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Abstract: Land cover changes threaten biodiversity by impacting the natural habitats and require
careful and continuous assessment. The standard approach for assessing these changes is land cover
modeling. The present study investigated the spatio-temporal changes in Land Use Land Cover
(LULC) in the Gorgan River Basin (GRB) during the 1990–2020 period and predicted the changes by
2040. First, a change analysis employing satellite imagery from 1990 to 2020 was carried out. Then, the
Multi-Layer Perceptron (MLP) technique was used to predict the transition potential. The accuracy
rate, training RMS, and testing RMS of the artificial neural network, MLP, and the transition potential
modeling were computed in order to evaluate the results. Utilizing projections for 2020, the prediction
of land cover change was made. By contrasting the anticipated land cover map of 2020 with the
actual land cover map of 2020, the accuracy of the model was evaluated. The LULC conditions in the
future were predicted under two scenarios of the current change trend (scenario 1) and the ecological
capability of the land (scenario 2) by 2040. Seven landscape metrics were considered, including
Number of Patches, Patch Density, the Largest Patch Index, Edge Density, Landscape Shape Index,
Patch Area, and Area-Weighted Mean Shape Index. Based on the Cramer coefficient, the most critical
factors affecting LULC change were elevation, distance from forest, and experimental probability of
change. For the 1990–2020 period, the LULC change was shown to be influenced by deforestation,
reduced rangeland, and expansion of agricultural and residential areas. Based on scenario 1, the
area of forest, agriculture, and rangeland would face −0.8, 0.5, and 0.1% changes in the total area,
respectively. In scenario 2, the area of forest, agriculture, and rangeland would change by 0.1, −1.3,
and 1.3% of the total area, respectively. Landscape metrics results indicated the destructive trend of
the landscape during the 1990–2020 period. For improving the natural condition of the GRB, it is
suggested to prioritize different areas in need of regeneration due to inappropriate LULC changes
and take preventive and protective measures where changes in LULC were predicted in the future,
taking into account land management conditions (scenario 2).

Keywords: land cover prediction; LCM model; landscapes metrics; landscape change process; Gorgan
River Basin; Iran

1. Introduction

Over the past decades, the effect of human activities on the planet has increased dra-
matically, resulting in a change in the landscape [1]. The change is associated with critical
ecological consequences such as land use and vegetation changes, soil erosion, desertifi-
cation, etc. The change usually has an obvious human source, but some morphological
variables such as slope, direction, geologic formation, and elevation also contribute to the

Sustainability 2022, 14, 13070. https://doi.org/10.3390/su142013070 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142013070
https://doi.org/10.3390/su142013070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4359-7519
https://orcid.org/0000-0003-2160-1772
https://doi.org/10.3390/su142013070
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142013070?type=check_update&version=2


Sustainability 2022, 14, 13070 2 of 18

nature and extent of the change [2]. Land Use Land Cover (LULC) and its changes are es-
sential variables that significantly impact the environment and its processes [3]. The change
in the type of LULC not proportional to its capacity has increased the attrition process [4].
Understanding forest dynamics, sustainability conservation, and management evaluation
methods depends on patterns, rates, and trend scenarios of land cover change [5]. Models
of land cover change are tools that can be used to better understand the functioning of
the land use system, analyze the causes and effects of landscape patterns, and support
land cover management. In order to understand rates and geographical patterns of change
and to estimate the effects of changes in land cover, these models’ applications harness a
complex collection of economic-social and biophysical variables.

LULC heterogeneity quantification to study the relationship between spatial patterns
and the occurrence of various natural processes is one of the critical approaches to landscape
variations investigation [6–8]. The landscape metrics are considered proper tools for
measuring the behavior of LULC as well as quantifying its effect on basin-scale processes
and functions. These tools are also used for measuring and quantifying the spatial pattern of
landscape changes [9]. The change detection process is another approach for investigating
landscape changes and can be used for analyzing interactions between biophysical and
human factors in socio-ecological systems [10]. These two approaches quantify the effects
of land management on LULC changes and are helpful for modeling and describing
management strategies in time and space at the basin scale [11]. The landscape metrics also
investigate different dimensions of LULC changes such as composition, configuration, and
connectivity at three levels: patch, class, and landscape [12].

Due to multiple landscape metrics, the most appropriate metrics should be selected
according to the study aims as well as the result of the correlation between metrics. While
the change detection processes investigate the landscape changes in each class of LULC
over a period of time, in some cases, it is not easy to relate the change of landscape metrics
to ecological process changes. Difficulties in investigating the LULC changes with a specific
landscape metric force considering a set of driving factors [13–15]. One of the primary
concerns of the researchers and land managers is the lack of insight regarding the changes
and the effects of the landscape composition and configuration within the ecosystem on
ecological processes [16,17]. Predicting the landscape pattern changes by considering
ongoing change processes is vital to gaining insights into the status and behavior of LULC
in the future and its effects on ecological processes. One way to deal with this is to
develop a roadmap that can guide decision-makers and policymakers to efficient planning.
For this, the impact of land use transition on the eco-environmental aspects needs to be
considered [18].

