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Abstract: Evaluating satellite-based products is vital for precipitation estimation for sustainable
water resources management. The current study evaluates the accuracy of predicting precipita-
tion using four remotely sensed rainfall datasets—Tropical Rainfall Measuring Mission products
(TRMM-3B42V7), Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
ral Networks Climate Data Records (PERSIANN-CDR), Cloud Classification System-Climate Data
Record (PERSIANN-CCS-CDR), and National Centers for Environmental Prediction (NCEP)-Climate
Forecast System Reanalysis (CFSR)—over the Haraz-Gharehsoo basin during 2008–2016. The bench-
mark values for the assessment are gauge-observed data gathered without missing precipitation data
at nine ground-based measuring stations over the basin. The results indicate that the TRMM and
CCS-CDR satellites provide more robust precipitation estimations in 75% of high-altitude stations
at daily, monthly, and annual time scales. Furthermore, the comparative analysis reveals some
precipitation underestimations for each satellite. The underestimation values obtained by TRMM
CDR, CCS-CDR, and CFSR are 8.93 mm, 20.34 mm, 9.77 mm, and 17.23 mm annually, respectively.
The results obtained are compared to previous studies conducted over other basins. It is concluded
that considering the accuracy of each satellite product for estimating remotely sensed precipitation is
valuable and essential for sustainable hydrological modelling.

Keywords: satellite-based products; gauge-observed data; TRMM; CDR; CCS-CDR; CFSR

1. Introduction

Estimating precipitation is vital for sustainable water resource management, hydro-
logical modelling, and rainfall-trigged hazard forecasting [1]. For instance, fine-grained
hydrological models require the reliable spatiotemporal distribution of precipitation, as one
of the most impactful hydroclimatic input variables [2–4]. Rainfall variations significantly
affect topographic and climatic conditions and water resource systems [5]. Furthermore,
precipitation is the most significant section of the water cycle balance [6] and the primary
input of hydrological models, and these data can be used to evaluate water resource man-
agement and climate change [7]. Thus, estimating precipitation helps simulate hydrological
cycles in a study area [8].

Adopting a reliable method for estimating precipitation has always been an important
and controversial issue. In essence, three major approaches for measuring/estimating
precipitation are (1) gauge-observed data, (2) remotely sensed data, and (3) weather radar
observations [9]. Among these methodologies, obtaining high-quality ground precipitation
data for hydrological modelling is challenging [10,11], and hence, remotely sensed rainfall
products are far more preferred for hydrometeorological applications.
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One of the most significant advantages of satellite-based data against observed data
is broader coverage worldwide. Comparing the remotely sensed data with ground obser-
vations is necessary for assessing the accuracy of estimations obtained by satellite-based
rainfall data [9]. The remotely sensed rainfall estimates have exhibited strong rain-rate
dependency [12]. A dense network of gauges and ground stations is essential to obtain
acceptable precipitation data and climatic conditions [13,14]. The rainfall data are obtained
from a terrain gauge-observed precipitation network; these inputs are always challenging
because of the uneven and sparse distribution of in situ precipitation stations, limited time
scales and retrieval errors [15–19]. In general, since there are no rain gauges in highlands
and impassable areas, the accurate estimation of rainfall data is essential for compensat-
ing for the lack of ground gauge-observed data [20,21]. The dispersion of precipitation
gauges, especially in inaccessible and mountainous areas, causes inaccurate hydrological
forecasts [22]. Therefore, the operation of remotely sensed products must be considered
for a specific and peculiar region before using these data [23]. Since meteorological and
hydrometer stations do not exist in many areas, including highlands and impassable areas,
the importance of the precise evaluation and estimation of remote-sensing rainfall data and
the realisation of the water cycle by using remote-sensing and satellite-based precipitation
methods has become more visible. As a result, estimating precipitation using remotely
sensed data has been of utmost importance, mainly where ground-based measuring stations
are scarce.

The rapid growth of remote sensing could help generating high-quality satellite-
based precipitation data [24]. High-resolution satellite-based products are now frequently
employed for hydrological modelling. Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TEMPA) [25], Climate Prediction Center (CPC) morphing
algorithm (CMORPH) [26], Tropical Applications of Meteorology using SATellite (TAM-
SAT) [27,28], National Centers for Environmental Prediction (NCEP)-Climate Forecast Sys-
tem Reanalysis (CFSR), the Precipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) [29–31], Precipita-
tion Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud
Classification System-Climate Data Record (PERSIANN-CCS-CDR) [32], and African Rain-
fall Climatology [33] are some satellite-based products widely used in precipitation studies.

