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Abstract: In the current study, BaO was doped in Bi2O3-ZnO-B2O3-SLS glass to develop lead-free
radiation shielding glasses and to solve the dark brown of bismuth glass. The melt-quenching method
was utilized to fabricate (x) BaO (1 − x)[0.3 ZnO 0.2 Bi2O3 0.2 B2O3 0.3 SLS] (where x are 0.01, 0.02, 0.03,
0.04, and 0.05 mol) at 1200 ◦C. Soda lime silica glass waste (SLS), which is mostly composed of 74.1%
SiO2, was used to obtain SiO2. The mass attenuation coefficient (µm) was investigated utilizing X-ray
fluorescence (XRF) at 16.61, 17.74, 21.17, and 25.27 keV and narrow beam geometry at 59.54, 662, and
1333 keV. Moreover, the other parameters related to gamma ray shielding properties such as half-value
layer (HVL), mean free path (MFP), and effective atomic number (Ze f f ) were computed depending on µm

values. The results indicated that HVL and MFP decreased, whereas µm increased with an increase in BaO
concentration. According to these results, it can be concluded that BaO doped in Bi2O3-ZnO-B2O3-SLS
glass is a nontoxic, transparent to visible light, and a good shielding material against radiation.

Keywords: radiation shielding; mass attenuation coefficient; half-value layer; mean free path; soda
lime silica glass waste

1. Introduction

Heavy metal oxide glasses such as PbO, Bi2O3, and BaO are considered as one of the
desirable shielding materials that are used for radiation protection because they possess a
lot of interesting properties that make them suitable for radiation protection, such as high
density, transparency to visible light, stability in air and water, high interaction cross-section,
high infrared transparency, and good absorption of radiation [1,2]. Research interests in the
field of radiation shielding materials have changed to using ecofriendly materials instead
of PbO due to the toxicity of lead [3,4].

Recently, many research groups have classified Bi2O3 glass as an ideal candidate for
radiation protection, and they have confirmed that the ability of Bi2O3 glass to attenuate
photons enhances with the increase in the content of Bi2O3 [3,5–7].

However, there are few issues with the use of high concentrations of Bi2O3 in glass,
such as the color of the glass becoming dark brown or black and the melting temperature
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increasing [8]. As a result, researchers in the materials sciences and the glasses developers
have a technical problem in developing highly high transmission Bi2O3 glass.

Soda lime silica (SLS) glass is one of the most widely used industrial glass products,
accounting for up to 90–95% of global glass production and is used for flat glass or container
wares and windowpanes. However, SLS glass waste needs a long time to decompose in
addition to the limited landfill sites. This contributes to the accumulation of glass waste.
To solve environmental problems, researchers are interested in reusing glass waste as an
alternative source of SiO2. There are several benefits to using SLS glass waste as a source
of SiO2. This reduces production costs, in addition to the good optical and mechanical
characteristics of SLS glass waste, such as high thermal stability, high transparency, low
melting point, and perfect chemical stability [9–11].

The aim of the current study is to prepare glass samples consisting of soda lime silica
waste glass that have the ability to attenuate photons’ intensity, which can be used as
radiation protection, in addition to improving the optical properties by reducing the dark
brown or black color of glass samples. Furthermore, SLS glass waste is utilized as a source
of silicon dioxide (SiO2) to reduce the accumulation of SLS glass waste and also reduce
production costs. The mass attenuation coefficient was measured at 16.61, 17.74, 21.17, and
25.27 keV utilizing X-ray fluorescence (XRF) and narrow beam geometry at 59.54, 662, and
1333 keV. Moreover, other parameters related to radiation shielding, such as the half-value
layer (HVL), mean free path (MFP), the effective atomic number (Ze f f ), and the effective
electron density (Ne f f ) were tested and reported in this study at photon energies of 59.54,
662, and 1333 keV.