Several studies have been conducted to investigate the behavior of the landscape and
its effects on different processes. The authors of [19] investigated the landscape metrics
in Haieh River Basin in China during the 1990–2000 period, demonstrating the need to
quantify the pattern of the landscape. They concluded that the complex changes in the
configuration and composition of the landscape during the study period are due to the
importance of quantifying landscape patterns. The authors of [20] used landscape metrics
to analyze urban land use patterns in different modes of urban development in Spain.
According to their findings, landscape metrics can be used to monitor changes in urban
development patterns and evaluate urban development policies. The study results of [21]
on the landscape metrics in Uguraike, Japan, showed a reduction in the landscape diversity
and dissection of water courses. The authors of [9] illustrated the temporal and spatial
changes in agricultural land patterns using the landscape metrics, including scattering
and proximity index in China. They emphasized the effectiveness of the method for
investigating the development of agricultural lands at the basin scale. Modeling the effects
of LULC change using the landscape metrics and hydrological features in the Calumpang
Basin, Philippines, revealed that increasing the patch density and considering the largest
patch index for forest and agriculture classes, respectively, resulted in reduced surface
runoff and increased sediment production [22].
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Land cover change models, in addition to landscape indices and change processes, can
be helpful tools for comprehending a dynamic future landscape. To simulate how landscape
aspects change over time and space and to investigate potential future possibilities, GIS
models and RS data can be employed. The present study aimed to detect and analyze the
changes in the landscape of the Gorgan River Basin (GRB) in northern Iran during the
1990–2020 period and predict the LULC map using the Land Change Modeler (LCM) based
on two scenarios of continuation of the current change trend and based on the ecological
capability of the land up to 2040. Despite the fact that extensive research on the interactions
between LULC and landscape metrics has been carried out in several studies [23,24],
to the authors’ knowledge, consideration of the temporal changes in land space processes,
landscape metrics, and LULC have not been combined. To link landscape ecology with
sustainable landscape development and planning, land space change processes were
used. Therefore, this study comprehensively analyzes the landscape changes in a spatial
framework considering the GRB’s landscape change processes and metrics.

2. Materials and Methods
2.1. Study Area

The GRB is located in northern Iran between 54◦ 42′ to 56◦ 28′ E longitude and 36◦

43′ to 37◦ 49′ N latitude, with an area of 7138 km (Figure 1). The basin’s highest point
is in the southwest Khoshyilagh region at an elevation of 2898 m above mean sea level
(m amsl), and the lowest point is where the Voshmgir Dam is located, about 10 m amsl.
The average elevation of the GRB is 890 m amsl with an average slope of 18% [25]. The
longest river in the basin is known as the Gorgan River, which is 333 km long. The annual
rainfall of the basin varies from 195.2 to 946.3 mm, with an average value of 620 mm. The
minimum temperature is 11 ◦C and the maximum is 18.1 ◦C, measured in the Gorgan Dam
climatology station.
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2.2. Data Collection and Preparation

Four Landsat satellite images taken in 1990 and 2000 (TM Landsat-5), 2010 (ETM
+ Landsat-7), and 2020 (OLI Landsat-8) with 30 m resolution were acquired from the
United States Geological Survey (USGS, https://earthexplorer.usgs.gov/ (June 1989, June
2000, June 2010, June 2019)). The images were projected onto the World Geodetic System
(WGS) 1984, Universal Transverse Mercator (UTM), Zone 40 N coordinate system, and
corrected geometrically with a first-order polynomial method using the nearest-neighbor
algorithm [26]. The Root Mean Square Error (RMSE) of the images was less than one pixel.
Contrast stretching and color composites were performed to enhance the interpretability of
the images.

A 30 m Digital Elevation Model (DEM) was downloaded from the USGS site. The net-
work road map (1:2000) was obtained from the Iranian Urban Development Organization.
The main river map (1:2000) prepared by the Agricultural Organization of Iran was also
acquired. The above-mentioned collected data were then used to create a Land Use Land
Cover (LULC) map of the study area.

2.3. Land Use Land Cover (LULC) Classification

To properly identify and validate the phenomena that appeared on the images of
TM, ETM+, and OLI sensors using true and false color combinations, field works were
carried out, and educational samples for at least 50 sites in each class were collected
randomly. For ground validation, the locations of the samples were spotted using a global
positioning system (GPS) with high accuracy, and the land cover type at those locations
was determined. Five classes were identified: forest, agricultural, rangeland, residential
areas, and water body. The object-oriented classification algorithm, nearest neighbor [27],
was used to classify satellite images using eCognition software and to generate LULC
maps. The accuracy of the classified maps was evaluated by comparing the captured
terrestrial reality points (30% of the actual data) with the classified map, kappa coefficient,
and overall accuracy.

2.4. Land Use Land Cover (LULC) Calibration and Validation

We applied the Land Change Modeler (LCM) built-in module to model LULC change
with a combination of different criteria. The input data required for Land Change Modeler
(LCM) includes at least two land cover maps at different time periods. The amount of con-
version, the spatial distribution of transitions, and gains and losses between land cover cat-
egories were calculated and analyzed for the periods 1990–2000, 2000–2010, and 1990–2010
by LCM for ecological sustainability [28]. According to the Kappa Index of Agreement
(KIA) [29], the period of 1990–2010 was adopted in order to evaluate the model simulation.
To transfer potential, the relationship between stimulus variables and user changes based
on the Cramer coefficient was evaluated. Cramer’s v is computed by taking the square
root of the chi-squared statistic divided by the sample size and the length of the minimum
dimension (Equation (1)). The LULC map of 2020 was predicted using LULC maps of
1990 and 2010 and was assessed based on a comparison with the 2020 terrestrial reality
map. In the next step, the LULC map was predicted for future conditions (2040) using
LULC maps of 1990 and 2010. The choice of 2040 was based on the need for approximately
the same calibration, validation, and prediction periods [30], as well as the occurrence of
LULC significant changes in the future. Therefore, the periods 1990–2010, 2010–2020, and
2020–2040 were selected as calibration, validation, and prediction of GRB’s LULC maps,
respectively.

v =

√
χ2

N(K− 1)
(1)

where χ2 is derived from Pearson’s chi-squared test, N is the grand total of observation,
and K is the number of rows or the number of columns, whichever is less.

https://earthexplorer.usgs.gov/
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Digital Elevation Model (DEM), distance to forest, distance to a residential area,
distance to agricultural lands, distance to the river, and distance to the road were considered
explanatory variables in modeling transfer potential. The empirical likelihood was also
generated in the modeling process, which is the expectance of changes in each land use
class based on the effects of considered criteria (Figure 2).
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2.5. Prediction of LULC Changes by 2040 Based on the Current Change Trend Scenario

In scenario 1, LULC changes during calibration and validation periods were analyzed
by investigating the LULC change using the LCM. The LULC future condition map was
predicted by selecting sub-models with the highest level of changes, including agricultural
lands to rangeland, forest to agricultural lands, forest to range lands, rangeland, and
agricultural lands to residential areas for modeling LCM transfer potential. The variables
affecting LULC change were selected according to the literature review [31,32] as well as
the availability of data. The Cramer correlation coefficient determines the relationship
between explanatory variables (dynamic or static) and LULC classes based on Chi-square
statistics so that values higher than 0.15 are acceptable [33].

