reliable and sensitive inversion
model for SSC levels in the Caofeidian area of the new seaport in northeastern China, and
selected a sensitive waveband for the model by calculating correlation coefficients. Womber
Zelalem R. [26] et al. conducted a correlation analysis using MODIS-Terra and measured
SSC data, and found that MODIS-Terra reflectance correlated best with measured SSSC
in the near-infrared band. However, the correlation analysis did not consider interband
correlation, and there were still problems of covariance and redundancy between the
characteristic bands. Feature band selection methods, such as the successive projections
algorithm (SPA) and the competitive adaptive reweighted sampling (CARS) method, can
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effectively eliminate the influence of covariance among many wavelength variables and
reduce the complexity of the model. They have been increasingly applied owing to their
simplicity and speed, and have achieved good results in feature band extraction. Goudarzi
et al. [27] used SPA to select the feature bands and compared it with a genetic algorithm
(GA) to construct a PLSR model to predict the octanol/water partition ratio coefficients
of 10 selected halogenated benzoic acids. Fei et al. [28] proposed a continuous projection
algorithm-least squares support vector machine (SPA-LS-SVM) framework for the predic-
tion of acetic, tartaric, and lactic acids in plum vinegar, and found that SPA resembled
the correlation coefficient method. Wei et al. [29] proposed a deep neural network with
CARS (DNN-CARS) to estimate the content and spatial distribution of abrupt TAs. T Wu
et al. [30] used the CARS and SPA for band selection and built a multiple linear regression
based on the characteristic bands model to predict soil water content, and found that the
accuracy of prediction was high. However, relatively few studies have applied SPA and
CARS to the quantitative inversion of SSSC.

Constructing a robust hyperspectral inversion model based on an effective feature
band is another key issue in the quantitative inversion of SSC. Methods applied in re-
mote sensing inversion studies of SSSC are mainly divided into empirical [31–34], semi-
empirical [16,17,35,36], and analytical [37,38]. Among them, the empirical method is simple
and reliable, but relies on a large amount of actual measurement data and has poor gener-
ality; the semi-empirical method has the advantage of strong physical correlation of the
analytical method and the characteristics of operability of the empirical method. It is the
most widely used remote sensing quantitative inversion method; however, its practicality
is reduced due to its dependence on actual water surface measurement data and its syn-
chronization with remote sensing data [35,36]. The analytical method is the most advanced,
and can achieve accurate inversion of SSSC, although it requires methodological iterations
and experience [37,38]. In recent years, with the increasing spectral, temporal, and spatial
resolution of remote sensing data, as well as the increasing research on water color remote
sensing, scholars have started to search for more accurate and generalizable models. Partial
least squares (PLS) is a multivariate statistical regression analysis that realizes dimensional-
ity reduction of remote sensing data by establishing a regression model between variable
datasets [39]. To assess the feasibility of using reflectance spectroscopy to map the abun-
dance of soil Pb and other heavy metals, Pandit [40] investigated the relationship between
surface soil metal concentrations and hyperspectral reflectance measurements using partial
least squares regression (PLSR) modeling. Axelsson [37] compared the performance of
a support vector regression (SVR)-based model with a partial least squares regression
(PLSR)-based model with regards to the possibility of recovering nitrogen, phosphorus,
potassium, calcium, magnesium, and sodium concentrations from mangrove forests in
the Belau Delta, Indonesia; Lu [41] and Song [42] used a genetic algorithm (GA) to per-
form PLS inversion of chl-a concentration in Shikoumen Reservoir after the preferential
selection of bands, band ratios, and first-order differentiation that correlate well with chl-a
concentration, and achieved high modeling and prediction accuracy. In addition, many
studies have shown that neural network algorithms have strong vitality in fitting nonlinear
relationships, and that their self-organization, self-learning characteristics, and strong fault
tolerance have unique advantages in remote sensing simulation and prediction of water
quality parameters [43,44]. Among the many neural network algorithms, the BP neural
network model is the most common. Samli [45] developed a back-propagation neural
network (BP-ANN) model for estimating the chl-a concentration from the obtained input
values using an ANN structure consisting of three input neurons and one output neuron.
Based on the Landsat 8 remote sensing image data of Wuliangye Lake and the measured
chl-a concentration sampling points of Wuliangye Lake, Fu [46] constructed 26 BP neural
network models to retrieve the chl-a concentration of Wuliangye Lake, using the first to
fifth band spectral reflectance combination of Landsat 8 remote sensing image data as the
input and the measured chl-a concentration as the output.
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Most of the current studies focus on a single problem of feature band extraction or
inversion model building, and there are few studies on improving the inversion accuracy of
the whole technical process of “spectral preprocessing–feature band extraction–inversion
model building”. In this study, the SSSC was quantitatively simulated using sediment
samples from the Yangtze estuary region. First, the spectral characteristics of water bodies
with different SSCs were analyzed. Second, this study combines six spectral transformation
forms; extracts feature bands using SPA and CARS methods; builds a PLSR model and
BP neural network model based on feature bands; calculates four evaluation indices, R2,
RPD, RMSE, and RMSE%, to determine the optimal spectral transformation form, feature
band extraction, and inversion model building methods based on hyperspectral data in
the inversion process of SSSC in the Yangtze estuary; and constructs the best framework
combination form. The best framework combination was constructed by determining the
optimal spectral transformation, feature band extraction method, and inversion model
building method. Finally, the constructed framework was applied to the 2016 airborne
hyperspectral simultaneous monitoring experiment in the Yangtze River estuary to further
validate its effectiveness in the inversion process of the SSSC in the Yangtze River estuary,
and to provide methodological support for the hyperspectral remote sensing inversion of
the SSSC.

