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Abstract: The efficiency of land transportation contributes significantly to determining a country’s
economic and environmental sustainability. The examination of land transportation efficiency en-
compasses performance and environmental efficiency to improve system performance and citizen
satisfaction. Evaluating the efficiency of land transportation is a vital process to improve operation
efficiency, decrease investment costs, save energy, reduce greenhouse gas emissions, and enhance
environmental protection. There are many methods for measuring transportation efficiency, but few
papers have used the input and output data to evaluate the ecological efficiency of land transportation.
This research focuses on evaluating the environmental efficiency for land transportation by using
the data envelopment analysis (DEA) method with undesirable output to handle unwanted data.
By using this, the paper aims to measure the performance of land transportation in 25 Organization
for Economic Co-operation and Development (OECD) countries in the period of 2015–2019, con-
sidered as 25 decision-making units (DMUs) in the model. For identifying the ranking of DMUs,
four inputs (infrastructure investment and maintenance, length of transport routes, labor force, and
energy consumption) are considered. At the same time, the outputs consist of freight transport and
passenger transport as desirable outputs and carbon dioxide emission (CO2) as an undesirable output.
The proposed model effectively determines the environment-efficient DMUs in a very time-efficient
manner. Managerial implications of the study provide further insight into the investigated measures
and offer recommendations for improving the environmental efficiency of land transportation in
OECD countries.

Keywords: OECD countries; environmental efficiency; undesirable output; decision-making units;
data envelopment analysis; land transportation

1. Introduction

As the economy becomes more developed, the demand for goods circulation between
areas, countries, or regions in the world increases rapidly. Especially in the current era
of globalization, transportation plays a vital role in linking local and global economies,
shortening the geographical distance to reduce costs, reducing commodity prices, and
promoting trade development. According to the International Transport Forum (ITF)
forecast, the demand for global transportation will rapidly increase during the next three
decades; the total transport activity is expected to more than double by 2050 under the
trajectory reflecting the current trend. Inside, passenger transport demand will grow
2.3 times, and freight transport demand will increase 2.6 times [1].

Land transport consists of three modes: road, rail, and pipeline; inland waterways
(IWW) transport is also added in some European studies. However, because pipeline
transport has a completely different specificity, this type of transport is often omitted in
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topics related to land transport. Land transportation involves road and rail transportation
modes that play a central role in passenger and freight transportation, with a fast-growing
market share. Land transport significantly facilitates economic growth; physical capital
accumulation is another driving force, mainly in developed countries [2]. The road is
the most popular transport due to flexibility, compatibility, speed, and low cost [3]. In
2013, road freight transport accounted for approximately 72% of total inland freight in the
European Union, while inland waterways, rail, and pipelines collectively accounted for the
remaining 28% [4]. Rail transport carries the competitive advantage of less energy usage
and environmental improvement [5], with about 54 tons CO2 emission that arises to ship
12 tons goods from China to inland Europe by airway, compared to 3.3 tons by maritime
and railway, and 2.8 tons by railway across the Landbridge [6].

Transportation is one of the critical elements that burn fossil fuels (oil, coal, etc.),
releasing vast amounts of carbon dioxide (CO2) and other toxic gases into the atmosphere,
creating the greenhouse effect. Shankar et al. [7] indicate that the transportation sector is
responsible for 23% of global CO2 emissions. Land transportation contributes to climate
change and is the primary source of CO2 emissions and one of the most challenging
sectors to decarbonize in many countries [8]. The specific number varies by country, but
it is virtually always a significant contributor to this effect. In the 2015 Paris Agreement,
195 world countries negotiated to combat climate change, focusing on reducing greenhouse
gas emissions and preventing global warming from worsening [9]. Governments have
set their own Intended Nationally Defined Contribution (INDC) objectives based on their
respective national circumstances to archive the global greenhouse gas emissions reduction.
Germany is committed to a target to reduce 40% of the greenhouse gas emissions levels by
2030 compared to 1990. USA national target for 2025 is to reduce greenhouse gas emissions
by 26–28% compared to 2005. Japan expected to make more effort to decrease by 26%
their greenhouse gas emissions in 2030 compared to 2013 levels while contributing to
the global climate change solution [10]. Since 2000, European Transport Ministers have
shared the requirement for consistent decision-making processes on transport systems
towards sustainability [11]. Despite the efforts of many countries to cut CO2 emissions,
current trends indicate that atmospheric carbon dioxide will increase for most countries
by the end of the year 2040 [12,13]. It requires in-depth research and analysis on land
passenger and freight transport and specifying the role of land transportation in the overall
emissions problem.

Land transportation involves congestion, energy consumption, air and noise pollution,
deterioration of infrastructure, safety problems that contribute to non-sustainable effects on
the environment, economy, and society sectors [14]. The efficiency of land transportation
can contribute considerably to assessing the sustainable development of the economy and
environment of countries. Land transportation efficiency evaluation includes performance
and environmental efficiency to improve system performance and citizen satisfaction. Over
the last decade, researchers and practitioners have become extremely conscious of trans-
portation performance on sustainability. Controversial interests of different stakeholders
frequently conflict within a single pillar of sustainability (i.e., social conflicts; economic
conflicts; conflicts over environmental issues; preferences), and, therefore, balancing their
interests regarding one pillar is sometimes more in the foreground than to balance social,
economic, and environmental aspects [15,16]. Evaluating the efficiency of land trans-
portation can improve operation efficiency, decrease investment costs, save energy, reduce
greenhouse gas emissions, and enhance environmental protection. There are many methods
for measuring transportation efficiency, but few papers have used the input and output
data to evaluate the environmental efficiency of land transportation.