Finally, the multilayer perceptron neural network (MLP) method was used, as one of
the robust and common methods, for modeling the transfer potential [34,35]. In order to
evaluate the accuracy of transfer potential modeling results, training error, test error, and
accuracy indicators were used.

In the next step, the LULC changes based on the assumed future conditions were
predicted by the Markov chain method [36]. The Markov model simulates the probability
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of future developments of the past land use types. According to the law of the Markov
processes, the annual change rate of land use structure is rather stable. Equation (2) is
the fundamental equation for predicting land use structure in the Markov process, in
accordance with the concept of conditional probability.

P(n)
ij =

n−1

∑
k=0

PikP(n−1)
kj =

n−1

∑
k=0

P(n−1)
ik Pkj (2)

where n is the number of transfer steps, Pn
ij is the probability of land type i change to land

type j after n steps [37].
The predicted LULC maps were then evaluated by statistical and visual approaches

using different kappa coefficients and figures of merit [38,39]. The value 0 and 100 figures
of merit show inconsistency and consistency of the predicted map with terrestrial reality,
respectively. The higher the value of the figure of merit, the higher the accuracy of the
predicted map. The figure of merit is calculated using Equation (3).

FOM = H/(H + M + FL) (3)

where hit (H) is the number of cells that have changed in terrestrial reality and have been
correctly predicted by the model. Miss (M) is the number of cells that have changed
in terrestrial reality but have remained constant in prediction. False alarm (FL) is the
number of cells that have remained constant in terrestrial reality but have changed in
model prediction.

2.6. Prediction of LULC Future Changes Based on the Land Ecological Capability

In this (scenario 2), future land use changes were made based on the ecological poten-
tial of the land using the weighted linear combination (WLC) method and the ecological
models of Iran. In order to use the land resources for the development of land use change,
a land utility map was prepared for the three major classes of forest, rangeland, and
agriculture, subjected to major changes during the study period. The primary goal for
obtaining the utility map of the area for the three major classes using the MCE method
are as follows: (1) goal setting and identification of effective criteria; (2) standardization
of criteria (constraint and factor); (3) weight of factors; and (4) integration using weighted
linear combination (WLC) method. In the next step, 10% of the most capable areas were
allocated to each class that subjects to change by 2040. The basis of this method is to select
the patches that have the highest value to change for each class. In order to achieve this
goal, several criteria were evaluated, using the multi-criteria evaluation (MCE) method
developed [40].

In this scenario, the weighted linear combination (WLC) method, which is one of
the most common techniques for multi-criteria evaluation and decision analysis, overlays
standardized maps of factors taking into account the corresponding weights and Boolean
layers of constraints. The final raster map is the utility map for the development of each
land use that was integrated.

2.7. Preparation of Map of Limitations and Criteria for Standardization and Weighting

Identifying and developing criteria is the first stage of the multi-criteria evaluation
process. The criteria include two categories of constraint and factor. The constraints are
prepared in the form of Boolean layers, and factors are in the form of fuzzy layers, and
according to the criteria they can be standardized in different ways. The fuzzy layers were
created by the fuzzy membership algorithm. In this study, linear functions and, in some
cases, user-defined functions were used.

The factors used to evaluate agriculture class potential include rangeland, geology,
soil, erosion, climate, water resources, LULC, elevation, slope, direction, vegetation density,
distance to villages, distance to roads, and distance to the city. These layers were fuzzy
in different ways according to the type of layer. Further, to implement the multi-criteria
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evaluation method for each factor, a weight should be considered for each factor calculated
based on the expert opinion and by the analytical hierarchical process.

2.8. Combining Criteria by Weighted Linear Combination (WLC) Method

The next step in the multi-criteria evaluation method is layer integration. In the
present evaluation, the weighted linear combination method was used for layer integration.
In this method, the criteria are standardized in a continuous numerical range and then
combined based on weight averaging. First, the factors are summed based on the assigned
weight. The resulting layer is then multiplied by the constraint layers to obtain a fuzzy
layer that represents the utility of the whole area. The weighted linear combination method
is calculated based on Equation (4).

S = ∑(Wi ∗ Xi) ∗ Cj (4)

where S is LULC capability in each pixel. Wi is the weight of each criterion, Xi is the value
of the fuzzy layer in each pixel (factor), and Cj is the constraint value in each pixel.

2.9. Extraction of Landscape Metrics

In order to investigate the dynamics of changes in the GRB landscape metrics, 7 metrics
(Table 1) were extracted and analyzed for each class and landscape level, eight-cell neighbor-
hood rule, and non-sampling strategy [34]. The eight-cell neighborhood method uses eight
cells adjacent to a center cell to determine the patches in the landscape. In the non-sampling
strategy, each input map, LULC, to the model was considered as a separate landscape and
the landscape change processes were extracted. The landscape change processes include
deformation, shift, perforation, enlargement, shrinkage, attrition, aggregation, creation,
dissection, and fragmentation, each of which is based on changes in three metrics including
the number of patches, patch area, and patch perimeter (Figure 3). In this regard, the
change processes over a period of time were determined using the decision tree algorithm
to investigate the two LULC maps at times t1 and t2 and how the metrics are determined
for each class of LULC. The landscape change processes in the GRB were finally extracted
during the periods 1990–2000, 2000–2010, 2010–2020, and 2020–2040 (two scenarios).

Table 1. Metrics specifications in each class and landscape level in the present study.