2. Materials
2.1. Quantitative Experimental Data and Preprocessing

The experiment for the quantitative determination of the SSSC was conducted in
a white plastic tank with a length and width of 106 cm and a height of 115 cm. Before
the experiment, the interior of the tank was painted black to eliminate the effect of solar
reflection on the bottom and inner walls of the tank. The water was stirred uniformly using
an electric stirrer to ensure that the sediment was suspended evenly in the water column.

The surface sediment samples needed for the quantitative experiments were col-
lected using a sediment sampler near the south sink mouth of the Yangtze River estuary
(30◦55′44′′ N, 121◦59′36′′ E). The sample particle size was determined using a Master-sizer
2000 laser particle size analyzer, and the median particle size (D50) was 28.63 µm, which
matched the particle size of the suspended sediment in the surface layer of the Yangtze
estuary [47]. Sediment samples were weighed and stored in plastic bags for further use
in subsequent experiments. Spectral reflectance was measured using an ASD Field Spec
portable hyperspectrometer with the parameters listed in Table 1.

Table 1. Parameters of the ASD hyperspectrometer.

Parameters Value

Wavelength Range 325–1075 nm
Sampling Interval 1 nm

Spectral Resolution 3 nm
Integration time ≥8.5 ms

Field of view 25◦

The experiment was conducted on 19 January 2021, from 10:00 to 14:30 in an open
area on the campus of Shanghai Ocean University under clear and cloudless weather and
good lighting conditions. A bucket was filled with 1000 L of tap water and sediment
samples were added sequentially in ascending order. After each addition, the samples
were stirred with an electric stirrer to ensure a uniform suspension of sediment samples
in the water column. After stirring for approximately 5 min, an AQU Alogger 310TY
turbidimeter with a range of 10,000 FTU was used for online observation of turbidity.
When the values were stable, the spectral characteristics of the SSSC were measured using
the above-water spectrum measurement method [48]. The reflectance of the standard
plate, sky, and sand-bearing water bodies was measured using an ASD Field Spec portable
hyperspectrometer, calibrated by a standard plate with 20% reflectance, and 30 consecutive



Sustainability 2022, 14, 13076 5 of 22

spectral data points were collected for each group. The hyperspectrometer outputs were
observed from the water surface at a zenith angle of 40◦ and in real time at an azimuth of
135◦, effectively avoiding the reflective effects of solar irradiance [49]. Water samples were
collected at a depth of 0.5 m using a standard sampling bottle with a capacity of 1 L, while
obtaining spectral information of the water. The water samples were also brought back to
the laboratory, and the SSSC information was determined by the weighing method. A total
of 41 sets of spectral reflectance information for sand-bearing water bodies were obtained.
The experimental site is shown in Figure 1.
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The spectral reflectance of water bodies with different SSSCs can be calculated from the
reflectance data acquired by the ASD Field Spec hyperspectrometer; its spectral reflectance
Rrs is determined using Equation (1).

Rrs =
(Ssw − r× Ssky)× ρP

π × SP
(1)



Sustainability 2022, 14, 13076 6 of 22

where Sp, Ssw, and Ssky are the average reflectance measurements of the standard plate,
sand-bearing water body, and sky, respectively; ρp is the reflectance of the standard plate;
and r is the reflectance of the water–air interface. In this experiment, the wind speed was
approximately 5 m/s and the value of r was determined to be 0.025 [49].

The actual measured concentration of the suspended sand was determined using
laboratory methods. The specific steps were as follows: The water samples were first
shaken to ensure they were well mixed; the water samples were then filtered using 0.45 µm
glass fiber filter membranes. The membrane equilibration operation was performed for
6 h before filtration (to prevent the effect of difference in humidity on the weight of
the membrane), and the membrane itself was weighed using an electronic balance of
10,000 parts. According to the filtration method specifications, the water sample bottles
were rinsed using ultrapure water, and the filter membranes were dried and equilibrated
for 6 h after filtration before weighing [50]. Their surface suspended sand concentration
SSSC was calculated as follows:

SSSC =
M−M0

V
(2)

where M is the mass of the filter membrane after weighing, M0 is the mass of the membrane
before weighing, and V is the water sample volume.

2.2. Airborne Hyperspectral Experiment Data and Preprocessing

The airborne hyperspectral experiment was carried out upstream of the northern port
of the Yangtze estuary (Figure 2) during the dry water period on 26 March 2016. The
Yangtze River estuary diverges from below Xu Liujing to the northern and southern sides
of Chongming Island, which are the South and North Branches, respectively. The South
Branch diverges into the southern and northern harbors at Changxing Island and Heng
Sha Island, and the South Harbor diverges into the South and North Troughs at Jiu Duan
Sha [51], showing a “three-stage branching and four-port entry” pattern. The North Port is
one of the four sea entry channels, with a total length of approximately 32 km.