Based on the previous discussion, the hypothesis was formulated, evaluating the
efficiency of land transportation is a vital process to improve operation efficiency, decrease
investment costs, save energy, reduce greenhouse gas emissions, and enhance environ-
mental protection. This research focuses on estimating the environmental efficiency for
land transportation by using a DEA undesirable output model that overcomes previous
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models to handle unwanted data. The purpose of the present study is to propose the
DEA undesirable output model for measuring the performance of land transportation of
25 OECD countries as 25 decision-making units (DMUs). Differences in infrastructure
investment, the demand for transport, and the length of routes are the factors that identify
the ranking of DMUs. The research process is visualized in Figure 1. The model is used
as an explicit function of four inputs (infrastructure investment and maintenance, length
of transport routes, labor force, and energy consumption). The outputs consist of freight
transport and passenger transport as desirable outputs, while carbon dioxide emission
(CO2) is considered as an undesirable output. The outcome of this study can support the
government or policymakers in evaluating and improving the environmental efficiency of
land transportation or many more related industries.
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Figure 1. The structure of the research process.

The structure of this paper is organized as follows: Section 2 is the literature review.
Section 3 explains the method approach. The case study is included in Section 4. The
obtained results are presented in Section 5. Finally, the discussions, conclusions, and future
studies are summarized in Sections 6 and 7.

2. Literature Review

Data envelopment analysis (DEA) is one of the most popular tools for evaluating
the efficiency of decision-making units (DMUs) based on different inputs and outputs.
DEA analysis was introduced in 1978 from the initiative by Charnes, Cooper, and Rhodes
(CCR) [17]. However, ideas on efficiency evaluation appeared many years early. Farrell
proposed production possibility frontier (PPF) as a criterion for measuring (relative) effi-
ciency among enterprises in the same industry using two components including allocation
efficiency and overall technical efficiency in 1957 [18]. The CCR method used the non-
parameter methodology to create a PPF curve regard on collected data of DMUs [17]. Then
the efficiency scores for those DMUs were calculated and compared using a variety of
mathematical programming models. Banker, Charnes, and Cooper (BCC) improved the



Sustainability 2022, 14, 972 4 of 16

CCR model to the BCC model by including variable returns to scale (VRS) situations in the
calculation in 1984 [19]. The resulting BCC model provided a more specific analysis of the
efficiency of DMUs.

There are a plethora of studies that focused on multi-aspects of transport to evaluate ef-
ficiency as operation, investment, infrastructure, energy, and environment. For instance, Yu
and Lin [20] proposed the multi-activity network DEA model considering both production
and consumption technologies to measure efficiency in railway performance. To compare
the CO2-sensitive productivity development of the European commercial transport indus-
try, Krautzberger and Wetzel [21] employed the Malmquist–Luenberger productivity index
to investigate country-specific regulations’ effects on productivity and identify innovative
countries. Zhou et al. [22] conducted a study of carbon dioxide emissions performance of
China’s transport sector using the undesirable out-put-oriented DEA models with a differ-
ent return of scales. Chu et al. [23] utilized the SBM-DEA model with parallel computing
design for environmental efficiency evaluation in the big data context with a transportation
system application. Jiang et al. [24] applied DEA to the transportation system efficiency
evaluation, aiming at redundant construction, unreasonable utilization of resources, and
other issues. Wu et al. [25] introduced a DEA common-weight evaluation framework
for resource reallocation and target setting to enhance the environmental performance of
regional highway transportation systems in China. Stefaniec et al. [26] proposed a triple
bottom line-based network DEA approach for the assessment of inland transportation
in China, considering social, economic, and environmental dimensions of sustainability.
Musolino et al. [27] evaluated the efficiency in transportation planning by comparison
between DEA and multi-criteria decision-making.

To assess the economic and environmental efficiency of global airlines, Chang et al. [28]
introduced an extended environmental slacks-based measure data envelopment analysis
model (SBM-DEA undesirable output) with the weak disposability assumption. A new
model, the virtual frontier benevolent DEA cross efficiency model (VFB-DEA) model, is pro-
posed in a study by Cui and Li [29] to evaluate energy efficiency for airlines. Zhang et al. [30]
used the SBM-DEA model with undesirable outputs to measure and compare the energy
efficiency and productivity of Chinese and American airlines. Shirazi and Mohammadi [31]
evaluated the efficiency of Iranian airlines by developing a robust slack-based measure
(SBM) model that was developed by adding undesirable outputs and uncertainty to con-
sider the practical situations. Applications of DEA approaches in various studies regarding
inputs, outputs, DMUs, and applied areas are summarized in Table A1.

