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Abstract: Nowadays, fossil energy continues to dominate China’s energy usage; its inefficient
use and large crude emissions of coal and fuel oil in its end-consumption have brought about
great pressure to reduce emissions. Electrical power substitution as a development strategy is an
important step toward achieving sustainable development, the transformation of the end-use energy
consumption structure, and double carbon goals. To better guide the broad promotion of electrical
power substitution, and to offer theoretical support for its development, this paper quantifies the
amount of electrical power substitution and the influencing factors that affect the potential of electrical
energy substitution. This paper proposes a hybrid model, combining Tent chaos mapping (Tent),
chicken swarm optimization (CSO), Cauchy–Gaussian mutation (CG), the sparrow search algorithm
(SSA), and a support vector machine (SVM), as a Tent-CSO-CG-SSA-SVM model, which first uses the
method of Tent chaos mapping to initialize the sparrow population in order to increase population
diversity and improve the search ability of the algorithm. Then, the CSO is introduced to update the
positions of sparrows, and the CG method is introduced to make the algorithm jump out of the local
optimum, in order to improve the global search ability of the SSA. Finally, the final electrical power
substitution potential prediction model is obtained by optimizing the SVM through a multi-algorithm
combination approach. To verify the validity of the model, two regions in China were used as case
studies for the prediction analysis of electrical energy substitution potential, and the prediction results
were compared with multiple models. The results of the study show that Tent-CSO-CG-SSA-SVM
offers a good improvement in prediction accuracy, and that Tent-CSO-CG-SSA-SVM is a promising
method for the prediction of electrical power substitution potential.

Keywords: tent chaotic mapping; chicken swarm optimization; Cauchy–Gaussian mutation; sparrow
search algorithm; support vector machine; electrical energy substitution; potential forecasting

1. Introduction

China’s economic development has made magnificent progress in recent years, but
it has also faced challenges; it currently faces major challenges in terms of resource and
environmental issues, as well as energy transition. Today, China’s energy consumption
is primarily from fossil energy. Its inefficient use in addition to the large crude emissions
of coal and fuel oil in end-consumption have made the problem of resource wastage
increasingly prominent and have led to great resistance to the promotion of environmental
protection, energy conservation, and emission reduction. Electricity is a clean energy source
with the advantages of high efficiency, safety and being green [1,2]. The electric power
substitution strategy replaces traditional energy-intensive energy sources such as oil, coal,
and natural gas with electric power at the end-use energy consumption stage. Innovation
is an important driving force of clean-energy strategies [3], and China has made efforts to
improve the approach of electric-powered energy substitution with active innovation. To
transform the end-use energy consumption structure and achieve sustainability, in order to
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positively change its economic structure, China has started to vigorously promote electrical
power substitution development strategies, and positively guide enterprises to carry out
electrical power substitution and transformation, taking electrical power as an important
form of energy-consumption structure transformation. Therefore, the development strategy
of electrical substitution will become a critical way for China to achieve its sustainability
aims, and it is therefore important to study the potential of regional electrical power
substitution development.

Currently, electrical power substitution is a research hotspot in the energy field. The
literature [4] has constructed a comprehensive index system of electrical energy substitution
potential and evaluated the regional electrical energy substitution potential by using the
TOPSIS method. Moreover, the literature [5,6] has elaborated and analyzed the current
situation of the promotion and application of electrical energy substitution technology and
verified and analyzed [7] the feasibility of a regional renewable-energy local-consumption
mode through an arithmetic simulation. Ref. [8] focused on the analysis of the environ-
mental benefits of electrical energy substitution, which is an important way to improve the
environment. Ref. [9] used machine learning for the short-term forecasting of energy loads.
Among the many studies on electrical power substitution potential, prediction research
is founded on the basis of an effective implementation of an electrical power substitution
development strategy. The implementation of electrical power substitution requires the
forecast of a long-term development trend of electrical power, which provides data support
for the promotion and implementation of electrical power substitution strategies. Regional
electrical power substitution potential forecasts provide a quantitative evaluation of re-
gional electrical power substitution potential. They provide a scientific decision basis for
the promotion of electrical power substitution development strategies and standardize the
promotion of electrical power substitution. Therefore, the research on the quantification
and prediction of electrical power substitution potential is of strong practical meaning.