Airborne hyperspectral and ground truth sampling data were acquired during the
experiment. The airborne hyperspectral data were obtained using the hyperspectral cam-
era onboard the manned aircraft. The imaging device in the experiment is an airborne
hyperspectral sensor developed by the Shanghai Institute of Technology Physics, Chinese
Academy of Sciences, the main parameters of which are shown in Table 2, and the specific
parameters are listed in Table 2. The location information of the sampling points for the
ground truth sampling data is shown in Figure 2, where sampling points 1–5 were taken
from the shore using a rope, sampling points 6–14 were taken on a boat, and the sampling
time was concentrated around 10:00–13:00, with good weather conditions and a calm
water surface.

Table 2. Parameters of the airborne hyperspectrometer.

Parameters Value

Wavelength Range 300–1000 nm
Number of Channels 270
Spectral Resolution 2.6 nm

Flight altitude 1000 m
Spatial resolution 1.2 m
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The hyperspectral images were preprocessed using ENVI software, including geo-
metric correction, image stitching, band removal, and image fusion, to obtain processed
image data. During image preprocessing, 100 bands with low signal-to-noise ratios were
removed to ensure data quality, and 170 bands were retained, with the remaining bands
ranging from 420–900 nm. The processing method of the collected surface water samples
was consistent with that of the water samples measured from the quantitative experiments.
The final results of the SSSC data are listed in Table 3.
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Table 3. Measured SSSC.

ID SSSC (mg/L) ID SSSC (mg/L)

1 554.5 10 197.6
2 451.5 11 259.6
3 809.8 12 420.3
4 843.6 13 476.6
5 968.8 14 439.5
6 729.5 Max 968.8
7 357.8 Min 197.6
8 345.3 Mean 511.8
9 310.9 SD 288.3

3. Methods
3.1. Spectral Transformation Methods

The spectral transformation of the raw spectrum is based on five spectral transfor-
mation methods, and the equations of the spectral transformation methods are shown
in Table 4. The raw spectra and five spectral transformation values were used for the
construction of the quantitative inversion model of SSSC, and these transformation forms
were implemented in the MATLAB platform.

Table 4. Spectral transformation methods.

Name Method or Formula Abbreviation

First Derivative Savitzky–Golay method FD
Second Derivative Savitzky–Golay method SD

Square Root xsqrt =
√

xi SQR
Mean Centering xmcenter = x− X MC

Reciprocal of Logarithmic x1/lg = 1/ log10(x i) RLG

3.2. Feature Band Extraction Methods
3.2.1. Successive Projections Algorithm

The successive projection algorithm (SPA) is a forward selection method; that is, it
starts with one band and selects a new band in each iteration until the specified number of
feature bands, N, is reached, thus extracting the subset of feature variables with the least
redundancy and covariance. The basic principle is to construct new variables by projecting
and mapping spectral information and evaluating the predictive effect of the new variables
based on a multiple linear regression model [52]. The SPA extracts a few columns of data
from the original spectral matrix to aggregate the spectral variable information of most
samples, thus avoiding the problem of data redundancy to the greatest extent. Moreover,
the number of variables in the model building process can be reduced considerably, thereby
improving the accuracy and efficiency of the model. The core formula is as follows [53]:

Pxj = xj − (xT
j xk(n−1))xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
(3)

where P is the projection operator, j ∈ S, and S is the set of wavelengths not yet selected.
K represents the selected wavelength.

3.2.2. Competitive Adaptive Reweighted Sampling Algorithm

The competitive adaptive reweighted sampling (CARS) method is based on the princi-
ple of “survival of the fittest” for feature band selection. Each band variable is treated as a
single individual, and the individual with strong adaptive ability is retained for individual
selection [54,55]. The specific steps of the algorithm are as follows:
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(1) Random selection of n samples using a Monte Carlo algorithm and the development
of a partial least squares regression (PLSR) model.

(2) Selecting the variables by exponentially decreasing function (EDP) and adaptive
weighted sampling algorithm (ARS), retaining those with high regression coefficients
and removing those with low regression coefficients.

(3) Create a PLSR model with the retained variables as a new subset of variables and
calculate the root mean square error of cross-validation (RMSECV).

(4) Repeat steps (1)–(3), and select N subsets of variables after N Monte Carlo sampling
to obtain N RMSECVs, and select the subset of variables with the smallest RMSECV
as the optimal band combination.

3.3. BP Neural Network

The learning process of the BP neural network included forward and backward
transmissions. In the forward transmission process, the signal enters the hidden layer
through the input layer, is processed layer-by-layer by the hidden layer node, and is
transmitted to the output layer. Each layer of neural nodes in the hidden layer only affects
the state of the next layer of the neural nodes. When the processed signal reaches the output
layer, the output layer evaluates the processing results of the hidden layer. If the output
layer does not obtain the expected output, the network returns to transmit an error signal
along the original connection channel. Each node in the hidden layer adjusts the weight of
each layer of the neural nodes through the error information feedback, thereby minimizing
the error signal [56].

The BP neural network model used in this study for predicting the concentration of
suspended sand is shown in Figure 3.
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3.4. Model Evaluation Indices

The four evaluation indicators of coefficient of determination (R2), ratio of performance
deviation (RPD), root mean square error (RMSE), and root mean square error percentage
(RMSE%) were used to evaluate the performance of the inverse model of suspended sand
concentration, and are calculated as follows:

R2 = 1−

N
∑

i=1
(γi − γ̂i)

2

N
∑

i=1
(γi − γi)

2
(4)

RPD =
SDs

RMSE

RMSE =

√√√√ N

∑
i=1

(γi − γ̂i)
2

N



Sustainability 2022, 14, 13076 10 of 22

RMSE% =
RMSE

γP

where N is the number of samples, γi is the measured value of SSSC, γ̂i is the predicted
value of SSSC, γi is the average measured value of SSSC, and γP is the average predicted
value of SSSC.