This research is devoted to bridging the gap of the existing literature of transportation
systems efficiency by simultaneously considering economic and environmental sustain-
ability, with the determination of factors influencing the land transportation systems in
the OECD context through literature and experts’ responses. For this evaluation, the DEA
method is an effective and practical method to determine the most efficient DMUs among
a group of DMUs. The model is used as an explicit function of four inputs (infrastructure
investment and maintenance, length of transport routes, labor force, and energy consump-
tion). The outputs consist of freight transport and passenger transport as desirable outputs,
while carbon dioxide emission (CO2) is considered undesirable outputs. The outcome
of this study can assist governments and policymakers in evaluating and improving the
environmental efficiency of land transportation or related industry.

3. Methodology
3.1. Data Envelopment Analysis (DEA)

Data envelopment analysis (DEA), i.e., linear programming, is a non-parametric ap-
proach for measuring the relative efficiency of decision-making units (DMUs) by comparing
multiple inputs with outputs in the framework of frontier analysis in terms of attempting to
decrease inputs or increase outputs [32,33]. The DEA model’s objective is to maximize the
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ratio of weighted outputs to weighted inputs for the considered DMUs, which is described
in the model (1).

Max Zpq = Max ∑ outputs
∑ inputs =

∑s
i=1 uipyiq

∑t
j=1 vjpxjq

such that

0 ≤ ∑s
i=1 uipyiq

∑t
j=1 vjpxjq

≤ 1, q = 1, 2, . . . , n

q = 1, 2, . . . , n
uip ≥ ∈ i = 1, 2, . . . , s
vjp ≥ ∈ j = 1, 2, . . . , t

(1)

where Zpq is the relative efficiency of DMUq (q = 1, 2, . . . , n) when evaluated using the
weights associated with DMUp (p = 1, 2, . . . , n); n is number of evaluated DMUs; s is num-
ber of outputs; t number of inputs; uip is the weight attached to ith output (i = 1, 2, . . . , s)
for DMUp (p = 1, 2, . . . , n); vjp is the weight attached to jth input (j = 1, 2, . . . , t) for DMUp
(p = 1, 2, . . . , n); yiq is value of ith output (i = 1, 2, . . . , s) for DMUq (q = 1, 2, . . . , n); xjq is
value of jth input (j = 1, 2, . . . , t) for DMUq (q = 1, 2, dots, n); ∈ is infinitesimal constant.

We assume that there are 25 DMUs that represent 25 OECD countries (the value of
q ranges from 1 to 25, (q = 1, 2, . . . , q = 25)). This paper considers four inputs including
infrastructure investment and maintenance, length of transport routes, labor force, and
energy consumption (the value of j ranges from 1 to 4, (j = 1, 2, . . . , t = 4)), while freight
transport, passenger transport, CO2 emission are considered as outputs (the value of i
ranges from 1 to 3, (i = 1, 2, . . . , s = 3)).

From model (1), the considered DMUs satisfy the necessary condition as DEA effi-
ciency if the efficiency score, i.e., the optimal value of the objective function is at 1 (or 100%).
Otherwise, they are considered as DEA inefficiency.

DEA is a non-parametric method, which is a powerful research technique because
this method does not require the assumption of normality for data. In the DEA model,
homogeneity and isotonicity are two essential models’ assumptions. Before applying the
DEA model, the correlation between inputs and outputs must be verified, which means that
it should be in a total positive linear correlation (when the value of one variable increases,
the other variable value will also increase). The correlation coefficient formula of Pearson’s
(r) of two variables (x) and (y) is measured as Equation (2) [34].

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(2)

where n is the size of the sample; xi, yi denotes the individual sample points indexed with i;

x = 1
n

n
∑

i=1
xi is the mean of the sample which is analogous for y.

3.2. DEA Undesirable Output Model

The aim of this study is to develop a framework to measure the environmental effi-
ciency and potential CO2 reduction of the transportation sector in 25 OECD countries by
incorporating the undesirable output into the objective function. The model assumes that
reducing input resources (infrastructure investment and maintenance, length of transport
routes, labor force, and energy consumption) and undesirable output (bad output and CO2
emission) relative to producing more desirable outputs (freight transport and passenger
transport) is a criterion for efficiency measurement.

DEA undesirable output model tackles the bad outputs during efficiency and ineffi-
ciency analysis. When considering an undesirable output in the model, it should be noted
that efficiency can be formed with more desirable output relative to less undesirable output
and less input resources.

The outputs of this study of evaluating the environmental efficiency of land trans-
portation appear to be undesirable (CO2 emission). Halkos and Petrou [35] presented a



Sustainability 2022, 14, 972 6 of 16

critical review of the methods for dealing with undesirable outputs in DEA models. This
research applied the undesirable output model (BadOutput-C), which is implemented by
DEA Solver software. The methodology process is presented as follows [36,37].

The matrices of inputs and outputs of the DMUs will be standing for (x0 , y0). The
outputs of the matrix y will be disintegrated into undesirable outputs (Yb) and desirable
outputs are Yg. Each country will be declared as DMU

(
x0, yg

0 , yb
0

)
.

The production possibility set is presented in Equation (3).

P =

{ (
x, yg, yb

)
| x ≥ Xλ, yg ≤ Ygλ, yb ≥ Ybλ

L ≤ eλ ≤ U, λ ≥ 0

}
(3)

where λ is the intensity vector; L is the lower bound; U is the upper bound of λ.
In the existence of bad output, a DMU

(
x0, yg

0 , yb
0

)
is efficient if there is no vector(

x, yg, yb
)
∈ P such that x0 ≥ x, yg

0 ≤ yg, yb
0 ≥ yb having at least one inequality.