Regarding the research on forecasting methods, with the continuous improvement
of machine learning and intelligent algorithm models, traditional metering models and
algorithms have been unable to meet the current electricity forecasting. Currently, short-
term electric load forecasting and long-term electric power replacement volume forecasting
with artificial intelligence methods have become new research hotspots, such as intelligent
algorithms combined with support vector machines, and neural network models. Ref. [10]
used SVM to forecast the electric load, whereas [11] used a multi-algorithm-optimized
GRNN model for power-load prediction. Ref. [12] used multiple models of SVM and
ELM to forecast the production capacity of photovoltaic materials. The authors of [13]
used the Moth–Flame optimization algorithm for the prediction of wind–energy potential.
Ref. [14] used a genetic algorithm to improve the gray prediction model to forecast the
energy consumption in China, whereas [15] used LSTM for the prediction of short-term
energy for households based on blockchain. Ref. [16] predicted and analyzed the potential
of electrical energy substitution by means of an electrical energy substitution model with
an environmental load and decoupling theory, and the results showed that policy support
has a strong driving effect on electrical energy substitution. The authors of [17] used a
STIRPAT-ridge regression model based on electrical power substitution potential for predic-
tion; the results showed that environmental factors have a strong influence on the electrical
power substitution potential. Ref. [18] used SVM based on particle swarm optimization for
the forecasting of electrical power substitution potential, and the results showed that the
particle swarm algorithm was helpful in improving the prediction accuracy of the support
vector machine, by optimizing the model parameters. Ref. [19] further investigated the
optimization model of the particle swarm algorithm by improving the inertia weights of
the particle swarm algorithm and using a two-way weighted gray correlation to screen the
important influences affecting the electrical power substitution potential. The results indi-
cated that the forecasting ability of the model was improved significantly. Moreover, [20]
classified the factors influencing the potential of electrical power substitution into five fac-
tors: economic, environmental protection, energy, technology and policy. The forecasting
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results of the electrical power substitution potential using the combined model showed the
steady progress of electrical power substitution in Beijing, Tianjin and Hebei, which played
a demonstrative role in promoting energy saving and emission reduction. Ref. [21] used an
improved logistic model while setting different energy consumption scenarios to forecast
the electrical power substitution in Jiangsu Province, which serves as a medium- and
long-term load forecasting model to guide the electrical power substitution planning work.
The author of [22] used logistic fitting with an improved BP neural network to forecast
the electric power replacement volume. Studies on electric load forecasting showed [23]
that the SVM model had a better forecasting ability compared to the neural network model
when the sample data size was small. The newly proposed sparrow search algorithm [24],
which has started to be applied in many fields in recent years, has a higher capability with
regard to solving and finding the optimal solution.

Based on the above research, we aim to improve the prediction accuracy of electrical
power substitution’s potential; this paper will consider the whole range of economic, envi-
ronmental, technological and policy factors influencing electrical power substitution. The
prediction accuracy of the model was evaluated using metrics such as RMSE, MAPE and
r [25]. The parameter settings of the support vector machine have a large impact on the pre-
diction results, so a multi-algorithm optimization sparrow search algorithm is introduced
to improve the support vector machine. Firstly, we optimized the sparrow search algorithm
with Tent chaotic mapping, chicken swarm optimization (CSO) and Cauchy–Gaussian
mutation (CG), and then optimized the SVM with the improved sparrow search algorithm
to establish the ISSA-SVM model for electrical power substitution potential prediction.

The main contributions of this paper are as follows:

(1) From four perspectives—economic development factors, environmental constraints,
technological development and policy influence—we analyzed the influencing factors
of electrical power substitution potential and give theoretical guidance for the pro-
motion of electrical power substitution. In the meantime, the potential for electricity
substitution is quantified and analyzed quantitatively;

(2) Improvements to the sparrow search algorithm: Firstly, Tent chaotic mapping was
used to initialize the sparrow population, so that the sparrow population was diver-
sified. Then, a chicken swarm optimization (CSO) was introduced to improve the
global search ability of the algorithm in the individual position update, followed
by the introduction of the Cauchy–Gaussian (CG) mutation method to improve the
individual fitness, and finally the multi-algorithm improved sparrow search algorithm
was obtained;

(3) The multi-algorithm improved sparrow search algorithm was used to optimize the
SVM model to forecast the electrical power substitution potential. It provides theoreti-
cal support and decision support for China to promote the development strategy of
electrical power substitution and achieve sustainable development.