Among various satellite-based products for precipitation analysis, the TRMM-3B42V7,
PERSIANN-CDR, and PERSIANN-CCS-CDR are the most broadly used ones as they pro-
vide the best extensive performance owing to their high temporal and spatial resolution.
Moreover, to better compare precipitation data, reanalysis-based data (CFSR) are chosen.
The background literature has reported improvement in these versions compared to the pre-
vious versions. Few studies have evaluated the accuracy and performance of satellite-based
precipitation products against gauge-observed data in Iran. According to the literature,
Darand et al. [34] assessed the performance of TEMPA estimation in Iran, concluding that
precipitation’s spatial and temporal variations are well captured. Javanmard et al. [35]
employed a high-resolution gridded rainfall dataset by satellite precipitation estimates of
TRMM-3B42 over Iran. The results illustrated that the TRMM products agree well with the
benchmark rainfall pattern. Despite previous studies, further investigations are required
to compare satellite-based precipitation datasets with gauge-observed data, especially in
regions with scarce ground-based observation data.

This study aims to excel at the inter-comparison of the remote-sensing products by
analysing the error characteristics of TRMM, CDR, CCS-CDR, and CFSR precipitation
products at the Haraz-Gharehsoo basin. This area is one of the most critical watersheds in
Iran as it is constantly exposed to floods and erosion. Moreover, the primary meteorological
phenomenon in the area under investigation is rainfall, which can cause natural disasters.
This study measures precipitation phenomena in some critical coordinates of ground
stations to determine their remotely sensed precipitation product’s accuracy against gauge-
observed data and follows these steps: First, the precipitation products are evaluated
using several indicators based on the proper temporal scale in this basin. Subsequently,



Sustainability 2022, 14, 13051 3 of 16

a correlation method and modified data are developed to improve the quality of satellite
precipitation products and the error decomposition of TRMM products, evaluate statistical
parameters for the basin in temporal and spatial scales, consider an error-component
method, and finally choose the best satellite-based products for the Haraz-Gharehsoo basin.

2. Materials and Methods
2.1. Study Area

The Caspian basin is located in the north of Iran and has seven sub-basins, one of
which is Haraz-Gharehsoo. It is located on the southern shores of the Caspian Sea and
Gorgan Bay. The Haraz River and all of the rivers located in the area are known as the
Haraz-Gharehsoo basin. The rivers are located at the northern foot of the Central Alborz
mountains and extend from Haraz (Mahmoodabad) to Bandar-E-Gaz. The total area of
the basin is 18644 km2, and the geographical coordination is between 51◦26′ E to 54◦44′ E
and 35◦ 45′ N to 36◦10′ N. The geographical features and the spatial distribution of the
nine stations of the Haraz-Gharehsoo basin are shown in Figure 1. The western part of this
basin has a humid Mediterranean climate, whereas the eastern region has a semi-arid and
humid climate.
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Figure 1. The spatial distribution of gauge-observed stations and a topographic map of the Haraz-
Gharehsoo basin.

Table 1 shows the average precipitation on daily, monthly, and annual scales. The
mean annual temperature is 15.5 ◦C and the mean annual precipitation is 597.3 mm, as
summarised in Table 1. The geographical characteristics of the Haraz-Gharehsoo basin are
shown in Table 2.

Table 1. Average precipitation amounts on daily, monthly and annual scales in the Haraz-Gharehsoo
basin (unit: mm).

Datasets Daily Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Annual

Gauge-Observed 1.64 55.1 70.7 62.5 32.3 20.4 29.6 26.9 32.4 61.3 78.8 69.8 57.5 597.3
TRMM 1.38 45.6 59.1 48.5 34.1 24.1 23.8 22.4 26.3 52.7 52.2 63.3 44.6 496.7

CDR
CFSR

CCS-CDR

0.96
1.12
1.31

34.9
34.7
54.2

43.2
40.9
65.7

39.2
42.6
60.7

31.6
33.9
48.9

18.7
32.7
28.9

12.2
29.1
13.5

9.7
15.3
3.5

10.8
19.9
4.2

28.7
20.1
25.2

44.5
40.5
54.9

39.9
46.7
61.7

35.9
34.1
48.9

349.3
390.5
470.3
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Table 2. Geographical characteristics of the Haraz-Gharehsoo basin.