The adjustment of SBM to obtain the undesirable output model is calculated, as can be
seen in Equation (4).

ρ∗ = min
1− 1

m ∑m
i=1

s−io
xio

1 + 1
s

(
∑s1

r=1
sg

r
yg

ro
+ ∑s2

r=1
sb

r
yb

ro

) (4)

constraint to x0 = Xλ + s−; yg
0 = Yλ− sg; yb

0 = Yλ + sb; L ≤ eλ ≤ U; s−, sg, sb, λ ≥ 0.
The excesses in inputs, bad outputs, lack of good outputs are expressed by the vector

s−, sb, and sg, respectively. s1 and s2 are the number of components in sb, sg, and s = s1 + s2.
A DMU

(
x0, yg

0 , yb
0

)
is efficient if ρ∗ = 1. Otherwise, ρ∗ < 1, i.e., s−∗ = sb∗ = sg∗.

Through Charnes–Cooper transformation approach, the fractional model can be trans-
formed into the linear model with the consequential variables v, ug, and ub for the constant
return to scale, i.e., L = 0, U = ∞, as in Equations (5)–(9).

Maxugyg
o − vxo − ubyb

o (5)

such that
ugYg − vX− ubyb ≤ 0 (6)

v ≥ 1
m

[
1
xo

]
(7)

ug ≥ 1 + ugyg
o − vxo − ubyb

o
s

[
1
yg

o

]
(8)

ub ≥ 1 + ugyg
o − vxo − ubyb

o
s

[
1
yb

o

]
(9)

where v, ub, and ug are assigned as the virtual costs of inputs, bad outputs, and good
outputs, respectively.

The weights of good and bad outputs must be set in accordance with w1, w2, re-
spectively. Then, the model computed the relative weights as W1 = sw1/(w1 + w2) and
W2 = sw2/(w1 + w2). The objective function will be converted to Equation (10). In this
research, the authors used the default value with w1 = w2 = 1.

ρ∗ = min
1− 1

m ∑m
i=1

s−io
xio

1 + 1
s

(
W1 ∑s1

r=1
sg

r
yg

ro
+ W2 ∑s2

r=1
sb

r
yb

ro

) (10)
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4. A Case Study in OECD Countries
4.1. Selection of Decision-Making Units (DMUs)

This section analyses the data used to measure the performance of the land trans-
portation system of 25 OECD countries as the DMUs that are shown in Table 1. The data
availability of this study covers the period from 2015 to 2019.

Table 1. List of OECD countries and their GDP (unit: billion USD).

No. Countries Symbol GDP in 2019 No. Countries Symbol GDP in 2019

1 Australia AUS 1396.57 14 Italy ITA 2004.91
2 Austria AUT 445.08 15 Japan JPN 5064.87
3 Belgium BEL 533.25 16 Korea KOR 1646.74
4 Switzerland CHE 731.47 17 Lithuania LTU 54.64
5 Czech Republic CZE 250.69 18 Latvia LVA 34.06
6 Germany DEU 3861.12 19 The Netherlands NLD 907.05
7 Denmark DNK 350.10 20 Norway NOR 405.51
8 Spain ESP 1393.49 21 Poland POL 595.86
9 Finland FIN 268.97 22 Slovak Republic SVK 105.12

10 France FRA 2715.52 23 Sweden SWE 531.28
11 United Kingdom GBR 2830.81 24 Turkey TUR 761.43
12 Greece GRC 205.33 25 United States USA 21,433.22
13 Hungary HUN 163.50

4.2. Selection of Input and Output Variables

The evaluation criteria were chosen through a review of existing literature. Various
input and output variables from previous research were enumerated in Table A1. For
analyzing transportation efficiency, researchers have used several different inputs and
outputs, such as operational costs, capital investment, the number of passengers, freight
volume, the number of vehicles, labor, fuel, passenger, and freight turnover volume,
revenue, CO2 emission, and GHG.

Based on the literature review on the previous studies and the data availability, this
study selects four input variables, including infrastructure investment and maintenance,
length of transport routes, labor force, and energy consumption. Three variables are
selected for output indicators, including freight transport, passenger transport, and CO2
emission. It is important to note that CO2 emission is considered an undesirable output
factor in this study.

The DEA structure of the operating process for land transportation efficiency evalua-
tion and the inputs, and outputs selection are visualized in Figure 2. The description of
input and output variables is presented as follows

• Infrastructure investment and maintenance (input, unit in million USD): includes
spending on new construction, preservation, and improvement of the existing trans-
portation network. This indicator is measured in million USD for the road, rail, and
inland by year.

• Length of transport routes (input, unit in km): the total length of transport routes
available for the use of roadway and railway vehicles.

• Labor force (input, unit in thousands of persons): consists of all the people who are of
the right age to work, in a country or area.

• Energy consumption (input, unit in thousand tons of oil equivalent): covers the total
energy consumed by transport modes: roadway (buses, truck, etc.), railway (trains,
metro, etc.), waterway, airway, and pipeline transport.