In summary, this paper constructs a comprehensively economic, environmental, tech-
nological, and policy all-around electrical substitution potential forecast model. The rest
of this paper is organized as follows: Section 2 quantifies and analyzes the factors influ-
encing the electrical power substitution potential and the electrical power substitution
potential. Section 3 constructs a support vector machine prediction model based on tent
chaos mapping and chicken swarm optimization (CSO) with multiple Cauchy–Gaussian
(CG) mutation algorithms to improve the optimization of the sparrow search algorithm,
and describes the prediction process of the electrical power substitution potential forecast
model proposed in this paper and determines the model input and output variables. In
Section 4, data from the Jiangsu Province region are selected for empirical analysis to
verify the accuracy as well as the validity of the model. Further validation is carried out in
Section 5. Section 6 summarizes the research results of this paper.
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2. Factors Influencing and Quantifying the Potential for Electricity Substitution

The potential of electrical power substitution is influenced by economic development,
environmental constraints, technological development, and policy support. This analyzes
the potential of electrical power substitution from four perspectives: economic development
factors, environmental constraints, technological development, and policy influence.

2.1. Economic Development Factors

The economic development of a region will drive the growth of local end-use energy
consumption and electrical energy consumption. Accordingly, there is high correlation
between the economic situation and electrical energy consumption. GDP can well reflect
the economic development of a region, which means there is also a significant correlation
between GDP and electrical energy consumption [26]. As a result, the economic develop-
ment indicators that affect the potential of electrical power substitution are quantified as
GDP per capita and total regional GDP.

2.2. Environmental Constraintss

In 2020, at the 75th session of the United Nations General Assembly, the Chinese
government clearly stated that China is striving to reduce China’s CO2 emissions by 2030
and achieve the goal of carbon neutrality by 2060. This strategic target plan shows China’s
determination to achieve a low-carbon green economy. However, the volume of emission
reduction required to achieve the “double carbon” target is huge, and the task of emission
reduction is rather difficult due to the time constraints. According to the 14th Five-Year
Plan, the carbon intensity of 2025 will be reduced by 18%, i.e., CO2 emissions per unit of
GDP will be reduced by 18%. Under the condition of a series of environmental constraints,
the energy consumption structure will be further improved from traditional fossil energy
to alternative energy such as electrical power. Consequently, the environmental constraints
are bound to influence the development process of electrical power substitution.

2.3. Technological Progress Factors

With the increasing evolution and advancement of electrical power substitution de-
velopment technology and its application, the end energy consumption structure will be
further optimized. The technical approach in the field of electrical power substitution is
cleaner and more efficient compared with traditional energy consumption. Therefore, the
continuous advancement of technology contributes to the expansion of the application of
electrical power substitution technology. Each technological development originates from
the transformation of energy demand, and thus technological progress will also bring about
the transformation of energy demand. Due to technological progress, the end-use energy
consumption of users will shift more to electric power, and the energy cost also affects
the process of electrical power substitution. Energy consumption intensity, i.e., energy
consumption per unit of GDP, can indicate the advanced level of technical equipment,
the level of utilization of regional energy consumption and the technical level of energy
production and consumption. The higher the technological progress factors are, the lower
the energy consumption intensity is. Therefore, this paper quantifies the technological
progress factors affecting the capacity of electrical power substitution as the regional energy
consumption per unit of GDP and total energy consumption.