Metric Name Acronym Formula Unit Range References

Number of
Patch NP ni unitless NP ≥ 1 [41]

Patch Density PD ni
A (10,000)(100) number/100 ha PD > 0 [22,41]

Largest Patch
Index LPI

n
j=1max(aij)

A (100) % 100–0 [42]

Edge Density ED ED = ∑m′
k=1 eik/A meters/ha ED > 0 [41]

Landscape
Shape Index LSI 0.25 ∑m

k=1 eik/
√

A unitless LSI ≥ 1 [22]

Patch Area PA PA = aij ∗ 1/10, 000 ha PA > 0 [18]

Area Weighted
Mean Shape

Index
AWMSI 0.25Pij/√aij unitless AWMSI ≥ 1 [41]



Sustainability 2022, 14, 13070 8 of 18Sustainability 2022, 14, 13070 8 of 18 
 

 

Figure 3. Decision tree algorithm for the determination of transformation processes in T1 (n1, a1, and 

p1 indicate the number of patches, area, and perimeters of class, respectively) and T2 (n2, a2, and p2 

refers to the number of patches, area, and perimeters of class, respectively) [31]. 

3. Results 

3.1. Analysis of LULC Maps 

The generated LULC map of GRB during the studied years is shown in Figure 4. 

According to the maps, the forests class coverage reduced by 280 km² during the 1990–

2020 period (3.7% of the total area), and the agricultural class coverage increased by 543 

km² (7.2% of the total area). The dominant class was rangeland (51.5% in 1990 and 46% in 

2020) in the study area. The rangeland class coverage increased by 61.6 km² during 1990–

2000 but substantially decreased during 2000–2020 (reduced by 474.6 km²). During the 

first period (1990–2000), the forest area had been converted into rangeland by 27.5 km² 

and during the second period (2000–2010), the forest area had been turned into rangeland, 

agricultural lands, and residential areas by 42.3, 44.6, and 3.1 km², respectively. 

Figure 3. Decision tree algorithm for the determination of transformation processes in T1 (n1, a1, and
p1 indicate the number of patches, area, and perimeters of class, respectively) and T2 (n2, a2, and p2

refers to the number of patches, area, and perimeters of class, respectively) [31].

3. Results
3.1. Analysis of LULC Maps

The generated LULC map of GRB during the studied years is shown in Figure 4.
According to the maps, the forests class coverage reduced by 280 km2 during the 1990–2020
period (3.7% of the total area), and the agricultural class coverage increased by 543 km2

(7.2% of the total area). The dominant class was rangeland (51.5% in 1990 and 46% in 2020)
in the study area. The rangeland class coverage increased by 61.6 km2 during 1990–2000 but
substantially decreased during 2000–2020 (reduced by 474.6 km2). During the first period
(1990–2000), the forest area had been converted into rangeland by 27.5 km2 and during the
second period (2000–2010), the forest area had been turned into rangeland, agricultural
lands, and residential areas by 42.3, 44.6, and 3.1 km2, respectively.

To evaluate the accuracy of the prepared maps compared to the terrestrial reality
maps, kappa coefficient values for maps of 1990, 2000, 2010, and 2020 were calculated
yielding 0.81, 0.83, 0.86, and 0.95, respectively. The overall accuracy of these maps was also
calculated yielding 87.21, 88.58, 90.56, and 96.46, respectively. The results indicated the
high accuracy of the satellite-based LULC maps of the GRB.
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3.2. Land Use Land Cover (LULC) Calibration and Validation

The results of the relationship between the effective variables and LULC changes
for both calibration and validation periods using the Cramer correlation coefficient are
presented in Table 2 (all explanatory variables had a Cramer coefficient higher than 0.15).

Table 2. Result of Cramer statistic, revealing the degree of association between the explanatory
variables with LULC changes during calibration and validation periods.

Variable Calibration Validation

DEM 0.3 0.3

Distance to forest 0.4 0.4

Distance to residential area 0.3 0.3

Distance to Agriculture 0.3 0.3

Distance to river 0.2 0.2

Distance to road 0.2 0.3

Empirical likelihood change 0.4 0.3

The results of the evaluation of the multilayer perceptron (MLP) method for modeling
transfer potential indicating accuracy (%), RMSE training, RMSE testing, and skill measure
for calibration and validation periods are presented in Table 3.
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Table 3. Result of Multi-Layer Perceptron (MLP) method evaluation.

Period
Values

Skill Measure RMSE Test RMSE Train Accuracy (%)

Calibration 0.6 0.3 0.33 79.3

Validation 0.6 0.2 0.3 76.4

3.3. Prediction of LULC Map by 2040 Based on the Current Change Trend Scenario (Scenario 1)

The predicted LULC map of GRB in 2040 considering scenario 1 is depicted in Figure 5.
The results of evaluating the accuracy of the LULC map based on statistical and visual
criteria are presented in Table 4. It should be noted that LULC was predicted by 2020
using the LCM model considering the LULC changes in 1990 and 2010. The existence of
the terrestrial reality map in 2020 helped us to be able to accurately assess the accuracy of
the model.
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Table 4. Result of LULC predicted map accuracy evaluation for 2020 in the Gorgan River Basin.

Year ROC Hits
False Alarms

Hits
False Alarms+Hits+Miss Overall Kappa

2020 AUC = 0.9 0.7 14.3 0.8

According to the LULC predicted map under scenario 1, the area of forest, agriculture,
and rangeland with changes of -58.37, 35.80, and 8.28 km2, respectively, would reach 1365,
2396, and 3481.2 km2 by 2040 (Table 5).
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Table 5. Gorgan River Basin’s LULC classes area (km2) during the 1990–2020 period.

LULC
Classes

1990 2000 1990–2000 2010 2000–2010 2020 2010–2020
2040

Current
Trends

2040
Ecological
Capability

Area % Area % Area
Changed Area % Area

Changed Area % Area
Changed

Area
Changed

Area
Changed

Forest 1702.9 22.6 1679.2 20.1 −23.6 1589.0 21.0 −90.2 1423.3 18.9 −165.7 −58.4 4.3
Agriculture 1817.2 24.1 1750.7 20.9 −66.5 2124.2 28.1 373.4 2360.2 31.3 236.0 35.8 −100.9
Rangeland 3885.9 51.5 3947.5 56.8 853.6 3529.7 46.8 −1209.7 3472.9 46.0 −56.8 8.3 96.6
residential