• Freight transport (desirable output, unit in million ton-kilometers): refers to the phys-
ical process of shipping commodities, goods, and cargo by using inland transportation
mode on the national network.
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• Passenger transport (desirable output, unit in million passenger-kilometers): is the
process of transport for passengers by using inland transportation mode on the na-
tional network.

• CO2 emission (undesirable output, unit in million tons): exclusively refers to gross
direct emissions stemming from the combustion of fuels.
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For the selection of evaluation criteria, there are some limitations of the research such
as the inability to obtain data separately for passenger and freight transport. Another
weakness is that only road and rail transport are investigated as part of land transport.
Furthermore, the inability to decompose energy consumption and CO2 emission by other
modes for all analyzed OECD economies is a drawback of the study, but land transport
constitutes the vast majority in all analyzed entities. In future research, however, researchers
are recommended to pay more attention to these aspects. Regarding employment, transport
is the bloodstream of the economy which participates directly or indirectly in all economic
processes. It also influences the professional activity of people. The global production
of modern economies is the result not only of technology, capital, energy, but also of the
workforce. Since transport participates in meeting the needs of society and economy, it is
reasonable to include the entire workforce in the study.

4.3. Data Sources

The data used in this research comprised information for 25 DMUs from 2015 to 2019.
The infrastructure investment and maintenance, passenger and freight transport, and CO2
emission from the fuel are collected in the databases of the OECD official website [38].
The total length routes were obtained from OECD [38] and UNECE Transport Statistics
Database [39]. The labor force is found in The World Bank Group report [40]. The final
energy consumption for the transport sector is from the European statistics website [41].

The descriptive statistics on input and output variables of the land transportation
including roadway and railway for the period from 2015 to 2019 including maximum
value, minimum value, average value, and standard deviation, are presented in Table 2.
Transportation infrastructures have a difference in investment among countries. In 2015, the
infrastructure investment and maintenance in the USA is the highest with 157,327 million
USD, while the lowest is in Latvia with 812 million USD, and 242.28 million USD 18,062 on
average. The USA also has the largest energy consumption with 718,375 KTOE in 2019,
which is 650 times higher than that of the minimum.
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Table 2. Statistics on input and output variables of land transportation.

Statistics
Input Variables Output Variables

I1 I2 I3 I4 O1 O2 OBad

Year Period of 2015

Max 157,327 6,837,065 160,656,132 686,389 5,437,097 6,429,086 4929
Min 812 48,085 1,008,427 1038 14,927 2823 7

Average 18,062 568,596 21,080,306 45,243 347,801 571,310 416
SD 31,619 1,321,773 32,595,195 131,924 1,048,669 1,249,388 959

Year Period of 2016

Max 162,536 6,813,074 162,618,460 700,186 5,323,380 6,547,948 4838
Min 577 48,097 1,006,975 1034 15,518 2771 7

Average 18,329 569,395 21,300,773 46,269 347,191 582,208 413
SD 32,944 1,317,344 32,980,854 134,553 1,026,567 1,272,221 941

Year Period of 2017

Max 162,580 6,816,884 164,326,552 705,947 5,400,580 6,591,557 4761
Min 615 48,122 1,003,671 1081 18,145 2742 7

Average 18,694 569,911 21,493,977 46,784 355,351 588,451 411
SD 32,863 1,318,064 33,315,752 135,633 1,041,429 1,280,353 926

Year Period of 2018

Max 166,142 6,860,371 165,551,383 717,309 5,494,692 6,697,201 4910
Min 639 48,126 1,000,161 1109 17,659 2809 7

Average 19,059 572,394 21,685,309 47,287 362,101 595,374 413
SD 33,403 1,326,309 33,600,628 137,814 1,059,600 1,299,751 953

Year Period of 2019

Max 1,718,319 7,003,524 167,329,067 718,375 5,235,465 6,790,757 4744
Min 5899 48,128 983,777 1102 16,010 2785 7

Average 189,574 580,484 21,845,299 47,397 354,203 604,001 398
SD 343,154 1,353,572 33,943,033 138,017 1,009,555 1,317,480 921

5. Results Analysis
5.1. Pearson Correlation

A requirement before employing DEA is input and output variables have isotonic
relationships. This means that increasing any input should not bring a decrease to any
output. Therefore, Pearson’s correlation analysis is employed to check this prerequisite.
The correlation coefficient between inputs and outputs is shown in Table 3. It shows the
correlation coefficients between four input variables and three output variables are all more
than 0.503, indicating inputs and outputs have a significantly positive relationship.

Table 3. Correlation matrix of input and output variables (2015–2019).

I1 I2 I3 I4 O1 O2 OBad

Infrastructure investment and
maintenance (I1) 1 0.542 0.551 0.529 0.503 0.554 0.531

Length of transport routes (I2) 0.542 1 0.938 0.983 0.981 0.984 0.982
Labor force (I3) 0.551 0.938 1 0.919 0.903 0.968 0.967

Energy consumption (I4) 0.529 0.983 0.919 1 0.994 0.982 0.982
Freight transport (O1) 0.503 0.981 0.903 0.994 1 0.968 0.975

Passenger transport (O2) 0.554 0.984 0.968 0.982 0.968 1 0.989
CO2 emission (OBad) 0.531 0.982 0.967 0.982 0.975 0.989 1

Note: all Pearson correlations are significant at the 0.01 level (2-tailed).
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5.2. Environmental Efficiency and Ranking

The overall efficiency of the land transportation systems in 25 OECD countries for
the whole period based on the DEA model with undesirable outputs is calculated using
DEA software.