2. Materials and Methods
2.1. Glasses Preparation

In the current study, glass samples with the chemical composition of (x) BaO (1 − x)[0.3
ZnO 0.2 Bi2O3 0.2 B2O3 0.3 SLS] (where x are 0.01, 0.02, 0.03, 0.04, and 0.05 mol) were
fabricated using the melt quenching technique. SLS glass waste was used to reuse SiO2
contained in it by cleaning and crushing it into a powder utilizing a mortar and pestle. All
chemical components such as Bi2O3, ZnO, B2O3, SLS, and BaO were mixed completely for
10 min in an agate mortar and pestle and transferred to an alumina crucible. After that,
the crucible was inserted in the electric furnace to melt at a temperature of 1200 ◦C for
1.5 h. The melted mixture was poured immediately into the preheated cylinder brass plate
and then annealed for 2 h at approximately 350 ◦C in order to prevent internal mechanical
stress and strains. Finally, the glass samples were polished after they had cooled to room
temperature. These glasses have a thickness of 6 mm and were labeled Ba1, Ba2, Ba3, Ba4,
and Ba5, which correspond to doping levels of 0.01, 0.02, 0.03, 0.04, and 0.05 mol BaO (see
Figure 1).

The properties of the crystal structure of the prepared glass samples were tested using
a Bruker D8 Advance X-ray diffractometer with Cu Ka radiation, and the X’Pert HighScore
software was utilized. The wavelength of the X-ray tube is 1.54180 Å, and it operates at
40 kV, 40 mA. The diffractograms of the glass samples of one phase are in the range of
10◦ ≤ θ ≤ 90◦.

Figure 1. Glass samples of BaO doped in Bi2O3-ZnO-B2O3-SLS glass.
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2.2. Physical Properties

According to Archimedes’ principle, the density of the glass samples ρ is computed
utilizing distilled water as the immersion liquid. The following formula was used to
compute density [12].

ρ =
Wa

Wa − Wb
ρdistilledwater (1)

where ρ indicates glass sample density in (g) cm−3, ρ(distilledwater) denotes distilled water
density (1 g) cm−3, (Wa) denotes the weight g of the glass sample in air, and (Wb) denotes
the weight of the glass sample.

Molar volume was measured using the following formula [13]:

Vm =
Mwt

ρ
(2)

where Mwt indicates the molecular weight of a substance, and ρ the density of the glass sample.
Oxygen packing density OPD was computed utilizing the following equation [14]:

OPD = 1000 × c
Vm

(3)

where c denotes the total number of oxygen atoms in the represented composition.
The ion concentration of Ba+2 (N) can be obtained as [15]:

N = (mole%o f Ba+2)
NAρ

Mwt
(4)

Polaron radius (rp), inter-nuclear distance (ri), and field strength (F) were measured
depending on ion concentration by using the following equations [16].

rp =
1
2
(

π

6N
)

1
3 (5)

ri = (
1
N
)

1
3 (6)

F =
Z

rp2 (7)

where NA is the Avogadro’s number, and Z is the atomic number.

2.3. Radiation Shielding Features: Theoretical Approach

The Lambert Beer law was used to compute the experimental mass attenuation coeffi-
cient µm depending on the following formula [17–19].

µm =
ln( I◦

I )

ρx
(8)

whereas the theoretical value of µm of mixture or compound was measured using the
Phy-X/PSD software [20].

µm = ∑
i

wi(µm)i (9)

where I and I◦ indicate the intensity of photons recorded in the detector with and without
the glass sample, x indicates glass thickness, and wi the weight fraction of the component
in the compound. The half-value layer (HVL) and mean free path (MFP) are measured
using the following equations [21,22]:

HVL =
0.693

µ
(10)
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MFP =
1
µ

(11)

The total atomic cross-section σt,a for materials and electronic cross-section σt,el were
used to calculate effective atomic number Ze f f and electron density Ne f f through the
following formulas [23,24].