Name Longitude (◦E) Latitude (◦N) Elevation (m)

Sari 52.98 36.53 23
Baladeh 51.8 36.2 2120
Galugah 53.83 36.73 −10

Gharakhil 52.77 36.45 14.7
Kiyasar 53.54 36.24 1294.3
Alasht 52.84 36.07 1805
Amol 52.38 36.46 23.7

Polsfid 53.08 36.13 610
Sari (Dasht-E- Naz airport) 53.19 36.63 16.7

2.2. Data Sets
2.2.1. Basic and Gauge-Observed Data

The primary datasets used in this study are the daily meteorological and hydrometeo-
rological data (2008–2016) obtained from the Iran Meteorological Organization. These data
include average relative humidity, average temperature, daily minimum and maximum
temperature and the daily, monthly, and annual precipitation data of nine meteorological
stations (https://data.irimo.ir/ accessed on 1 April 2022). There are no missing data dur-
ing the nine-year study period. To access reliable results, nine stations were chosen with
different topographical conditions. All the gauges are distributed homogeneously in the
Haraz-Gharehsoo basin, which is helpful for rainfall detection. The 30 m resolution Digital
Elevation Model (DEM) is downloaded from https://earthexplorer.usgs.gov/ accessed on
1 April 2022.

2.2.2. Remote Sensing Precipitation Data

The TRMM is a collaboration between the National Aeronautics and Space Adminis-
tration (NASA) and Japan’s National Space Development Agency (JAXA) to observe and
study tropical and subtropical precipitation. The TRMM satellite has been in operation
since 1998. This satellite is broadly used with perfect performance because of the high
spatial and temporal resolution and dependable inversion algorithm. The TRMM satellite is
available for use 10 to 15 days after the end of each month. The TRMM provides important
precipitation information using several space-borne instruments to increase the realisation
of interaction between clouds, precipitation, and water vapour. The spatial and temporal
resolutions of TRMM are 0.25◦ and daily, respectively. Moreover, the TRMM’s coverage is
global, ranging from 50◦ S to 50◦ N (http://disc.gsfc.nasa.gov/ accessed on 1 April 2022).

The PERSIANN-CDR provides daily rainfall estimates at a spatial resolution of
0.25◦ in the latitude band 60◦ S–60◦ N. These data are available from March 2000 to
the present (http://chrsdata.eng.uci.edu accessed on 1 April 2022). As explained by the
United States National Research Council Committee, CDR is a time series of measure-
ments of sufficient length, consistency, and continuity measurements to determine climate
change and variability. NASA and the National Oceanic Atmospheric Administration
(NOAA) have sponsored operational and grant programs to create CDRs. PERSIANN-
CCS-CDR provides 3-hourly precipitation estimates at a spatial resolution of 0.04◦ in the
latitude band 60◦ S–60◦ N. The PERSIAN-CDR and PERSIANN-CCS-CDR products are
available on these websites, http://chrsdata.eng.uci.edu accessed on 1 April 2022 and
http://ncei.noaa.gov/products/climate-data-records accessed on 1 April 2022.

The CFSR data is a reanalysis product developed by NOAA that has global coverage.
This product is available from 1979 to 2014 and the spatial and temporal resolution of
CFSR is 38 km and daily, respectively. CFSR data are available at https://cfs.ncep.noaa.
gov/cfsr/downloads/ accessed on 1 April 2022. A list of the details of satellite rainfall
data (TRMM-3B42V7, PERSIANN-CDR, PERSIANN-CCS-CDR, and CFSR) is shown in
(Table 3).

https://data.irimo.ir/
https://earthexplorer.usgs.gov/
http://disc.gsfc.nasa.gov/
http://chrsdata.eng.uci.edu
http://chrsdata.eng.uci.edu
http://ncei.noaa.gov/products/climate-data-records
https://cfs.ncep.noaa.gov/cfsr/downloads/
https://cfs.ncep.noaa.gov/cfsr/downloads/
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Table 3. Data description and characteristics of rainfall datasets.