R2 indicates the strength of the correlation between measured and predicted values;
RPD indicates the predictive ability of the model, and RPD less than 1.5 indicates very
poor predictive ability of the model, between 1.5 and 2.0 indicates poor predictive ability of
the model, and greater than 2.0 indicates good predictive ability of the model [57]. RMSE
indicates the standard deviation of the prediction error, and RMSE% is the percentage of
the standard deviation. Smaller RMSE and RMSE% values indicate a higher prediction
accuracy of the model.

4. Results
4.1. Quantitative Experimental Spectral Characteristic Curve

A total of 41 sets of measured SSSC data were obtained, with a minimum value of
3.62 mg/L, a maximum value of 682.06 mg/L, and an average value of 203.07 mg/L.
During the experiments, the spectral data of 41 sets of water bodies with different SSSCs
were obtained simultaneously, and spectral characteristic curves were drawn, as shown
in Figure 4. The spectral ranges of 325–400 nm and 900–1075 nm in the measured spectral
information are susceptible to external interference, and have a low signal-to-noise ratio
due to the high absorption properties of the water column [23]. Therefore, the spectral
range in this study was 400–900 nm. It was observed that when the concentration of
suspended sand is low, the spectral curve has one peak at 560–580 nm; an increase in the
concentration of suspended sand leads to the spectral curve of the water body having two
peaks: the first reflection peak is located at 570–710 nm, the reflection peak is flatter and
corresponds to a wider wavelength range; when the wavelength is greater than 710 nm,
the spectral curve begins to decline and a reflection valley is formed at 750 nm, mainly due
to the absorption of water molecules, followed by a second reflection peak at 780–820 nm,
which has a narrower width.
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Five spectral transformations were performed on the raw spectra, and six different
spectral expressions were obtained, as shown in Figure 4. It was observed that, for the
raw spectra, the spectral reflectance of each band shows different degrees of an increasing
trend with the increase in SSSC, and the spectral characteristic curves of sand-containing
water bodies have similar morphologies, but there are also differences. FD mainly shows
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the changing trend of the raw spectral curve in the wavelength range of 400–563 nm and
763–805 nm, indicating that FD is positive. When it shows the changing trend of the raw
spectral curve in the range of 595–762 nm and 807–900 nm, FD is negative, indicating a
decreasing trend in the original spectral curve, and in the range of 607–679 nm, FD is close
to zero, indicating a flatter original spectral curve (Figure 5b). The spectral transformation
value of SD is further reduced compared with that of FD, and the reflectance transformation
value revolves around the upper and lower Y = 0 (Figure 5c). The spectral transformation
form of the MC did not change the morphology of the spectral curve, but only the value of
the y axis reflectance (Figure 5f). The morphology of the spectral curve of SQR was similar
to that of the spectral transformation form of RS, but the magnitude of the change was
slightly different, especially in the low concentration range (Figure 5d). The morphology
of the spectral curve of RLG was exactly opposite, but in the low concentration range, the
spectral curve of RLG showed a clear peak around 500 nm (Figure 5e).
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Figure 5. Spectral characteristic curves of 6 spectral transformation forms. (a) The raw reflectance
spectra (RS), (b) the first derivative of the reflectance spectra (FD), (c) the second derivative of the
reflectance spectra (SD), (d) the square root of the reflectance spectra (SQR), (e) the reciprocal of
logarithm of reflectance spectra (RLG), (f) the mean center of the reflectance spectra (MC).

4.2. Feature Band Extraction Results

For the above six different spectral transformation values, 41 sets of sample data for
each spectral transform value were divided into 30 sets of training samples and 11 sets of
validation samples according to the concentration gradient method (Table 5). Thirty sets of
training samples were used for SPA and CARS feature band extraction, and the extracted
feature bands were used for modeling. Figure 6 shows the feature bands extracted by six
spectral transform forms based on SPA. Most of the feature bands extracted by the SPA
method are regions with significant changes, which indicates that the SPA method can
effectively extract the feature bands [35]. Figure 7 shows the details of the feature bands
extracted based on CARS, with FD as an example. Figure 7a shows the change in the
number of selected spectral variables in 50 iterations. With the increase in the number of
iterations, the number of spectra selected by CARS first decreases sharply and then levels
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off. Figure 7b shows the change in RMSECV in 50 iterations. It was observed that with
the increase in the number of iterations, RMSECV first shows a decreasing trend, then an
increasing trend, and finally levels off. RMSECV reaches the minimum value in the 35th
iteration. Figure 7c shows the path of regression coefficients for all spectral variables, i.e.,
the trend of regression coefficient values in 50 iterations. From Figure 7, it was observed
that the spectral variables selected in the 34th iteration were the best subset of variables in
the process of extracting feature bands based on CARS.

Table 5. Datasets for training and validation.

Datasets No. Minimum
(mg/L)

Maximum
(mg/L)

Average
(mg/L)

training 30 3.64 654.39 200.39
validation 11 3.62 682.06 210.40
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Figure 6. SPA−based feature bands extracted by different spectral transformation forms. (a) The raw
reflectance spectra (RS), (b) the first derivative of the reflectance spectra (FD), (c) the second derivative
of the reflectance spectra (SD), (d) the square root of the reflectance spectra (SQR), (e) the reciprocal
of logarithm of reflectance spectra (RLG), (f) the mean center of the reflectance spectra (MC).