σt,a =
µm

NA ∑i
wi
Ai

(12)

σt,el =
1

NA
∑

i

fi Ai
Zi

(µi) (13)

Ze f f =
σt,a

σt,el
(14)

Ne f f =
µm

σt,el
(15)

where Ai and NA denote the atomic weight and Avogadro’s number of the ith element
in the composition materials, respectively. fi denotes the number of atoms of element i
relative to the total number of atoms of all elements in the composition materials, and Zi is
the known atomic number of the ith element in the composition materials.

3. Radiation Shielding Features: Experimental Approach

The experimental µm of the prepared glass was measured through Equation (8) using
X-ray fluorescent equipment (XRF) and narrow beam gamma ray transmission geometry.
Figure 2 shows the setup for X-ray fluorescence (XRF). XRF photons were generated
through irradiating high-purity metal plates such as Tin (Sn), Palladium (Pd), Molybdenum
(Mo), and Niobium (Nb), which are detailed in Table 1 by using 59.54 keV of 100 mCi
Am-241. The low-energy germanium (LEGe) detector was used to detect photons that were
transmitted through glass samples.

Figure 3 illustrates the setup of the narrow beam geometry. Am-241 of 45 µ Ci, Cs-137
of 5 µ Ci, and Co-60 of 5 µ Ci were utilized to measure the µm of the glass samples at
energies of 59.54, 662, and 1333 keV, respectively. The Ludlum detector, composed of a
flat-face crystal of thallium-activated sodium iodide (NaI [Tl]), was used to detect photons
that passed through the glass samples.

Figure 2. The setup for X-ray fluorescence (XRF).
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Figure 3. The setup of narrow beam geometry.

Table 1. Metal plates used in X-ray fluorescence (XRF) configuration.

Plate Atomic Number
(Z)

Thickness
(mm) Purity (%) Kα1 Energy

(keV)

Niobium (Nb) 41 0.14 99.8 16.61
Molybdenum (Mo) 42 0.11 99.9 17.74
Palladium (Pd) 46 0.1 99.9 21.17

Tin (Sn) 50 0.28 99.999 25.27

4. Results and Discussion
4.1. Structural Properties

Figure 4 illustrates the XRD pattern of BaBiZnB-SLS glass samples within the range
of 10◦ ≤ θ ≤ 90◦. It can be seen that all fabricated glasses are amorphous in nature due to
the absence of sharp peaks and discrete lines. Furthermore, a broad hump was observed
in all fabricated glasses between 25◦ and 35◦ [25]. The energy-dispersive X-ray (EDX)
technique was used to analyze the chemical content of BaBiZnB-SLS glass samples. It can
be observed that these glass samples included elements such as oxygen (O), boron (B),
silicon (Si), bismuth (Bi), bismuth (Zn), and barium (Ba), as illustrated in Figure 5. The
chemical compositions of the SLS glass waste was analyzed utilizing energy dispersive
X-ray fluorescence at Universiti Sains Malaysia’s Centre for Global Archaeological Research.
As shown in Figure 6, SLS contains multichemical compounds such as 74.1% SiO2 as well
as other minor elements [26].

Figure 4. XRD patterns of BaBiZnB-SLS glass samples.
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Figure 5. EDX spectra of Ba3 and Ba5 glass samples.

Figure 6. Element included in soda lime silica (SLS).