2.4. Policy Influencing Factors

The early stage of electrical power substitution application promotion requires a lot of
economic investment. However, it is often difficult to promote electrical power substitution
among enterprises if the benefits are calculated according to the basic investment returns.
In order to realize the smooth development and extensive promotion of the electrical power
substitution development strategy, the government needs to introduce special measures,
including tax policies to support electrical power substitution technology programs and
give corresponding subsidies and tax policies. The level of electrical power construction



Sustainability 2022, 14, 853 5 of 19

can be reflected by the ratio of investment in electrical power fixed assets to investment in
energy fixed assets. The higher the level of the electrical power construction is, the higher
the proportion of investment in electrical power fixed assets. Therefore, this paper selects
the ratio of regional electrical power fixed asset investment to energy fixed asset investment
to quantify the influence of policy support factors on electrical power substitution.

2.5. Electricity Substitution Potential

For the quantitative calculation of the electrical power substitution potential, this paper
draws on the definition of electrical power substitution potential from the literature [18] as
a scientific basis for the analysis of electrical power substitution potential. Let the electrical
power consumption of the region in the base year t0 be Ce(t0) and the total terminal energy
consumption be CE(t0). If the terminal energy consumption structure maintains the level
of the base year t0, the proportion of electrical power in the terminal energy consumption
between regions is the same as that in the base year t0, and then the increase in electrical
power consumption in the tth year compared with the electrical power consumption in
the t0 year is taken as the electrical power substitution amount in the tth year, i.e., the
quantified electrical power substitution potential. In this paper, the initial year of sample
data is the base year t0. The formula is as follows:

St = Ce(t)−
Ce(t0)

CE(t0)
·CE(t) (1)

3. Model Design and Algorithm Flow
3.1. Sparrow Search Algorithm

The sparrow search algorithm has good merit-seeking ability. The explorers in the
group are in charge of finding food and determining the location and foraging direction,
while the followers forage by obtaining the information shared by the explorers. The forag-
ing behavior of sparrows can be further divided into the following exploratory strategies.
Each sparrow in a sparrow population has access to the strategies and behaviors adopted
by other sparrows. Aggressors in the population will compete for food resources with
their high-intake peers to increase predation rates. Additionally, there are early warning
mechanisms in sparrows that allow them to move to safe areas when danger is imminent.
Highly adapted explorers will be at a high priority position during the population’s search
for food, i.e., they will have priority access to food. Explorers provide food for the whole
sparrow population and determine the foraging direction of followers, and thus the location
update range of explorers is larger than the followers.

The explorer’s foraging location update formula is as follows:

Xt+1
i,j =

{
Xij· exp

(
− i

a.itermax

)
, i f R2 < ST

Xij + Q·L, i f R2 ≥ ST
(2)

In Equation (2), t is the number of iterations of the population (t ∈ 1, 2, itermax), j is
the dimension of the optimization problem j ∈ 1, 2, d, Q and a are randomly generated
random numbers and Q obeys a normal distribution, while L is the all −1 matrix of 1Xd.
R2 denotes the warning value and ST denotes the safety value. When the warning value
is less than the safe value, it means the population is in a safe search area with a large
foraging range; when the warning value is greater than or equal to the safe value, it means
the population is close to the danger zone and the whole population will urgently forage in
other areas.

The follower position update formula is as follows:

Xt+1
i,j =

 Q· exp
(

Xt
worst−Xt

ij
i2

)
, i f i > n/2

Xt+1
P +

∣∣∣Xt
ij − Xt+1

P

∣∣∣·A+·L, otherwise
(3)
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XP denotes the best location found by the current explorers and Xworst is the worst
location of the current population foraging. A is a 1× d matrix with a value of 1 or −1.
i > n/2 indicates that the ith follower with a lower fitness value does not obtain food and
is in emergency, when the followers need to go to another location to forage.

When danger comes, the population’s danger warning mechanism is updated with
the following equation:

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

ij − Xt
best

∣∣∣, i f fi > fg

Xt
ij + K·

( ∣∣∣Xt
worst−Xt

ij

∣∣∣
( fi− fω)+ε

)
, i f fi = fg

(4)

fi denotes the current sparrow fitness value, f denotes the best global fitness value,
and fw denotes the worst global fitness value. f i = f g means that the population has
found vigilance and is required to move closer to other sparrows to reduce the risk of
predation, and f i > f g implies that the sparrows are at the edge of the population and
there is an increasing risk of predation. K refers to the direction of sparrow movement and
the parameter that controls the movement step.