The six spectral transformation values were extracted using SPA and CARS for feature
band extraction. Figure 8 shows the concentration diagram of feature bands selected based
on the SPA and CARS feature band extraction methods, where the horizontal axis shows the
different wavelength ranges, the vertical axis shows the six spectral transform forms, and
the different colors represent the frequencies of spectral band selection. The results show
that the feature bands selected by SPA and CARS are not exactly the same. First, the number
of selected feature bands was different, and the number of feature bands selected by CARS
was higher than that selected by SPA. Second, the distribution ranges of the selected feature
bands are different, and the feature bands selected by SPA are concentrated at 400–450 nm
and 850–900 nm, whereas the feature bands selected by CARS are different. CARS selects
a wider range of feature bands than SPA, concentrating at 400–500 nm, 700–750 nm, and
800–900 nm. Overall, the feature bands selected by the two methods are distributed in the
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visible band at approximately 400 nm and the near-infrared band at 700–900 nm, which is
consistent with the findings of previous studies [58].
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4.3. Construction of Inverse Model Results Based on Feature Bands

The PLSR model and BP neural network model were constructed by combining the
six spectral transformation forms based on the feature bands extracted by SPA and CARS
with the measured SSSC, and the model accuracy was evaluated using four indices, R2,
RPD, RMSE, and RMSE%, as shown in Figures 9 and 10. Figure 9 shows the results of
inverse modeling based on SPA-extracted feature bands, and it was observed that the
accuracies of the PLSR model and BP neural network model constructed based on different
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spectral transformation forms are different. Comparing the R2 values, it was observed
that the highest R2 is 0.9927 for the FD-based SPA-BP model, and the lowest R2 is 0.9119
for the SD-based SPA-PLSR model; comparing the RPD, it was observed that the highest
accuracy is achieved for the FD-based SPA-BP model, with an RPD of 10.5649, and the
lowest accuracy is achieved for the SD-based SPA-PLSR model, with an RPD of 3.0364;
similarly, comparing RMSE and RMSE% shows that the SPA-BP model constructed based
on FD has the highest accuracy, with 20.9943 mg/L RMSE and 9.92% RMSE%, and the
SPA-PLSR model constructed based on SD has the lowest accuracy, with 69.8012 mg/L
RMSE and 29.47% RMSE%.
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Figure 10 shows the results of inverse modeling based on CARS-extracted feature
bands, where the accuracy of the PLSR model and BP neural network model constructed
based on different spectral transformation forms is different. Comparing the R2 values, it
was observed that the highest R2 is 0.9947 for the FD-based CARS-BP model, and the lowest
R2 is 0.9428 for the SQR-based CARS-PLSR model; comparing the RPD, it was observed
that the highest accuracy is achieved by the FD-based CARS-BP model, with an RPD of
12.5453, and the lowest accuracy is achieved by the SQR-based CARS-PLSR model, with
an RPD of 4.9796. The same comparison of RMSE and RMSE% shows that the CARS-BP
model constructed based on FD has the highest accuracy, with an RMSE of 16.5801 mg/L
and RMSE% of 8.08%, whereas the CARS-PLSR model constructed based on SQR had the
lowest accuracy, with an RMSE of 52.1268 mg/L and RMSE% of 24.12%. Overall, FD is the
best form of spectral transformation for both SPA and CARS to extract feature bands.
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The accuracies of the SPA-PLSR/BP and CARS-PLSR/BP models with FD spectral
transformation values are listed separately, as shown in Figure 11, and it was observed
that for both SPA and CARS feature band extraction methods, regardless of the established
PLSR model or BP neural network model, the accuracy of CARS is higher than that of
SPA, specifically in terms of higher R2 and RPD, and lower RMSE and RMSE%. For the
same feature band extraction method, the accuracy of the BP neural network model is
markedly higher than that of the PLSR model. Therefore, the best framework combination
is FD-CARS-BP for the hyperspectral-based inversion of the SSSC in the Yangtze estuary.
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4.4. Validation of the Model Framework

To verify the effectiveness of the best framework combination, FD-CARS-BP, obtained
based on quantitative experiments in the inversion of SSSC in the Yangtze estuary, the
framework was applied to the airborne hyperspectral data acquired on 26 March 2016.
First, the first-order differential spectral transformation was performed on the airborne
hyperspectral data to obtain the FD spectral transformation value, and then the feature
bands were extracted based on CARS. The BP neural network model was built based
on the feature bands, and R2, RPD, RMSE, and RMSE% were calculated to evaluate the
model accuracy. The FD-SPA-PLSR, FD-SPA-BP, and FD-CARS-PLSR models were also
established to compare their inversion accuracies, as shown in Figure 12. Compared with
the other three models, the R2 and RPD of the FD-CARS-BP model were the largest, 0.9203
and 4.5697, respectively, and the RMSE and RMSE% of the FD-CARS-BP model were
the smallest (0.0339 kg/m3 and 8.55%, respectively), indicating that FD-CARS-BP can be
effectively used for the extraction and inversion of the characteristic waveband of SSSC in
Yangtze River estuary modeling.
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5. Discussion
5.1. Construction of Inversion Model