Table 4 presents the efficiency score of the land transport and ranking for each country
from 2015 to 2019. For efficiency of land transportation Australia, Switzerland, Spain,
France, Italy, Japan, Korea, Lithuania, The Netherlands, Poland, Sweden, and the USA
ranks first among all 25 countries in five consecutive years with the efficiency score is at
1 for the whole periods. The efficiency score of Greece is less than 0.5 that is the worst
country in 2015–2018. The worst efficiency country in 2019 is Latvia (efficiency score of
0.3074). Germany has the highest efficiency (efficiency score of 1) in the two years 2015 and
2016, and the performance decreased in the three after year.

Table 4. Efficiency evaluation results of the land transportation sector.

Countries
2015 2016 2017 2018 2019

Score Rank Score Rank Score Rank Score Rank Score Rank

Australia 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Austria 0.5123 23 0.4840 23 0.4171 23 0.4526 24 0.4210 24
Belgium 0.6974 18 0.6432 19 0.6162 17 0.5727 19 0.5324 18

Switzerland 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Czech Republic 0.6216 21 0.5721 21 0.4887 21 0.4839 22 0.4432 23

Germany 1.0000 1 1.0000 1 0.8379 14 0.8165 14 0.7239 13
Denmark 0.5925 22 0.5476 22 0.5062 20 0.4942 21 0.4461 22

Spain 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Finland 0.7241 17 0.6132 20 0.6217 16 0.6206 17 0.5989 16
France 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1

United Kingdom 0.6552 19 0.6511 18 0.5971 18 0.6152 18 0.5790 17
Greece 0.3037 25 0.3158 25 0.2511 25 0.2945 25 0.4464 21

Hungary 0.6221 20 0.6652 17 0.5235 19 0.5146 20 0.4679 19
Italy 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1

Japan 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Korea 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1

Lithuania 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Latvia 1.0000 1 1.0000 1 0.3309 24 1.0000 1 0.3074 25

The Netherlands 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Norway 0.5020 24 0.4823 24 0.4506 22 0.4592 23 0.4465 20
Poland 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1

Slovak Republic 1.0000 1 1.0000 1 1.0000 1 0.7772 15 0.6372 14
Sweden 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
Turkey 0.7636 16 0.6733 16 0.6695 15 0.6365 16 0.6199 15

United States 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1

The trend of efficiency score of the land transportation for each year from 2015 to 2019
by countries is visualized in Figure 3. The results show that a general decreasing trend of
efficiency of the land transportation system. It can be seen clearly in most countries such as
Belgium, Czech Republic, United Kingdom, Germany, Denmark, and Turkey. From 2016 to
2019, the efficiency score of Austria, Greece, and Norway is less than 0.5.

Figure 4 illustrates the average efficiency of land transportation from the view of
space-time. The average efficiency declined by 9%, from 0.8398 in 2015 to 0.7468 in 2019.
For the nations with low efficiency (Austria, Denmark, Greece, and Norway), the raw data
demonstrates that the total length of transport routes is smaller than the average total
length of transport routes of 25 OECD countries. The raw data also indicates that the
average passenger transport and freight transport of 25 OECD countries are higher than
passenger transport and freight transport in Austria, Denmark, Greece, and Norway.
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6. Discussions

Figures 5 and 6 show the relationship between the average efficiency and environmen-
tal variables including energy consumption and CO2 emissions. We can observe that most
countries such as Australia, Japan, Korea, and the USA consume a large amount of energy,
but the efficiency is also higher than other countries. On the other hand, Greece, Austria,
and Norway are three countries that accounted for the lowest efficiency score despite their
consumption of a small amount of energy. The nations that have high CO2 emissions are
high operation efficiency.

When the efficiency score equals 1, the DMUs are considered efficient; otherwise, it is
ineffective. The efficiency of DMUs can be improved based on the projections of inefficient.
Table A2 presents the projections of input and output variables for improving efficiency,
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as an example for the period of 2019. As a result, Greece which has the lowest efficiency
score and higher rank should decrease the variables including the length of transport
routes, labor, energy consumption, and CO2 emission by more than 53% to obtain the
efficient frontier. Austria should reduce all the input variables and CO2 emissions by more
than 49% to achieve an efficiency score of 1. For DMU Latvia, a plan to achieve efficiency
of 1, a reduction in infrastructure investment and maintenance of 39%, in the length of
transport routes of 41%, in the labor force of 35%, in the energy consumption of 16%,
and increase in freight transport of 415% would be required. Czech Republic, Germany,
United Kingdom, Finland, and Hungary can be improved efficiency by reducing of all input
variables including infrastructure investment and maintenance, length of transport routes,
labor force, and energy consumption; as well as the CO2 emission decrease following the
percentage in Table A2. The other countries may reduce or increase different input and
out variables in order to obtain efficiency. It is conspicuous that nations can improve the
environmental efficiency of the land transportation networks. However, it is difficult to
apply in practice, such as passenger and freight transport depending on the demand of
customers. Besides, due to sustainable development considerations, the reduction of the
undesirable output variable (CO2 emission) must be a priority.
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7. Conclusions