Datasets Name Spatial
Resolution

Temporal
Resolution Period Coverage

TRMM-3B42V7 TRMM 0.25◦ Daily 2008–2016 50◦ S–50◦ N
PERSIANN-CDR

NCEP-CFSR
PERSIANN-CCS-CDR

CDR
CFSR

CCS-CDR

0.25◦

38 km
0.04◦

Daily
Daily

3-hourly

2008–2016
2008–2014
2008–2016

60◦ S–60◦ N
labolG

60◦ S–60◦ N
Gauge-Observed OBS Point Daily 2008–2016 Haraz-Gharehsoo Basin

2.3. Methodology
2.3.1. Data Preparation and Technical Framework

In this study, the gauge-observed data with no missing values are considered for
testing the satellite-based products. Daily data create monthly and annual precipitation
data for assessing the performance of precipitation products [1]. To better evaluate remotely
sensed rainfall data, the nearest neighbour of the gridded data is chosen to fit the data
and interpolate the gridded data from the remote sensing data grids to determine the
weather station’s location. CCS-CDR data are obtained from equations 9 to 11. In the
first step, the data values are compared to the gauge-observed data. The second step is to
assess the rainfall dataset and examine the utilisation of the satellite-based rainfall dataset
in the specific points against gauge-observed data. Afterwards, some statistical metrics
are exploited in spatial and temporal periods in the Haraz-Gharehsoo basin to check the
accuracy of the satellite-based data. In the subsequent stage, the TRMM data errors are
identified and corrected using a correlations model between TRMM and OBS data from
April to September, while the precision of data is considered by the error-component
method. For more scrutiny of the accuracy evaluation of satellite-based data, the statistical
metrics are calculated for daily precipitation intensity (PI) [36].

2.3.2. Evaluation of Statistical Metrics

Some of the statistical metrics that are used to consider the satellite-based accuracy in
the Haraz-Gharehsoo basin include Mean Error (ME), Root Mean Square Error (RMSE),
Percentage Bias (PBIAS), Correlation Coefficient (CC), Probability of Detection (POD), False
Alarm Ratio (FAR), Critical Success Index (CSI) [37,38], and Bias in Detection (BID) [39].
The statistical metrics used in this study are shown in Table 4. The optimal values of
ME, RMSE, PBIAS and FAR are 0, and the optimal values of CC, POD, CSI, BID and HSS
are 1 [40]. The BID represents the inclination to overestimate (BID > 1) or underestimate
(BID < 1) [39].

Table 4. Statistical metrics used for evaluating satellite-based precipitation estimations.

Number Abbreviation Definition Unit Function Description

(1) ME Mean Error mm ME = 1
n ∑n

i=1(Si−Gi) Gi: Gauge-observed precipitation.

(2) RMSE Root Mean Square
Error mm RMSE =

√
1
n ∑n

i=1(Si −Gi)2 Si: Precipitation that is driven by
satellite-based products.

(3) PBIAS Percentage Bias % PBIAS =
∑n

i=1(Si−Gi)

∑n
i=1 Gi

× 100%
H: Correct detection of the

observed rainfall.

(4) CC Correlation
Coefficient CC =

∑n
i=1(Gi−G)(Si−S)√

∑n
i=1(Gi−G)2 .

√
∑n

i=1(Si−S)2

M: The observed rainfall is not
detected.

(5) POD Probability Of
Detection POD = H

H+M
F: The rainfall is detected but not

observed.
(6) FAR False Alarm Ratio FAR = F

H+F G= 1
n ∑n

i=1 Gi
(7) CSI Critical Success Index CSI = H

H+M+F S= 1
n ∑n

i=1 Si

(8) BID Bias In Detection BID = H+F
H+M

rPERSIANN−CCS: 30 min/3-hourly
PERSIANN-CCS estimate (0.04◦

spatial resolution)
i: Latitude of the 30 min/3-hourly
PERSIANN-CCS at 0.04◦ × 0.04◦.
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Table 4. Cont.

Number Abbreviation Definition Unit Function Description

(9) RCum-PERSIANN-CCS
(i’, j’)

Monthly 2.5◦

aggregated
PERSIANN-CCS

estimate

RCum-PERSIANN-CCS (i’, j’) =

∑nd
0 ∑nh

0

(
∑62

0 ∑62
0 [rPERSIANN−CCS(i, j]

)
≥ thd

j: Longitude of the
30 min/3-hourly PERSIANN-CCS

at 0.04◦ × 0.04◦.