3.2. Multi-Algorithm Improvement of Sparrow Search Algorithm

In this paper, the sparrow search algorithm is optimized in three areas: firstly, the
tent chaotic mapping method was applied to initialize the sparrow population parameters,
which led to the increasing diversity of the sparrow population and reducing the uncertainty
of the initialized population. Secondly, the chicken swarm optimization (CSO) strategy was
introduced in the follower position update process to augment the global search capability
of the algorithm. Finally, the Cauchy–Gaussian mutation method is applied to improve
the situation where the algorithm can easily fall into local optimal stagnation, and give the
algorithm better global searchability.

3.2.1. Tent Chaos Mapping Initialization Population

Chaos mapping [27] is a method for generating chaotic sequences, and in the field
of optimization algorithm research, chaos mapping improves the algorithm’s optimality
seeking ability by exploiting the motion behavior of the nonlinear systems of chaotic
systems. The basic principle is to initialize the population by chaotic mapping to improve
the ergodicity and optimality of the algorithm.

Tent chaotic mapping, a segmented mapping, is characterized by simple structure,
uniform distribution of density population after mapping, high ergodicity, and high com-
putational efficiency. Its formulation is:

Xn+1 =

{ Xn
a Xnε(0, a]

1−Xn
(1−a) Xnε(a, 1]

(5)

The Tent chaos mapping is applied to optimize the sparrow search algorithm, and the
data generated by the Tent mapping are used as the location information of the initial spar-
row population to make the sparrow population more diverse and reduce the uncertainty
of the initialized population.

3.2.2. Chicken Swarm Optimization to Improve Sparrow Search Algorithm

In the traditional sparrow search algorithm for follower position updates, it is easy to
fall into dense populations of local sparrows, which makes the algorithm sink into a local
optimum situation. To avoid of disadvantages, in this paper, the CSO [28] is introduced
for follower position updating. The CSO has excellent global optimality seeking ability,
and the algorithm strategy is that the hen approaches the rooster with a certain probability,
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which can take both local exploitation and global optimality seeking into account. The hen
position update equation is as follows:

Xt+1
i,j = Xt

i,j + S1rand(0, 1)
(

Xt
r,j − Xt

i,j

)
+ S2rand(0, 1)

(
Xt

r,j − Xt
i,j

)
(6)

S1 = exp(
fi − fr

| fi|+ ε
) (7)

S2 = exp( fs − fi) (8)

In Equation (8), r denotes any rth rooster in the hen’s mate, f denotes the fitness value
in Equation (9), and s denotes any sth rooster or hen r 6= s in the flock.

The random following strategy is introduced in the follower position update process in
the sparrow search algorithm to make full use of the position information and probabilistic
variation of individuals in the previous generation.

3.2.3. Cauchy–Gaussian Hybrid Mutation

In the traditional sparrow search algorithm, when the sparrow individuals iterate to
the late stage, it is easy to ensure the population assimilation is the local optimum. To
overcome this drawback, the method of Cauchy–Gaussian mutation [29] is introduced
to mutate the individual with the highest current fitness, compare the positions before
and after the mutation, and select a better position for iteration. The relevant equation is
as follows:

Ut
best = Xt

best

[
1 + λ1cauchy

(
0, σ2

)
+ λ2Gauss

(
0, σ2

)]
(9)

σ =

 1, f
(
Xt

best
)
< f (Xi)

exp
(

f
(
Xt

best
)
− f (Xi)

| f (Xt
best)|

)
, otherwise

(10)

In Equation (11), Ut
best denotes the position of the optimal individual after variation,

σ2 denotes the standard deviation of the Cauchy–Gauss mutation, λ1cauchy
(
0, σ2) is a ran-

dom variable satisfying the Cauchy distribution, and λ2Gauss
(
0, σ2) is a random variable

satisfying the Gauss distribution. λ1 and λ2 are adjustment parameters with the number of
iterations t, aiming to increase the global optimization algorithm’s search capability.

3.3. Support Vector Machine

SVM is a machine learning modeling method whose theoretical basis is derived from
statistics. SVM seeks to ensure the minimum structural risk, improves the generalization
ability of the model, minimizes the empirical risk and confidence interval, and obtains
good statistical rules with few statistical samples.