Six wavelengths of 655 nm, 660 nm, 840 nm, 860 nm, 870 nm, and 859 nm were
selected to construct single-band empirical models with the measured SSSC, including
linear, exponential, logarithmic, multiplicative power, and quadratic polynomial models.
R2, RPD, RMSE, and RMSE% were calculated to evaluate the accuracy of the inverse model
and compare with the accuracy of the FD-CARS-BP model proposed in this paper, as
shown in Table 6. Compared with the commonly used satellite visible and near-infrared
wavelengths, where 655 nm and 870 nm are located in bands 4 and 5 of Landsat 8 OIL,
respectively; 660 nm and 840 nm correspond to bands 3 and 4 of Landsat TM, respectively;
860 nm and 870 nm correspond to bands 2 and 16 of MODIS, respectively, which are the
commonly used wavelengths for quantitative sand concentration inversion; 859 nm is the
band with the largest correlation coefficient in hyperspectral images. It can be found that
the accuracy of the FD-CARS-BP model has been significantly improved compared with
the single-band model. Because the number of bands in multispectral remote sensing is
small, the spectral resolution is low, and the spectral range of each band is long, which
cannot express the changes in spectral information more finely, while the narrow bands
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in hyperspectral images can effectively solve this problem, and the BP neural network
model constructed based on the feature bands extracted by CARS can derive quantitative
estimations of the SSSC more accurately.

Table 6. Comparison of different inversion models.

Variable Model R2 RPD RMSE
(mg/L) RMSE%

655 nm

y = 10093x − 115.67 0.7930 1.9634 96.6928 47.71%
y = 8.8443e78.31x 0.9821 3.4376 81.8898 33.37%

y = 126.13ln(x) + 677.1 0.3965 0.9219 169.7026 98.12%
y = 280010x2 − 6409.2x + 43.773 0.9665 5.3117 39.9233 18.21%

660 nm

y = 10173x − 113.17 0.7969 1.9876 95.7472 47.14%
y = 9.1108e78.596x 0.9828 3.3746 84.1994 34.16%

y = 124.38ln(x) + 673.57 0.3937 0.9883 170.6553 93.01%
y = 279307x2 − 6112.1x + 41.65 0.9682 5.4470 38.9028 17.74%

840 nm

y = 22336x − 28.066 0.9703 5.3603 37.8763 17.35%
y = 24.442e140.37x 0.8748 1.7822 232.9018 84.36%

y = 160.08ln(x) + 1004.9 0.7059 1.5699 115.0457 56.19%
y = 202027x2 + 16921x−8.335 0.9870 7.8004 26.3551 12.01%

860 nm

y = 25350x − 13.708 0.9836 6.84 29.4738 13.55%
y = 27.664e155.33x 0.8621 1.7759 232.1537 86.01%

y = 153.96ln(x) + 1011.2 0.7574 1.6222 105.2444 49.97%
y = 105858x2 + 22906x − 6.5177 0.9885 8.0156 25.3042 11.61%

870 nm

y = 27158x − 7.3402 0.9776 6.1185 33.267 15.25%
y = 32.182e158.01x 0.8496 1.735 242.3157 89.10%

y = 162.45ln(x) + 1071.2 0.6016 1.5411 161.5067 92.94%
y = 91181x2 + 25205x − 2.011 0.9823 6.8874 29.7421 13.64%

859 nm

y = 24537x − 12.381 0.9792 6.1074 34.7046 16.16%
y = 26.63e160.09x 0.8569 0.8011 264.5516 92.54%

y = 146.04ln(x) + 957.7 0.7286 1.8937 111.9162 56.06%
y = 30674x2 + 23845x − 10.34 0.9812 6.3617 33.3162 15.50%

689 nm/737 nm

y = − 312.32x + 909.04 0.6771 1.7564 120.6730 55.11%
y = 15515e−2.181x 0.9811 6.3245 33.5115 15.42%

y = − 740.5ln(x) + 785.62 0.7872 2.1519 98.4939 44.54%
y = 189.27x2 − 1213.6x + 1923.7 0.9091 3.1233 67.8582 30.19%

717 nm − 400 nm

y = 19738x − 31.298 0.9453 4.2041 50.4119 23.78%
y = 24.99e120.42x 0.9650 2.3001 92.1450 39.64%

y = 195.92ln(x) + 1144.6 0.7858 2.1578 98.2221 47.83%
y = 291334x2 + 10938x + 5.2895 0.9727 5.7809 36.6645 17.19%

859 nm + 859 nm

y = 12795x − 17.05 0.9792 6.1712 32.8574 14.95%
y = 26.932e78.775x 0.8610 1.7498 240.0633 87.32%

y = 156.48ln(x) + 912.48 0.7286 1.6072 110.4144 52.91%
y = 35185x2 + 11178x−7.4145 0.9868 7.5416 27.1006 12.30%

689 nm−737 nm
689 nm+737 nm

y = − 1758.5x + 847.52 0.8232 2.0634 89.6017 41.44%
y = 6866e−11.42x 0.9740 5.4736 42.9276 19.95%

y = − 601ln(x) − 426.44 0.9192 3.0110 62.5053 28.79%
y = 4534.4x2 − 4988.2x + 1375.2 0.9647 4.0573 46.0922 21.07%