(10) w (i’, j’)
Bias adjustment
weights for each

monthly 2.5◦ grid cell

w (i’, j’) = RCDR (i’, j’)/R Cum-PERSIANN-CCS (i’, j’)
0 ≤ w ≤ 2.5

i’: Latitude of the aggregated
PERSIANN-CCS at 2.5◦ × 2.5◦.

(11)
PERSIANN-CCS-

CDR
(i, j)

Final PERSIANN-
CCS-CDR
product

PERSIANN−CCS−CDR (i, j) =
w(i, j)× rPERSIANN−CCS(i, j)

j’: Longitude of the aggregated
PERSIANN-CCS at 2.5◦ × 2.5◦.

3. Results and Discussion
3.1. Comparison and Evaluation of Satellite-Based Precipitation Data against
Gauge-Observed Products

The average remotely sensed precipitation values are calculated for different time
scales (i.e., daily, monthly, and annual) at nine stations in the Haraz-Gharehsoo basin for
the 9-year period from 2008 to 2016. The coordinates of ground and satellite-based stations
are considered precisely at the same points to determine the precision of remotely sensed
precipitation products against gauge-observed stations. The average monthly and yearly
precipitation data calculated for nine stations are shown in Figure 2. As shown, the rainfall
events have been well captured by TRMM and CCS-CDR, and the values of both remote
sensing rainfall products follow almost the same precipitation trend as the OBS data on
the monthly scale. However, the plot demonstrates that underestimations exist with the
gauge-observed data, which has consistency with other studies [41].
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stations with solid lines and during the year with dashed lines.

According to Figure 2, the CDR and CFSR satellite is not very suitable for the Haraz-
Gharehsoo basin. To be more specific, the CDR precipitation data has the poorest per-
formance on the monthly scale among the other satellites (matching results are found
in [42]). All of the remote-sensing datasets have underestimations [43]. Moreover, TRMM,
CDR, CCS-CDR, and CFSR have underestimated precipitation data in this basin, but the
underestimation of CDR is greater than the other products. The underestimation of the
average precipitation data by TRMM, CDR, CCS-CDR, and CFSR satellites on the monthly
scale is 8.93 mm, 20.34 mm, 9.77 mm, and 17.23 mm, respectively. Additionally, the trend of
TRMM data is more similar to gauge-observed data. The similarity of the trend of TRMM
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and CCS-CDR rainfall data is more visible on the monthly and annual scales. Overall,
the satellite rainfall data demonstrated higher adaptability with gauge-observed data in
producing monthly precipitation.

The adaptability of all the rainfall products increases from daily to monthly and annual
resolutions, which is compatible with previous studies [44]. One of the reasons that the
TRMM data yielded more robust estimations than CDR is that the former has Special Sensor
Microwave Imager/Sounder (SSMIS) sensor data that provides more high-quality passive
microwave data. This significantly improves the accuracy of TRMM precipitation [3].

The cumulative diagram of monthly precipitation data for OBS, TRMM, CDR, CCS-
CDR, and CFSR data from 2008 to 2016 in the Haraz-Gharehsoo Basin is shown in Figure 3.
The slope of the curve indicates the estimated deviation of the total cumulative monthly
precipitation. According to Figure 3, the deviation of CDR precipitation data against OBS
is more than the other datasets. As of May 2013, CDR, TRMM, CCS-CDR, and CFSR were
underestimated by 1976.8 mm, 1080 mm, 1190 mm, and 1761 mm, respectively. Generally,
TRMM has a small degree of deviation against OBS.
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As shown in Table 1, the difference in average daily precipitation between the TRMM
and gauge-observed data is less than CDR, CCS-CDR, and CFSR. The difference in average
daily precipitation between TRMM, CDR, CCS-CDR, and CFSR against gauge-observed
data is 0.26 mm, 0.68 mm, 0.33 mm, and 0.52 mm, respectively. According to the data in
Table 1, TRMM precipitation products have a minor difference with gauge-observed data
from April to September, and the differences between the average annual precipitation of
TRMM, CDR, CCS-CDR, and CFSR against gauge-observed data are 100.6 mm, 248 mm,
127 mm, and 206.8 mm, respectively.