areas 127.4 1.7 160.3 1.9 32.8 272.1 3.6 111.9 261.5 3.5 −10.6 10.6 0.4

Water body 14.7 0.2 10.45 0.13 −0.06 33.3 0.4 22.9 30.4 0.4 2.9 2.9 −0.7

3.4. Prediction of LULC Map by 2040 Based on the Landscape Ecological Capability Scenario
(Scenario 2)

In scenario 2, the area of forests, agricultural lands, and rangelands with a change of
4.3, −100.9, and 96.6 km2 would reach 1427.6, 2259.3, and 3569.5 km2. The evaluation maps
for each LULC capability are presented in Figure 6a–c. The final predicted map for 2040
based on scenario 2 is shown in Figure 6d.
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Based on Figure 6a, the middle portion of the study area has the highest potential for
forest growth. Agriculture capability has been scattered all around the area, especially in
the northwestern part (Figure 6b). Most portions of the study area have a high potential
for the development of rangelands, particularly in the northwest (Figure 6c). The final
land capability map was obtained by integrating the ecological capability assessment maps
of each LULC. Then, 10% of the most susceptible areas to change for each land use were
selected to be changed by 2040. The selected areas were then added to the 2020 LULC
map, so the final map of the ecological capability in 2040 based on scenario 2 was produced
(Figure 6d). In this scenario, the landscape would face a change of 4.3,−100.9, and 96.6 km2

for the area of forest, agriculture, and rangeland, respectively, by 2040 (Table 5).
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3.5. Calculation of Metrics and Extraction of Landscape Change Processes

The results of landscape metrics during the studied years (1990, 2000, 2010, and 2020)
and in two LULC maps based on scenarios 1 and 2 are presented in Table 6 at the landscape
levels and Figure 7 at the class levels.

Table 6. Result of landscape metrics at the landscape level.

Basin Year NP PD LPI ED LSI PA AWMSI

Gorgan
River

1990 2484 0.1 11.3 8.4 29.7 108,825 18.7

2000 2812 0.2 11.2 8.6 30.4 113,190 17.3

2010 3236 0.2 9.36 10.4 36.7 82,346 18.4

2020 2391 0.1 9.40 9.9 34.9 74,349 17.6

Scenario 1 13,888 0.8 7.2 14.0 48/0 55,126 18.9

Scenario 2 3201 0.2 9.7 10.5 36.3 67,691 16.1
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Some landscape metrics including Edge Density (ED), Landscape Shape Index (LSI),
Number of Patches (NP), and Patch Density (PD) showed an increasing trend from 1990
to 2010 and a decreasing trend from 2010 to 2020. The patch area (PA) and largest patch
index (LPI) were reduced in both periods. The area-weighted mean shape index (AWMSI)
showed a decreasing and increasing trend in the landscape during the studied periods.
In addition, changes in ED, LSI, NP, and PD for the future conditions of the study area
showed increasing trends in both scenarios, except that the intensity of this increase was
higher in scenario 1. PA was shown to experience a decreasing trend in both scenarios, and
the LPI would have a decreasing trend in scenario 1 and an increasing trend in scenario 2
(Table 6).

NP in the agricultural class increased from 1217 in 1990 to 1964 in 2020. This increasing
trend of NP metric was also observed in residential areas. The number of forest and
rangeland patches reduced from 291 to 271 and from 207 to 133, respectively, over a 30-year
period. NP in scenario 1 would increase for all classes and in scenario 2 would increase for
rangeland and agriculture and decrease for other classes.

The LSI of the forest class reduced from 36.1 to 21.4 during 1990–2020 and other classes
increased during this period. Based on scenario 1, the percentage of changes in LSI for all
classes would increase. Based on scenario 2, the rangeland and agriculture would increase.
Other classes showed no significant trend in the LSI.

The value of PD in the GRB in all LULC classes except forest showed an increasing
trend during the study years. In contrast, the largest patch index (LPI) during the 30-year
period in most classes showed a decreasing trend. LPI for future conditions in scenario 1 for
forests, rangeland, and residential area classes reduced compared to 2020, in the contrary,
in scenario 2, a significant reduction was observed in the agriculture class compared to 2020.

AWMSI showed an increasing trend in agricultural land and residential area classes
and a decreasing trend in other classes during the 30 years study period. The changes of
this metric in future conditions showed, in scenario 1, a decreasing trend for forests and
residential areas and an increasing trend for rangeland and agricultural lands. In scenario 2,
however, this metric significantly decreased in the agriculture class by 2040.

ED decreased in the forests and increased in agriculture, rangeland, and residential
areas. The value of ED, however, increased in both scenarios for all classes by 2040.

PA during the study period increased in the residential areas and opposite results were
obtained in other classes. PA showed a decreasing trend in scenario 1 in forests, rangeland,
and residential areas and an increasing trend in agriculture, in contrast, scenario 2 showed
a decreasing trend only for agriculture.

Increases in NP during the study period were observed in all LULC categories other
than forest and rangeland, indicating a trend toward increased fragmentation, shape
irregularity, and complexity of patches in the LULC classes under consideration. The
influence of human activities on landscape change in the GRB is shown by a growing trend
of NP, LSI, and ED in the categories of agricultural, rangeland, and residential areas [43].

Zabihi et al. [43] noted that it is difficult to determine the dynamics of individual
landscape patches. Therefore, it is advised to carry out the landscape change detection in a
comprehensive spatial framework, which can be accomplished by using landscape change
processes as a crucial idea offered by landscape ecology.

The results obtained from the extraction of the landscape change processes during the
studied years for each LULC class in the GRB are presented in Figure 8 and Table 7.
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Table 7. Results of landscape metrics at the landscape level.

Basin Classes 1990–2000 2000–2010 2010–2020 1990–2020 2020–2040
(Scenario 1)

2020–2040
(Scenario 2)

Gorgan river

Forests attrition dissection attrition attrition dissection creation

Agriculture dissection creation aggregation creation creation dissection

Rangeland creation creation attrition dissection creation creation

Residential area creation creation attrition creation creation shift

Water body dissection creation attrition creation creation creation

The findings of the landscape change process showed that attrition, creation, and
dissection processes have taken place in the GRB during the study periods. In this regard,
during the 30-year period, the process of attrition in the forests, the process of dissection in
the rangeland, and the process of creation in agricultural lands and residential areas have
occurred (Table 7).