MLR 0.9788 6.8815 30.8272 15.12%

PLSR 0.9697 5.6096 37.7826 17.71%
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655 nm
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y = 8.8443e78.31x 0.9821 3.4376 81.8898 33.37% 
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660 nm
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860 nm 
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y = 153.96ln(x) + 1011.2 0.7574 1.6222 105.2444 49.97% 

y = 105858x2 + 22906x − 6.5177 0.9885 8.0156 25.3042 11.61% 

870 nm 

y = 27158x − 7.3402 0.9776 6.1185 33.267 15.25% 

y = 32.182e158.01x 0.8496 1.735 242.3157 89.10% 

y = 162.45ln(x) + 1071.2 0.6016 1.5411 161.5067 92.94% 

y = 91181x2 + 25205x − 2.011 0.9823 6.8874 29.7421 13.64% 

859 nm 

y = 24537x − 12.381 0.9792 6.1074 34.7046 16.16% 

y = 26.63e160.09x 0.8569 0.8011 264.5516 92.54% 

y = 146.04ln(x) + 957.7 0.7286 1.8937 111.9162 56.06% 

y = 30674x2 + 23845x − 10.34 0.9812 6.3617 33.3162 15.50% 

689 nm/737 nm 

y = − 312.32x + 909.04 0.6771 1.7564 120.6730 55.11% 

y = 15515e−2.181x 0.9811 6.3245 33.5115 15.42% 

y = − 740.5ln(x) + 785.62 0.7872 2.1519 98.4939 44.54% 

y = 189.27x2 − 1213.6x + 1923.7 0.9091 3.1233 67.8582 30.19% 

717 nm − 400 nm 

y = 19738x − 31.298 0.9453 4.2041 50.4119 23.78% 

y = 24.99e120.42x 0.9650 2.3001 92.1450 39.64% 

y = 195.92ln(x) + 1144.6 0.7858 2.1578 98.2221 47.83% 

y = 291334x2 + 10938x + 5.2895 0.9727 5.7809 36.6645 17.19% 

859 nm + 859 nm 

y = 12795x − 17.05 0.9792 6.1712 32.8574 14.95% 

y = 26.932e78.775x 0.8610 1.7498 240.0633 87.32% 

y = 156.48ln(x) + 912.48 0.7286 1.6072 110.4144 52.91% 

y = 35185x2 + 11178x−7.4145 0.9868 7.5416 27.1006 12.30% 

689 nm - 737 nm

689 nm + 737 nm

y = − 1758.5x + 847.52 0.8232 2.0634 89.6017 41.44% 

y = 6866e−11.42x 0.9740 5.4736 42.9276 19.95% 

y = − 601ln(x) − 426.44 0.9192 3.0110 62.5053 28.79% 

y = 4534.4x2 − 4988.2x + 1375.2 0.9647 4.0573 46.0922 21.07% 

MLR 0.9788 6.8815 30.8272 15.12% 

PLSR 0.9697 5.6096 37.7826 17.71% 

             FD−CARS−BP    0.9947    12.5453 16.5801        8.08% 

5.2. The Validation of the Model FrameworkBecause the reflectance of a single band is too weak to reflect the spectral information
of different SSSCs comprehensively, the dual-band combination model is also a common
model form in the study of SSSC inversion. The combination of any two bands in the
hyperspectral data is selected to construct four hyperspectral water body indices, namely,
difference water index (DWI), ratio water index (RWI), normalized difference water index
(NDWI), and addition water index (AWI), and the correlation coefficient matrix is calculated
by correlating the water body indices with the measured SSSC. The correlation coefficient
matrices of SSSC are symmetric matrices; thus, for the DWI, AWI, and NDWI correlation
coefficient matrices, only the lower triangular matrix is selected to represent them, as
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shown in Figure 13. It can be seen that the combinations of bands with high correlation
coefficients all contain NIR bands; therefore, for regions with high SSSCs such as the
Yangtze River estuary and adjacent seas, NIR bands are sensitive to changes in SSC, which
is basically consistent with the conclusions of existing studies [58]. For RWI, the maximum
value of correlation coefficient is 0.9403, corresponding to wavelengths of 689 nm and
737 nm; for DWI, the maximum value of correlation coefficient is 0.9765, corresponding to
wavelengths of 400 nm and 717 nm; for AWI, the maximum value of correlation coefficient
is 0.9842, corresponding to wavelengths of 859 nm and 859 nm; for NDWI, the linear model,
exponential model, logarithmic model, and quadratic polynomial model were constructed
with the highest correlation coefficient as the independent variable and SSSC. The R2, RPD,
RMSE, and RMSE% were calculated to evaluate the accuracy of each model, all of which
were compared with the accuracy of FD-CARS-BP model, as shown in the table. It can be
observed that the accuracy of the FD-CARS-BP model is still significantly higher than that
of the combined two-band model.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 
Figure 13. Correlation matrix. (a) Correlation coefficient of DWI, (b) correlation coefficient of RWI, 
(c) correlation coefficient of AWI, (d) correlation coefficient of NDWI. The small red squares in this 
figure refers to the band with the largest correlation coefficient, that is, the characteristic band.  

Whether it is a single-band model or a two-band combined model, it is still a one-
dimensional model by nature, and the one-dimensional function often does not explain 
the dependent variable to the same extent as the multivariate function. Furthermore, the 
multivariate model is also one of the models commonly used in the inversion studies of 
suspended sand concentration. Therefore, a multiple linear regression model (MLR) is 
constructed based on the feature bands extracted by CARS, and four indicators, R2, RPD, 
RMSE, and RMSE%, are calculated and compared with the PLSR model and BP neural 
network model for accuracy, and the results are shown in Table 6. It can be seen that the 
accuracy of the FD-CARS-BP model proposed in this study is still higher than that of other 
models, and its R2 value is as high as 0.99, its RPD is greater than 12, its RMSE is less than 
16 mg/L, and its RMSE% is only 8.08%, all of which have more obvious advantages. 