The CC, RMSE, ME, and PBIAS values were calculated for different stations and PI
levels at different time scales. The CC and RMSE for TRMM, CDR, CCS-CDR, and CFSR
products in the Haraz-Gharehsoo basin are illustrated in Figure 4. According to Figure 4a,
CC and RMSE values for TRMM in the Haraz-Gharehsoo Basin on a daily scale are 0.71
and 0.65 mm, respectively. As shown in Figure 4b, the corresponding values are 0.52 and
0.68 mm for the CDR satellite on a daily scale. As demonstrated in Figure 4c,d, the CC
and RMSE values for CCS-CFSR, and CFSR values are 0.71, 0.75 mm, 0.50, and 0.53 mm,
respectively. According to Figure 4, TRMM satellite-based data perform better than the
data on a daily scale.
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Figure 4. Comparison of the average precipitation metrics for satellite-based data at daily, monthly,
and annual time scales in the Haraz-Gharehsoo basin: (a) TRMM, (b) CDR, (c) CCS-CDR, and
(d) CFSR.
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Table 5 illustrates the accuracy of the rainfall detection for each satellite based on a
daily scale from the 1st of January 2008 to the 31st of July 2014. The POD demonstrates the
ability of rainfall data to precisely record the actual precipitation event. The POD value
of TRMM is the maximum, one being 0.51, followed by CDR, where the POD value is
0.39. FAR illustrates that the precipitation data wrongly predict the actual rainfall event.
Moreover, CSI shows a false prediction of precipitation and reflects the capability of the
rainfall data to detect actual precipitation occurrence. The BID shows the tendency to
underestimate (BID < 1) or overestimate (BID > 1) the number of rainfall events, and the
optimal value of BID is 1. The results demonstrate that the TRMM can detect rainfall
occurrence better than others. The FAR, CSI, BID, and POD of the TRMM are 0.42, 0.71,
0.82, and 0.51, respectively.

Table 5. Precipitation detection capability in the Haraz-Gharehsoo basin.

Satellite POD FAR BID CSI

TRMM 0.51 0.42 0.82 0.71
CDR 0.39 0.25 0.93 0.54

CCS-CDR 0.45 0.34 0.86 0.59
CFSR 0.42 0.17 0.95 0.53

In general, both the TRMM and CCS-CDR satellites are more successful at high
altitudes rather than the other satellites. Despite the different magnitudes of PBIAS in each
station, the CDR satellite-based products demonstrated considerable underestimations in
the study area. In contrast, TRMM products are more reliable in the Haraz-Gharehsoo basin.
To further investigate the quality of satellite-based data in the Haraz-Gharehsoo basin, they
were divided into six groups according to the daily PI. The classification results are depicted
in Figure 5 from 2008 to 2016. The results of CDR satellites are overestimated in [0, 2) and
[2, 5) and underestimated in other PI ranges. In addition, the TRMM performs well in a
range of [0, 2) and has a similar trend to the observed data in other ranges. However, the
precipitation amounts have been underestimated by the TRMM in all PI ranges.
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The TRMM underestimations in the PI range of [30, 100) related to heavy precipitation
are higher than those of other PI intervals. The TRMM underestimation value in the range
of [30, 100) was 40.8 mm. These products cannot demonstrate the ability of precipitation
detection directly, while the CCS-CDR performs well with heavy precipitation [30, 100).
So, to further explore the precision of remotely sensed rainfall data, the CC, RMSE, ME,
and PBIAS values are calculated under different precipitation intensities (PI groups) for
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all satellites and are shown in Table 6. The correlation between OBS data and TRMM
products in [5, 10) with CC = 0.876 and RMSE = 0.336 mm is higher than in the other
intervals. Obviously, RMSE is enhanced by increasing the precipitation intensity. On the
other hand, the CDR products have the weakest performance in [30, 100) by CC = 0.004
and RMSE = 4.625 mm. The CCS-CDR has the best CC with heavy precipitation [30, 100);
this CC value is 0.957, while for [0, 2) it has the least RMSE, equal to 0.045. According to
Table 7, for the higher precipitation data range (≥0.1), the CCS-CDR performs better than
the TRMM. Therefore, correcting the satellite data error based on the highest correlation
between the satellite-based data is necessary.

Table 6. Statistical criteria of satellite-based precipitation datasets against observed data under
various PI groups.