4. Discussion

According to the study results, deforestation, reduction in rangeland lands, and
development of agricultural lands and residential areas in GRB have occurred. Paudel and
Yuan [44] indicated similar results for deforestation and development of the urban areas
during the study period (1975–2006) in southern Minnesota in the USA.

The results showed that the highest conversion of classes in the study area during
the study period (1990–2020) is related to changing forests to 157.6 km2 of rangeland and
117.8 km2 of agricultural lands, rangeland to 510.9 km2 of agriculture, and agriculture to
75.4 km2 residential areas. Deforestation during these years was mostly concentrated in
the northeastern part of the GRB. This area is generally covered by high mountains with
shallow and fine-textured soils. Severe soil erosion in loess soils and destructive floods are
the most important factors leading to the destruction of forests in the northeastern part of
the basin.
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The human factor and population growth are the most important parameters affect-
ing the change in the LULC in GRB. This result is consistent with the study results of
Nor et al. [45] regarding the main cause of LULC change on a global scale. The contin-
uous growth of agricultural lands to meet the food demands of society is another force
causing land use change and deforestation. In this regard, one of the policies that can
be proposed in the agriculture sector is comprehensive, scientific, and principled man-
agement to increase agricultural efficiency and production, without increasing the area
under cultivation through modifying irrigation techniques and cultivation methods. Sim-
ilarly, Statuto et al. [46] detected decreasing forests and developing agricultural lands in
their studies.

LULC transfer potential modeling maps can be used to identify vulnerable and endan-
gered areas, and accordingly, preserve and regenerate the forest area through the adoption
of management measures such as the construction of enclosures and fencing against the
danger of destruction.

According to the results obtained from calculating the Cramer correlation coefficient
during the studied periods (1990–2010 and 2010–2020), the maximum value of the Cramer
coefficient during calibration (1990–2010) and validation (2010–2020) periods related to
distance from forests, which is due to its participation in various class conversion in the
studied basin. The minimum value of the Cramer correlation coefficient in GRB belongs
to the distance between the river and the road. Likewise, Joorabian Shooshtari et al. [30]
achieved similar results in their study. This may be due to LULC changes occurring in
the middle parts, which are away from rivers and roads. In addition to the above, the
variable of elevation with the Cramer coefficient of 0.33 plays an important role in modeling
transfer potential that has also been detected by Kavian et al. [12] in the Haraz Basin in
Mazandaran province, Iran. It should be noted that in recent years the construction of
summer houses and consequently the development of gardens in the northern aspects of the
Alborz Mountains justify the effect of elevation on transfer potential and class conversion.

In scenario 1, reducing the area of forests and increasing the area of agricultural lands,
rangelands, and residential areas indicate that the human factor would play an important
role in changing the LULC of the GRB in the future. Therefore, it is necessary to make the
proper decisions regarding LULC management through various measures such as forest
conservation, afforestation, conservation of irrigated lands as well as rangelands, limiting
agricultural development on the mountainous terrains, and construction of gardens in
upstream rangelands that would result in sustainable management of the basin. Whereas
in the second scenario (based on ecological potential), the area of forest, agricultural lands,
and rangeland uses with a change of 4.3, −100.9, and 96.6 km2 will reach 1427.6, 2259.3,
and 3569.5 km2.

The number of Patches (NP) in agricultural lands and residential areas in GRB
increased, which caused fragmentation in the classes. Analysis of NP alone provides
limited information due to the lack of consideration of cases such as area, distribution,
or density [47]. However, the mentioned metric along with other metrics of the landscape
can provide useful information [48].

Reducing Landscape Shape Index (LSI) in the forests showed a reduction of the spatial
heterogeneity in the landscape [10,49]. In this regard, it is necessary to take appropriate
measures to prevent the change in the configuration of the landscape in the classes directly
affected by humans. Increasing PD in agriculture (1990 to 2010) and rangeland (1990 to
2020) classes indicated the conversion of these classes into smaller patches. This indicates
an increase in fragmentation and spatial heterogeneity of agriculture and rangeland classes
in GRB, which is consistent with the study of [50,51]. The largest patch index (LPI) in most
classes was decreasing during the 30-year period, as also mentioned in the study of [52] in
Arasbaran forests in Iran. Their study showed fragmentation in most classes. According
to LULC predicted map, the increase in recreation and technological advancement that
expands road, water, electricity, gas, and other facilities in the mountainous areas can be
considered as the possible drivers of LPI reduction for forests, rangeland, and residential
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area. However, in scenario 2, a significant reduction was observed in an agriculture
class, which could be due to environmental considerations and class change based on the
ecological capability of the landscape.

The trend of AWMSI showed patch diversity, sensitivity to fragmentation, and com-
plexity of LULC patch boundary with high values [42,44]. The decreasing trend of AWMSI
in the classes indicated that the class patch is simpler with less spatial heterogeneity. The rea-
son for this may be attributed to the increase in the area and aggregation of the mentioned
LULC classes as well as residential area development in the study area.

Decreasing ED in forests and increasing ED in agriculture, rangeland, and residential
areas indicated the complexity of the shape of LULC patches during the study period.
Reducing ED by 31% in forest class during the 30-year study period revealed the simplifi-
cation of forest patch edges [18], which can be due to unauthorized changes in the class
patch edge.

According to the temporal determination of landscape change processes in GRB during
the study period, the type of change processes that occurred during those periods was
found to be different. The creation process underwent a change for the agricultural class.
Over a 30-year research period, the GRB’s decreasing trend of NP and PA resulted in an
attrition change process for the forest category. In our study periods for the agricultural
category in the GBR, the recognized land change processes were creation. For rangeland,
dissection was the examined alteration process from 1990 to 2020. The creation process of
change was identified in residential areas.

5. Conclusions

Analysis of the results of landscape change processes indicated fragmentation and
dissection of the landscape, especially in land uses under the direct human influence in the
GRB. Thapa and Murayama [53] showed how human activities and urban growth in Nepal
caused fragmentation in the landscape. Joorabian Shooshtari et al. [30], using Landscape
indices, demonstrated that due to human interference, the overall landscape mosaics
became heterogeneous, causing habitat fragmentation and increased shape complexity.