4.2. Physical Properties

The physical characteristics values of BaBiZnB-SLS glass samples were measured and
are illustrated in Table 2. Figure 7 clarifies the ρ and Vm variation of the prepared glass
samples as a function of BaO mol. It can be seen that the ρ slightly increased from 5.157
to 5.256 g cm−3 with increasing BaO content. The ρ increase is due to the replacement
of the Bi2O3-ZnO-B2O3-SLS (molecular weight are 149.66 g mol−1) with BaO (molecular
weight is 153.33 g mol−1). Furthermore, according to Figure 7, it can be seen that Vm
values decreased from 29.1 to 28.49 cm3/mol, indicating resistance to the formation of
nonbridging oxygens as well as shrinkage of the glass structure [12,27]. The other physical
and structural parameters such as oxygen packing density (OPD), Ba-ion concentration, ri,
rp, and field strength F of the glass samples were measured to describe BaO’s influence on
the BiZnB-SLS glass network. The measured parameters are listed in Table 2. The result
indicates that the OPD, ri, and rp decreased with increasing BaO concentration. On the
other hand, Ba-ion concentration and field strength were increased, hence confirming that
the glass network has become more compact [28].
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Figure 7. Density and molar volume of BaBiZnB-SLS glasses as a function of the mole fraction.

Table 2. Physical characteristics of BaBiZnB-SLS glass samples.

Measurement Ba1 Ba2 Ba3 Ba4 Ba5

Molecular weight (g) 149.59 149.63 149.67 149.71 149.74
Density (g/cm3) 5.157 ± 0.001 5.161 ± 0.004 5.221 ± 0.004 5.249 ± 0.001 5.256 ± 0.01
Molar volume (cm3/mole) 29.01 28.99 28.67 28.52 28.49
Oxygen packing density, (g-atom/L) 72.01 71.67 72.11 72.09 71.77
Ba-ion concentration (1020 ion/cm3) 2.08 4.15 6.30 8.45 10.57
Internuclear distance (Å) 16.89 13.40 11.66 10.58 9.82
Polaron radius (Å) 6.80 5.40 4.70 4.26 3.96
Field strength (1016 cm2) 1.21 1.92 2.54 3.08 3.58

4.3. Attenuation of Gamma Rays

The mass attenuation coefficient of BiZnB-SlS glass doped BaO was measured utilizing
the X-ray fluorescence technique XRF and narrow beam geometry. The experimental µm
values using XRF for prepared glass were investigated at photon energies of 16.61, 17.74,
21.17, and 25.27 keV and narrow beam geometry at photon energies of 59.54, 662, and
1333 keV. The measured µm values can be seen in Table 3. It is worth mentioning that
the prepared glasses stop almost all the photons with energies of 16.61, 17.74, 21.17, and
25.27 keV, and most of the photons cannot reach the detector. The results indicated that
the fabricated glass samples have the ability to prevent photons from penetrating glass
and reach the detector when photon energy is less than 25.27 keV. Figure 8 shows the µm
of glass samples as a function of BaO mole fraction. For the energy range from 59.54 to
662 keV, µm decreased sharply with gamma energy increasing since the photoelectric effect
was dominant in this energy range. However, from 662 to 1333 keV, µm decreased slightly
with increasing gamma rays, whereas the Compton effect was dominant in this range [7,29].
According to Figure 8, it can be seen that µm was increased with increasing BaO concentra-
tion at 59.54 keV due to the utilization of BaO whose molecular weight is 153.33 g/mol as
compared to the Bi2O3-ZnO-B2O3-SLS glasses whose molecular weight is 149.55 g/mole.
However, µm values remained approximately constant at 662 and 1333 keV with increasing
BaO concentration. The mass attenuation coefficient at 59.54 keV is higher than at 662
and 1333 keV because the main interaction process at 59.54 is photoelectric [30,31]. The
experimental µm error was computed depending on the error in transmitted and incident
gamma ray intensities, thickness, and density. The calculated error in µm values was less
than 4%.
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Table 3. The experimental mass attenuation coefficient µm (cm2g−1) for prepared glass a 59.54, 662,
and 1333 keV energy photon.