PI (mm/Day)
TRMM CDR

CC RMSE (mm) ME (mm) PBIAS (%) CC RMSE (mm) ME (mm) PBIAS (%)

[0,2) 0.060 0.018 −0.017 −39.054 0.122 0.028 0.061 133.059
[2, 5) 0.709 0.192 −0.404 −17.293 0.002 0.200 0.945 70.429

[5, 10) 0.876 0.336 −0.778 −11.598 0.119 0.345 −1.083 −16.125
[10, 20) 0.867 0.701 −2.274 −16.549 0.101 1.067 −7.702 −56.045
[20, 30) 0.795 1.205 −5.550 −23.398 0.457 2.225 −20.755 −87.213
[30, 100) 0.623 3.277 −14.960 −33.843 0.004 4.625 −43.332 −98.024

CCS−CDR CFSR
CC RMSE (mm) ME (mm) PBIAS (%) CC RMSE (mm) ME (mm) PBIAS (%)

[0,2) 0.032 0.045 −0.258 −43.869 0.007 0.062 0.156 22.691
[2, 5) 0.377 0.369 −1.854 −12.483 0.353 0.315 2.922 28.646

[5, 10) 0.564 0.257 −0.212 −5.816 0.350 0.682 6.290 7.290
[10, 20) 0.687 0.153 −1.864 −14.267 0.349 1.320 12.010 26.576
[20, 30) 0.886 0.098 −6.427 −26.364 0.467 2.148 18.492 33.178

[30, 100) 0.957 0.754 −8.733 −37.125 0.397 8.961 21.621 51.178

Table 7. Comparison of observed data and satellite data at high and low precipitation.

TRMM ≥ 0.1 mm/h TRMM < 0.1 mm/h

OBS ≥ 0.1 mm/h 2471 (8.35%) 2968 (10.03%)
OBS < 0.1 mm/h 1030 (3.48%) 23123 (78.14%)

OBS ≥ 0.1 mm/h
CDR ≥ 0.1 mm/h CDR < 0.1 mm/h

2638 (8.92%) 3132 (10.58%)
OBS < 0.1 mm/h 866 (2.93%) 22956 (77.57%)

CCS-CDR ≥ 0.1 mm/h CCS-CDR < 0.1 mm/h
OBS ≥ 0.1 mm/h 2856 (9.65%) 3223 (10.89%)
OBS < 0.1 mm/h 923 (3.12%) 22590 (76.34%)

CFSR ≥ 0.1 mm/h CFSR < 0.1 mm/h
OBS ≥ 0.1 mm/h 2722 (12.58%) 2465 (11.39%)
OBS < 0.1 mm/h 416 (1.93%) 16033 (74.1%)

3.2. Error Decomposition of TRMM Products

By virtue of the good performance of the TRMM data, especially from April to Septem-
ber, the satellite data were corrected by creating a correlation model between TRMM and
OBS data. To correct the satellite-based data errors, in the first step, a scatter plot was drawn
between the satellite-based products and the OBS in the wet season in the Haraz-Gharehsoo
basin. After drawing the scatter plot, the linear fit between satellite-based products and
OBS was obtained as the trend line equation. In the next step, the satellite-based datasets
were corrected according to the correlation model. The scatter plot of the satellite-based and
OBS precipitation products is shown in Figure 6a–c. Thus, the error of the satellite-based
datasets is minimised for the Haraz-Gharehsoo basin. The data obtained by error correction
were called corrected data. In order to evaluate the quality of the corrected datasets, the
CC, ME, RMSE, and PBIAS values were computed on daily, monthly, and annual scales
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for the Haraz-Gharehsoo basin, and the corresponding results are depicted in Figure 7a–c.
Due to obtaining this method for correcting satellite-based products, the accuracy of the
data improved significantly. The results of the satellite-based corrected data in Figure 7a–c
demonstrate that the PBIAS of the corrected data for TRMM, CDR, and CCS-CDR decreased
by 47.9%, 43.3%, and 38.6% from 2008 to 2016 on a daily scale, respectively.
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Figure 6. Scatter plot of the satellite-based and OBS precipitation products from April to September
in the Haraz-Gharehsoo basin.
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Figure 7. Comparison of the average precipitation metrics for (a) TRMM-CORRECTED, (b) CDR-
CORRECTED, and (c) CCS-CDR-CORRECTED at different time scales in the Haraz-Gharehsoo basin.