In this way, large patches became smaller due to human activities, indicating the
destructive status in the studied basin. Due to the significant area of rangeland in the study
area and the occurrence of the dissection process during the period 2000–2010, which is
the starting point in the cycle of change processes, as well as the occurrence of the creation
process for future conditions based on LULC predicted maps, taking protective measures
and preventing LULC changes seem to be necessary. In addition, the continuation of the
decreasing trend in the forest class could endanger the life of these valuable resources that
should be considered as a warning by water and land managers.
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Study Hustopeče. Eur. Countrys. 2013, 5, 52–70. [CrossRef]

18. Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy:
Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [CrossRef] [PubMed]

19. Shi, Y.; Xiao, J.; Shen, Y. Landscape pattern change and associated environmental implications in the Haihe River Basin, China.
ISPRS J. Photogramm. Remote Sens. 2008, 37, 569–574.

20. Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in
a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [CrossRef]

21. Kang, N.; Sakamoto, T.; Imanishi, J.; Fukamachi, K.; Shibata, S.; Morimoto, Y. Characterizing the historical changes in land use
and landscape spatial pattern on the oguraike floodplain after the Meiji Period. Intercult. Underst. 2013, 3, 11–16.

22. Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of
land-scape metrics as tools for watershed management, The case of an ungauged catchment in the Philippines. Land Use Policy
2018, 72, 116–128. [CrossRef]

23. Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and
area. Landsc. Ecol. 2004, 19, 435–455. [CrossRef]

24. Toutakhane, A.; Mofareh, M. Investigation and Evaluation of Spatial Patterns in Tabriz Parks Using Landscape Metrics. J. Urban
Environ. Eng. 2016, 10, 263–269. [CrossRef]

25. Saffari, A.; Karami, J. Investigation about the influence of land-cover and land use changes on soil erodibility potential, case
study: Gharesou, Gorganrood. J. Spat. Anal. Environ. Hazarts 2018, 5, 83–96. [CrossRef]

26. Fallah-Zazuli, M.; Vafaeinejad, A.; Alesheykh, A.A.; Modiri, M.; Aghamohammadi, H. Mapping landslide susceptibility in the
Zagros Mountains, Iran: A comparative study of different data mining models. Earth Sci. Inform. 2019, 12, 615–628. [CrossRef]

27. Jiang, W.; Chen, Z.; Lei, X.; Jia, K.; Wu, Y. Simulating urban land use change by incorporating an autologistic regression model
into a CLUE-S model. J. Geogr. Sci. 2015, 25, 836–850. [CrossRef]

28. Schulz, J.J.; Cayuela, L.; Echeverria, C.; Salas, J.; ReyBenayas, J.M. Monitoring land cover change of the dry land forest landscape
of Central Chile(1975–2008). Appl. Geogr. 2010, 30, 436–447.

http://doi.org/10.15666/aeer/1603_23692389
http://doi.org/10.12691/aees-1-6-5
http://doi.org/10.1016/j.ecolind.2013.12.013
http://doi.org/10.1007/s12517-013-1119-7
http://doi.org/10.1016/j.agee.2005.10.019
http://doi.org/10.1016/j.ecolind.2017.10.031
http://doi.org/10.12942/lrlr-2009-1
http://doi.org/10.1016/j.jaridenv.2015.08.007
http://doi.org/10.3390/ijgi7100408
http://doi.org/10.3923/jas.2009.513.520
http://doi.org/10.1007/s12665-017-6906-0
http://doi.org/10.3390/ijerph16020266
http://www.ncbi.nlm.nih.gov/pubmed/30669282
http://doi.org/10.1016/j.earscirev.2011.01.004
http://doi.org/10.3390/rs9050486
http://doi.org/10.2478/euco-2013-0004
http://doi.org/10.1007/s11356-022-18777-z
http://www.ncbi.nlm.nih.gov/pubmed/35089519
http://doi.org/10.1016/j.landurbplan.2010.10.004
http://doi.org/10.1016/j.landusepol.2017.12.042
http://doi.org/10.1023/B:LAND.0000030521.19856.cb
http://doi.org/10.4090/juee.2016.v10n2.263269
http://doi.org/10.29252/jsaeh.5.1.83
http://doi.org/10.1007/s12145-019-00389-w
http://doi.org/10.1007/s11442-015-1205-8


Sustainability 2022, 14, 13070 18 of 18

29. Pontius, R.G., Jr.; Cornell, J.D.; Hall, C.A.S. Modeling the spatial pattern of land-use change with GEOMOD2:application and
validation for CostaRica. Agric. Ecosyst. Environ. 2001, 85, 191–203.

30. Joorabian Shooshtari, S.; Gholamalifard, M. Scenario-Based Land Cover Change Modeling and Its Implications for Landscape
Pattern Analysis in The Neka Watershed, Iran. Remote Sens. Appl. Soc. Environ. 2015, 1, 1–19.

31. Joorabian Shooshtari, S.; Shayesteh, K.; Gholamalifard, M.; Azari, M.; López-Moreno, J.I. Land Cover Change Modelling in
Hyrcanian Forests, Northern Iran: A Landscape Pattern and Transformation Analysis Perspective. Cuad. Investig. Geogr. 2018, 44,
743–761. [CrossRef]

32. Mishra, V.N.; Rai, P.; Mohan, K. Prediction of land use changes based on land change modeler (LCM) using remote sensing:
A case study of Muzaffarpur (Bihar), India. J. Geogr. Inst. Jovan Cvijic SASA 2014, 64, 111–127. [CrossRef]

33. Reddy, C.S.; Singh, S.; Dadhwal, V.K.; Jha, C.S.; Rao, N.R.; Diwakar, P.G. Predictive modelling of the spatial pattern of past and
future forest cover changes in India. J. Earth Syst. Sci. 2017, 126, 8. [CrossRef]

34. McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer
Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: www.umass.edu/
landeco/research/fragstats/fragstats (accessed on 27 August 2022).