Samples µm at 59.54 keV µm at 662 keV µm at 1333 keV

Ba1 2.0011 ± 0.06 0.0621 ± 0.005 0.0473 ± 0.005
Ba2 2.0037 ± 0.09 0.0624 ± 0.008 0.0476 ± 0.007
Ba3 2.0540 ± 0.08 0.0616 ± 0.004 0.0469 ± 0.0054
Ba4 2.0997 ± 0.05 0.0618 ± 0.009 0.0471 ± 0.013
Ba5 2.1248 ± 0.12 0.0612 ± 0.007 0.0467 ± 0.0054

Figure 8. Mass attenuation coefficient of glass samples as a function of the mole fraction.

Numerous shielding characteristics, such as the Ne f f , Ze f f , HVL, and MFP, can be
calculated using µm values as demonstrated in Table 4. According to Table 4 and Figure 9,
HVL values increased as gamma energy increased. Furthermore, HVL decreased as BaO
concentration increased. In comparison to Barite concrete at 662 and 1333 keV, the current
glasses have a lower half-value thickness [27]. Figure 10 illustrates the change in the mean
free path of the glasses as a function of the BaO concentration. MFP values were increased
as a result of increased photon energy. In addition, MFP decreased as a result of increased
BaO content. These values have been compared with Ilmenite concrete at 662 and 1333 keV.
It is observed that BaZnB-SLS glasses have lower MFP values than ilmenite concrete. HVL
and MFP results support that current glasses have better shielding properties and can be
used as radiation shields [7]. Ze f f and Ne f f values are mentioned in Table 4. It is obvious
that the Ze f f and Ne f f values of glass samples have decreased with increasing photon
energy. As well, Ze f f values increased with increased BaO content at 662 and 1333 keV,
while they slightly decreased at 59.54 keV. This may be due to the atomic number of
barium 56 compared with bismuth 83. The high atomic number indicates that glasses have
powerfully absorbed photons [32].

Table 4. HVL (cm), MFP (cm), Ze f f , and Ne f f (1023) (electrons/g) of glass system at 59.54, 662, and
1333 keV.

59.54 keV 662 keV 1333 keVSample HVL MFP Zeff Neff HVL MFP Zeff Neff HVL MFP Zeff Neff

Ba1 0.0672 0.0969 63.66 8.808 2.1643 3.1230 24.30 3.405 2.8389 4.0966 20.83 2.9019
Ba2 0.0670 0.0967 63.43 8.616 2.1523 3.1057 24.37 3.405 2.8210 4.0707 20.90 2.9018
Ba3 0.0646 0.0932 63.20 8.431 2.1549 3.1096 24.43 3.405 2.8299 4.0836 20.98 2.9017
Ba4 0.0629 0.0907 62.98 8.252 2.1378 3.0848 24.49 3.405 2.8033 4.0452 21.05 2.9015
Ba5 0.0621 0.0896 62.77 8.079 2.1549 3.1096 24.55 3.404 2.8210 4.0707 21.12 2.9014
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Figure 9. HVL of BaZnB-SLS glasses as a function of the mole fraction.

Figure 10. MFP of BaZnB-SLS glasses as a function of the mole fraction.

5. Conclusions

The glass systems (x) BaO (1 − x)[0.3 ZnO 0.2 Bi2O3 0.2 B2O3 0.3 SLS] (where x are
0.01, 0.02, 0.03, 0.04, and 0.05 mol) were fabricated by using the melt quenching method to
be used as a radiation shield and have demonstrated to be a suitable gamma ray shielding
material. XRD results confirmed the amorphous nature of the BaBiZnB-SLS glass samples.
The XRF analysis revealed that the SLS glass primary composition is 74.1% SiO2. µm,
HVL, MFP, Ze f f , and Ne f f were examined. The results showed that glass density and µm
increased and HVL and MFP decreased with an increase in BaO concentration in the glass
samples. On the other hand, glass samples are capable of absorbing gamma rays with
energies less than 25.27 keV. The study results confirmed that glass samples can be used to
develop a lead-free radiation shielding glass that is effective in the specified energy range.
In addition, the glass samples are transparent.
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