  

Figure 13. Correlation matrix. (a) Correlation coefficient of DWI, (b) correlation coefficient of RWI,
(c) correlation coefficient of AWI, (d) correlation coefficient of NDWI. The small red squares in this
figure refers to the band with the largest correlation coefficient, that is, the characteristic band.

Whether it is a single-band model or a two-band combined model, it is still a one-
dimensional model by nature, and the one-dimensional function often does not explain
the dependent variable to the same extent as the multivariate function. Furthermore, the
multivariate model is also one of the models commonly used in the inversion studies of
suspended sand concentration. Therefore, a multiple linear regression model (MLR) is
constructed based on the feature bands extracted by CARS, and four indicators, R2, RPD,
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RMSE, and RMSE%, are calculated and compared with the PLSR model and BP neural
network model for accuracy, and the results are shown in Table 6. It can be seen that the
accuracy of the FD-CARS-BP model proposed in this study is still higher than that of other
models, and its R2 value is as high as 0.99, its RPD is greater than 12, its RMSE is less than
16 mg/L, and its RMSE% is only 8.08%, all of which have more obvious advantages.

5.2. The Validation of the Model Framework

The model framework of this study is proposed based on quantitative experiments
simulating water bodies with different suspended sand concentrations. The measured
spectral curves of water bodies with different SSSCs can show the trend of remote sens-
ing reflectance with the change in SSSC, and then guide the selection and determination
of hyperspectral characteristic wavebands. Compared with the traditional single-band
model, dual-band combined model, and multiple linear regression model, this model can
effectively improve the accuracy of the inversion of SSSC and obtain the distribution char-
acteristics of SSSC more accurately. Applying the framework to the airborne hyperspectral
suspended sand concentration monitoring in the typical area of the North Port of the
Yangtze River estuary, it is observed that the accuracy of the model is still significantly
higher than that of other model combinations, which further verifies the validity of the
model, and can realize the high-precision inversion study of suspended sand concentration
in the typical local area of the Yangtze River estuary.

5.3. The Limitations of the Model Framework

The model framework also has some limitations. First, regarding the quantitative
experiments of different SSSCs in simulated water bodies, the water bodies used during
the experiments in this paper were tap water, and only the effects of different SSSCs on
the spectral reflectance of water bodies were considered. The mechanisms of the effects of
salinity, chlorophyll, and other organic matter on the spectral determination of water bodies
will be discussed in a subsequent study. Secondly, in the dataset used for the quantitative
experiments in this paper, the range of suspended sand concentration is 3.62–682.06 mg/L.
For the water bodies with suspended sand concentrations higher than 682.02 mg/L, the
spectral characteristics need to be further investigated. Moreover, regarding the airborne
hyperspectral SSSC monitoring, the experimental data collection time is concentrated in
the dry water period, and whether the model proposed in this paper can be applied to the
abundant water period needs to be further verified. Under the influence of runoff, sand
transport, tides, waves, wind systems, climate, geological structures, and human activities,
the distribution and dispersion patterns of SSSC are exceptionally complex. The water
spectrum varies greatly in different seas, and a unified SSSC inversion regionalization model
is yet to be constructed. With the continuous development of hyperspectral technology,
water quality parameter inversion based on hyperspectral images can be further explored
in the future, and the de-characterization method of sensitive bands can be continuously
explored to optimize the inversion model and further improve the accuracy of water
quality parameter inversion. Meanwhile, for SSSC, the influence of tides, flow velocity, flow
direction, and other factors on its spatiotemporal distribution can be explored to obtain
finer regularity characteristics.

6. Conclusions

In this study, we propose a framework for the inversion of SSSC based on hyperspec-
tral remote sensing. Our study demonstrates the potential of static load hyperspectral
remote sensing-based techniques for monitoring SSSC in the Yangtze estuary region. We in-
vestigated a process-based approach, the FD-CARS-BP framework, to analyze wavelengths
sensitive to SSSC, and constructed a reliable SSSC inversion model. In the quantitative
experiments of the flume, the spectral changes in the water column at different SSSCs were
analyzed and compared to those of multiple spectral transformation methods. Second, two
different waveband selection methods were implemented, and then, based on comparing
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SPA, CARS, and correlation analysis methods, the FD-CARS algorithm was proposed to
extract feature bands to invert SSSC. The use of the BP inversion model after the FD-CARS
algorithm significantly reduced the number of bands and improved the inversion accuracy
of the SSSC in quantitative experiments. Finally, the FD-CARS-BP model was applied
to an actual SSSC inversion experiment of airborne hyperspectral remote sensing in the
Yangtze estuary in 2016, which further verified the reliability of the framework proposed
in this study. This framework provides a simple and practical method for inverting SSSC
in the Yangtze estuary. The purpose of the quantitative simulation experiment was to
consider only the effect of SSSC changes on light reflectance; therefore, the water body
used in the experiment was tap water, and the mechanisms of the effects of other organic
substances, such as chlorophyll and CDOM, on the spectral characteristics of the water
body will be considered in a subsequent study. In the future, we hope that the framework
can be combined with classification filters to automate the identification process.
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