The DEA method is thought to be an excellent approach to evaluate the relative effi-
ciency of DMUs with many inputs and outputs, and it does not require determining the
relationships between inputs and outputs through subjective assumptions. In this research,
we used DEA with an undesirable output model to measure the environmental efficiency
of land transportation in 25 OECD countries for the period 2015–2019. It uses infrastructure
investment and maintenance, the length of transport routes, labor, and energy consumption
as inputs. The model’s outputs are total passenger and freight transport and CO2 emis-
sion. As a result, the list of countries with the best efficiency score for land transportation
includes Australia, Switzerland, Spain, France, Italy, Japan, Korea, Lithuania, The Nether-
lands, Poland, Sweden, and the USA. The average overall efficiency of land transportation
systems in 25 OECD countries expresses decreasing trend. For managerial implications, this
study could be a significant material for stakeholders, i.e., governments, and authorities
in evaluating and improving the environmental efficiency of land transportation or many
more related industries. The DEA-based approach assists in implying those countries who
have not been utilizing their resources to generate the best possible outcomes in land trans-
portation (those with low efficiency). Therefore, there is huge space for them to improve
their efficiency performance, in which the improvement can be achieved by more efficient
use of their current resources, rather than increasing the resources. The reason behind the
change can be traced to political and/or economic situations.

The current study has the following limitations which also signify the avenues for
future research. First, it will be of both academic and practical values to find the root cause
of the intertemporal efficiency change of the countries. The decomposition method used
in this paper sheds a light on the problem, but the root cause should be traced to deeper
reasons, such as economic structures, political, and cultural factors. Third, DEA itself cannot
provide statistical inference on the significance of the city assessment results. A remedy for
this problem is to augment DEA with bootstrapping [42]. For future studies, other input
and output factors that affect the environmental efficiency of the land transportation sector
should be considered, for example, vehicle in use, GDP, road accidents, NOx emissions,
and SOx emissions. This paper only considers roadway and railway that represent land
transportation sector. Future studies should investigate other transport modes such as
pipeline, inland waterway, or air transport. In terms of methodologies approach, future
studies should combine DEA with multi-criteria decision-making (MCDM) models, such
as (fuzzy) WASPAS, VIKOR, EDAS, and ELECTRE, to name a few, [43] and analyze the
results with sensitivity of criteria, or comparative analysis of methods [44], to enhance the
results’ robustness.
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Appendix A

Table A1. Summary of methodologies and problem characteristics in previous studies.

No. Author Year Inputs Outputs DMUs Methodologies Applied Areas

1 Yu and Lin [20] 2008

Number of employees
length of lines

Number of passenger cars
Number of freight cars

Passenger train-km
Freight train-km

Purchasing power
parity,

Population density

20 selected
railways

Multi-activity
network

DEA model

Efficiency and
effectiveness in

railway performance

2 Krautzberger
and Wetzel [21] 2012

Intermediate inputs (energy,
materials and services)

Capital stock
Number of employees

Gross output
CO2 emissions

16 member states
of the European

Union and
in Norway

Malmquist–
Luenberger
productivity

index;
Directional

distance
functions

CO2-sensitive
productivity growth

of the commercial
transport industry

3 Zhou et al. [22] 2013 Labor
Energy input

Passenger services
Freight services
CO2 emissions

30 regions
of China

Undesirable
output-oriented

DEA models
with different

return of scales

CO2 emissions
performance of the

transport sector

4 Chang et al. [28] 2014
Available ton kilometers
Number of employees

Fuel consumption

Revenue ton
kilometers RTK

Profits
Carbon emissions

27 airlines
SBM-DEA

undesirable
output

Examining economic
and environmental

efficiency of
27 airlines

5 Cui and Li [29] 2015
Number of employees,

Capital stock
Tons of aviation kerosene

Revenue ton
kilometers

Revenue passenger
kilometers

Total business income
CO2 emissions

11 airlines VFB-DEA Energy efficiency of
airlines

6 Chu et al. [23] 2016
Labor

Capital
Energy

Value-added
CO2 emissions

30 Chinese
provincial

regions

SBM model with
undesirable

output

Environmental
efficiency evaluation

for transportation
system

7 Jiang et al. [24] 2016

Total investment in fixed
assets

Staff number
The wired network size
Number of equipment

Freight turnover
Passenger traffic

Passenger turnover

A regional road
transport system CCR-DEA Transportation

system efficiency

8 Zhang et al. [30] 2017
The number of aircraft
The number of labor

Fuel consumption

Revenue ton
kilometers

Operating revenue
CO2 emissions

10 airlines from
China and the
United States

SBM-DEA model
with undesirable

outputs

Measuring and
comparing the energy

efficiency and
productivity of

Chinese and
American airlines
during 2011–2014

9 Wu et al. [25] 2018

Energy consumption
Capital investment
Highway mileage

Number of passenger seats
Volume of cargo tonnage

Passenger turnover
volume

Freight turnover
volume

CO2 emission

30 regional
highway

transportation
systems in China

DEA model
considering
undesirable

output

Resource allocation
and target setting

model for improving
the DMUs’