35. Romano, G.; Abdelwahab, O.M.; Gentile, F. Modeling Land Use Changes and Their Impact On Sediment Load In A Mediter-ranean
Watershed. Catena 2018, 163, 342–353. [CrossRef]

36. Yang, H.; Du, L.; Guo, H.; Zhang, J. Tai’an Land Use Analysis and Prediction Based on RS and Markov Model. Procedia Environ.
Sci. 2011, 10, 2625–2630.

37. Hamdy, O.; Zhao, S.A.; Salheen, M.; Eid, Y.Y. Analyses the Driving Forces for Urban Growth by Using IDRISIfiSelva Models
Abouelreesh—Aswan as a Case Study. Int. J. Eng. Technol. 2017, 9, 226–232. [CrossRef]

38. Ahmadi Nadoushan, M.; Soffianian, A.; Alebrahim, A. Predicting Urban Expansion in Arak Metropolitan Area Using Two Land
Change Models. World Appl. Sci. J. 2012, 18, 1124–1132.

39. Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing
Techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750. [CrossRef]

40. Rajaei, F.; Esmaili, S.A.; Salman, M.A.; Delavar, M.; Gholipour, M.; Massah, B.A. Prediction the most suitable of agricultural
zones in the tajan watershed using Multi Criteria Evaluation (MCE) approach. Town Ctry. Plan. Spring-Summer 2017, 9, 111–127.
(In Persian)

41. Mirzayi, M.; Riyahi Bakhtiyari, A.; Salman Mahini, A.; Gholamalifard, M. Investigating the land cover changes in Mazandaran
Province using landscape ecology’s metrics between 1984-2010. Iran. J. Appl. Ecol. 2013, 2, 37–55. (In Persian)

42. Hong, S.K. Linking Man and Nature Landscape Systems. In Landscape Ecological Applications in Man-Influenced Areas; Springer:
Dordrecht, The Netherlands, 2008; pp. 505–523.

43. Zabihi, M.; Moradi, H.; Gholamalifard, M.; Darvishan, A.K.; Fürst, C. Landscape Management through Change Processes
Monitoring in Iran. Sustainability 2020, 12, 1753. [CrossRef]

44. Paudel, S.; Yuan, F. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int. J. Appl. Earth Obs.
Geoinformation 2012, 16, 66–76. [CrossRef]

45. Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on green space structure. Ecol. Indic. 2017, 81,
274–284. [CrossRef]

46. Statuto, D.; Cillis, G.; Picuno, P. Analysis of the effects of agricultural land use change on rural environment and landscape
through historical cartography and GIS tools. J. Agric. Eng. 2016, 47, 28. [CrossRef]

47. Lausch, A.; Herzog, F. Applicability of Landscape Metrics for The Monitoring of Landscape Change: Issues of Scale, Resolution
and Interpretability. Ecol. Indic. 2002, 2, 3–15. [CrossRef]

48. Hassan, M.M. Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest
urbanized cities in Bangladesh. Remote Sens. Appl. Soc. Environ. 2017, 7, 69–83. [CrossRef]

49. Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting Landscape Metrics as Indicators of Spatial Hetero-geneity-
A Comparison Among Greek Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35.

50. Darvishi, A.; Fakheran, S.; Soffianian, A.; Ghorbani, M. Quantifying landscape spatial pattern changes in the Caucasian Black
Grouse (Tetrao Mlokosiewiczi) Habitat in Arasbaran biosphere reserve. Iran. J. Appl. Ecol. 2014, 2, 27–38.

51. Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China:
Applicability of the InVEST model. Landsc. Urban Plan. 2018, 182, 133–143. [CrossRef]

52. Darvishi, A.; Fakheran, S.; Soffianian, A. Monitoring landscape changes in Caucasian black grouse (Tetrao mlokosiewiczi) habitat
in Iran during the last two decades. Environ. Monit. Assess. 2015, 187, 443. [CrossRef] [PubMed]

53. Thapa, R.B.; Murayama, Y. Urban growth modeling of Kathmandu metropolitan region, Nepal. Comput. Environ. Urban Syst.
2011, 35, 25–34. [CrossRef]

http://doi.org/10.18172/cig.3279
http://doi.org/10.2298/IJGI1401111M
http://doi.org/10.1007/s12040-016-0786-7
www.umass.edu/landeco/research/fragstats/fragstats
www.umass.edu/landeco/research/fragstats/fragstats
http://doi.org/10.1016/j.catena.2017.12.039
http://doi.org/10.7763/IJET.2017.V9.975
http://doi.org/10.3390/ijgi4031750
http://doi.org/10.3390/su12051753
http://doi.org/10.1016/j.jag.2011.12.003
http://doi.org/10.1016/j.ecolind.2017.05.031
http://doi.org/10.4081/jae.2016.468
http://doi.org/10.1016/S1470-160X(02)00053-5
http://doi.org/10.1016/j.rsase.2017.07.001
http://doi.org/10.1016/j.landurbplan.2018.10.011
http://doi.org/10.1007/s10661-015-4659-3
http://www.ncbi.nlm.nih.gov/pubmed/26088757
http://doi.org/10.1016/j.compenvurbsys.2010.07.005

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection and Preparation 
	Land Use Land Cover (LULC) Classification 
	Land Use Land Cover (LULC) Calibration and Validation 
	Prediction of LULC Changes by 2040 Based on the Current Change Trend Scenario 
	Prediction of LULC Future Changes Based on the Land Ecological Capability 
	Preparation of Map of Limitations and Criteria for Standardization and Weighting 
	Combining Criteria by Weighted Linear Combination (WLC) Method 
	Extraction of Landscape Metrics 

	Results 
	Analysis of LULC Maps 
	Land Use Land Cover (LULC) Calibration and Validation 
	Prediction of LULC Map by 2040 Based on the Current Change Trend Scenario (Scenario 1) 
	Prediction of LULC Map by 2040 Based on the Landscape Ecological Capability Scenario (Scenario 2) 
	Calculation of Metrics and Extraction of Landscape Change Processes 

	Discussion 
	Conclusions 
	References