The results illustrate that the data quality is enhanced and, consequently, the results
are better than that of the TRMM, CDR, and CCS-CDR datasets. According to Figure 8 and
Table 1, the average annual precipitation for TRMM, CDR, CCS-CDR, and CFSR products
was underestimated by 16.85%, 41.52%, 21.26%, and 34.62% on an annual scale, respectively.
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Figure 8. The average annual precipitation products in each station from 2008 to 2016.

Many factors affect the accuracy of satellite-based data, such as topography, altitude,
geographical features, precipitation, and geological factors [45]. According to Figure 8, the
TRMM performed poorly at Baladeh station in the southwest of the Haraz-Gharehsoo basin
with an altitude of 2120 m and overestimated the average annual precipitation in the station.
Because the satellites cannot detect some low-level clouds due to large cloudage and the
complexity of the terrain in high-altitude regions, their retrieval accuracy is affected [46].
Estimations from satellite products can be used in high-altitude zones or areas with sparse
stations [47].

The best estimation for the TRMM products was achieved at the Alasht station with
an altitude of 1805 m. The average annual precipitation is the closest value to the observed
data. The rate of underestimation at the Alasht station is only 8%. The CDR satellite-based
products estimated the average annual precipitation better than the TRMM at Baladeh,
while it underestimated the values at other stations. As shown in Figure 8, the TRMM and
CCS-CDR performed better than the CDR and CCS on an annual scale. The TRMM per-
formed relatively well in 75% of high-altitude points, such as Kiyasar, Alasht, and Polsefid,
while only the Baladeh station has a 134% overestimation against the observed data.

4. Conclusions

This study evaluated the TRMM, CDR, CCS-CDR and CFSR satellite-based data in
the Haraz-Gharehsoo basin. For this purpose, the position of the ground-based measuring
stations at different altitudes was considered better to assess the performance of satellite
products against gauge observations. The accuracy of the estimated data was evaluated
by adopting statistical criteria, including CC, ME, RMSE, PBIAS, FAR, CSI, and BID at the
whole basin and at each station on daily, monthly and annual time scales. Comparing the
statistical metrics concluded that the CDR and CFSR satellite data are not helpful for the
Haraz-Gharehsoo basin, as the corresponding data suffered a significant underestimation
from 2008 to 2016. Therefore, the TRMM products were further investigated in light of
finding an acceptable correlation against OBS. As a result, the data errors of satellite-based
products were corrected and decomposed to provide corrected data. Considering the
statistical metrics of corrected satellite-based data revealed that the improved data have
fewer errors than that of the TRMM, CDR, and CCS-CDR. The main findings are as follows:

(1) Four remote sensing products evaluated in this study generally have an underestima-
tion trend, while the TRMM and CCS-CDR products have better performance.

(2) The rainfall amounts of satellite-based products were examined precisely at the
coordinates of gauge-observed stations by interpolating the data to assess the accuracy
of satellite-based data better.
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(3) Four of the TRMM, CDR, CCS-CDR, and CFSR products underestimate precipitation
on daily, monthly, and annual scales, while the underestimations of CDR and CFSR
are more remarkable than that of TRMM and CCS-CDR.

(4) Comparing the satellite products showed that the former performed better than the
latter from April to September.

(5) By constructing the decomposition data error model, the CC, ME, RMSE, and PBIAS
became closer to optimal values, especially on daily and monthly scales.

(6) On the diurnal scale, TRMM has the best precision for detecting rainfall occurrences,
with CSI 0.71, followed by CCS-CDR, CDR, and CFSR. Moreover, TRMM, with a POD
of 0.51, has a powerful capability to make reliable rainfall estimations.

(7) By comparing the precipitation intensity for TRMM and other products, it was found
that the TRMM data has optimal statistical values when the PI range is [5, 10) by
CC = 0.876 and RMSE 0.336 mm. Additionally, the worst performance belongs to
CDR products in the PI range of [20, 30) by CC = 0.004 and RMSE = 4.625. This implies
that the TRMM estimation is closer to OBS.

(8) CCS-CDR provides more accurate results than CDR products.

Due to the effect of multiple factors, such as topographic and climatic conditions on
satellite-based products in different regions, it is suggested that the accuracy of satellite-
based products is assessed in each region in favour of obtaining more robust results.
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