environmental
performance

10 Shirazi and
Mohammadi [31] 2019 Number of employees

Fleet size

Revenue Passenger
Kilometers

Delay

14 Iranian
airlines

Robust SBM
model with
undesirable

outputs

Evaluating efficiency
of airlines

11 Stefaniec et al.
[26] 2020

Vehicles
Capital

Employment
Energy consumption

Accessibility
Traffic casualties

Value-added
Turnover

Green energy usage
CO2 emissions

30
provincial-level

regions in
mainland China

DEA undesirable
factor

Evaluating internal
parallel subunits of

inland transport
sustainability

12 This paper 2021

Infrastructure investment
and maintenance

Length of transport routes
Labor force

Energy consumption

Freight transport
Passenger transport

CO2 emission

25 OECD
countries

DEA with
undesirable

output

Environmental
efficiency assessment
of land transportation

in OECD countries
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Table A2. Projection of inputs and outputs for the period of 2019.

DMU Score

I1 I2 I3 I4 OBad O1 O2
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AUS 1.00 195,104 0.00 937,827 0.00 13,500,080 0.00 41,760 0.00 381 0.00 680,453 0.00 334,914 0.00
AUT 0.42 20,278 −0.49 67,774 −0.53 2,959,287 −0.36 4170 −0.53 32 −0.49 48,238 0.00 94,468 0.00
BEL 0.53 27,395 0.00 170,812 0.00 4,835,498 −0.06 6704 −0.24 51 −0.44 125,840 2.07 130,036 0.00
CHE 1.00 127,927 0.00 74,781 0.00 4,965,077 0.00 7211 0.00 36 0.00 29,099 0.00 126,982 0.00
CZE 0.44 22,101 −0.49 77,071 −0.45 3,239,031 −0.40 4568 −0.33 35 −0.63 55,239 0.00 102,657 0.00
DEU 0.72 239,947 −0.09 638,234 −0.07 34,320,187 −0.22 48,143 −0.15 386 −0.40 434,621 0.00 1,133,516 0.00
DNK 0.45 16,346 −0.61 76,788 0.00 2,479,932 −0.18 3524 −0.18 25 −0.11 57,311 2.58 74,035 0.00
ESP 1.00 63,199 0.00 181,209 0.00 23,227,683 0.00 32,940 0.00 231 0.00 260,320 0.00 403,154 0.00
FIN 0.60 17,055 −0.44 55,254 −0.52 2,481,583 −0.10 3495 −0.16 27 −0.32 39,117 0.00 79,624 0.00
FRA 1.00 303,952 0.00 1,141,494 0.00 30,385,859 0.00 45,208 0.00 294 0.00 213,229 0.00 971,981 0.00
GBR 0.58 164,672 −0.54 292,760 −0.33 22,934,759 −0.34 31,974 −0.23 270 −0.21 177,470 0.00 791,808 0.00
GRC 0.45 9126 0.00 47,079 −0.61 2,051,997 −0.57 2633 −0.56 27 −0.53 28,688 0.00 53,909 0.00
HUN 0.47 20,067 −0.57 66,876 −0.71 2,927,787 −0.38 4125 −0.19 32 −0.30 47,576 0.00 93,508 0.00
ITA 1.00 187,105 0.00 268,782 0.00 25,787,158 0.00 35,861 0.00 309 0.00 148,534 0.00 905,784 0.00
JPN 1.00 616,865 0.00 1,301,100 0.00 68,838,956 0.00 38,215 0.00 1056 0.00 233,953 0.00 1,356,309 0.00
KOR 1.00 296,680 0.00 115,190 0.00 28,541,664 0.00 43,819 0.00 586 0.00 152,582 0.00 488,841 0.00
LTU 1.00 8337 0.00 87,340 0.00 1,469,927 0.00 2151 0.00 11 0.00 69,298 0.00 33,148 0.00
LVA 0.31 3607 −0.39 37,790 −0.41 636,011 −0.35 931 −0.16 5 −0.31 29,984 0.00 14,343 4.15
NLD 1.00 25,285 0.00 140,826 0.00 9,374,012 0.00 10,933 0.00 146 0.00 49,923 0.00 221,198 0.00
NOR 0.45 16,995 −0.82 99,836 0.00 2,663,461 −0.06 3811 −0.15 25 −0.27 76,220 2.12 75,057 0.00
POL 1.00 47,722 0.00 443,395 0.00 18,318,734 0.00 22,782 0.00 287 0.00 449,895 0.00 302,772 0.00
SVK 0.64 7872 −0.50 48,128 0.00 1,817,287 −0.34 2600 −0.07 17 −0.43 42,368 0.00 38,896 0.00
SWE 1.00 65,394 0.00 227,079 0.00 5,455,406 0.00 7016 0.00 34 0.00 65,318 0.00 140,023 0.00
TUR 0.62 61,475 −0.42 257,941 0.00 18,872,091 −0.43 26,834 −0.05 184 −0.50 282,286 0.00 353,860 0.00
USA 1.00 1,718,319 0.00 7,003,524 0.00 167,329,067 0.00 718,375 0.00 4744 0.00 5,235,465 0.00 6,790,757 0.00
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