The SVM regression model evolved from the classification problem of SVM, and the
classifier model outputs discrete values while the regression model outputs continuous
values. The SVM classification model obtains the regression model of support vector after
introducing the insensitive parameter ε. the SVM model has good nonlinear prediction
ability and is suitable for small sample data learning. The SVM has been the research
hotspot of prediction models, especially in machines. The SVM model has been a research
hotspot with regard to prediction models, especially under the high fast-pace development
of machine learning and intelligent algorithms, and the SVM model has been continuously
optimized. The basic principle is as follows.

Given an N-dimension training data set with a sample size of n, when the input vari-
ables are nonlinearly related to the output variables, the function takes the following form:

f (x) = ωT ϕ(x) + a (11)

In the formula, a is the intercept term of the Regression function, ω is the regression
coefficient, and ϕ(x) is a nonlinear Kernel function. This function can map the low-
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dimension nonlinear data directly to a high-dimension space, so the nonlinear operation
can be converted to a linear operation. The essence of the supported vector regression
(SVR) is to find the regression function f (x) so that the deviation of the corresponding
function value and target of all training data cannot exceed the insensitive parameter ε. The
objective function and the constraint formula are as follows:

minZ = 1
2 ||ω||2 + C

N
∑

i=1
(ξi + ξ∗i )

s.t.


yi − f (xi) ≤ ε + ξi
yi − f (xi) ≥ ε + ξ∗i
ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , N

(12)

The first part of the objective function is the Euclidean paradigm, which is related to the
complexity of the model, and the remaining part is the empirical risk. One of the penalized
training errors is the ε-insensitive loss function, for a given sample, where the difference
between the predicted values and actual sample values of the model is represented. The
smaller the loss function is, the more accurate the model is for this sample. The empirical
risk is calculated once for all training samples ε, and then the average value is obtained by
accumulation. C, the penalty factor, which is related to the model complexity and empirical
risk, indicates the tolerance of the model to errors. The constraints ξi and ξ∗i represent
positive relaxation variables; hence, the existence of a solution is guaranteed. The Lagrange
multiplier method is used to optimize the function and the first partial derivative of this
Lagrange multiplier is given by:

L( ω, a, ξ, ξ∗, β, β∗, γ, γ∗) =

1
2 ||ω||2 + C

N
∑

i=1

(
ξi + ξ∗i

)
−

N
∑

i=1
βi
(
ε + ξi − yi +

(
ωTφ(xi) + a

))
−

N
∑

i=1
βi
∗(ε + ξ∗ i − yi +

(
ωTφ(xi) + a

))
−

N
∑

i=1

(
γiξi + γ∗i ξ∗i

)


∂L
∂ω = 0⇒ ω =

N
∑

i=1
φ(xi)

(
βi − β∗i

)
∂L
∂a = 0⇒

N
∑

i=1

(
βi − β∗i

)
= 0

∂L
∂ξi

= 0⇒ C− βi − γi = 0
∂L
∂ξ∗i

= 0⇒ C− β∗i − γ∗i = 0

(13)

The result is obtained by taking the first-order partial derivative of Equation (8) as
zero in Equation (7) and introducing the effective kernel function Mercer condition K to
obtain the pairwise problem form of the objective function:

maxW(β, β∗) = − 1
2

N
∑

i,j=1
(βi − β∗i )

(
β j − β∗j

)
K
(
xi, xj

)
− ε

N
∑

i=1

(
βi + β∗i

)
+ yi

N
∑

i=1

(
βi − β∗i

)
s. t.
{

∑N
i=1 βi = ∑N

i=1 β∗i
βi, β∗i ∈ [0, C]

(14)

In turn, the final expression of the regression model is obtained as follows:

f (x) =
N

∑
i=1

(βi − β∗i )K(xi, x) + a (15)

The kernel function can map the original space inner product to the high-dimension
feature space by nonlinear transformation. In this model, the kernel function is chosen as
the RBF kernel function, i.e., the Gaussian radial kernel function.
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C and g are the main parameters that affect the prediction performance of support
vector machines. C is the penalty factor. The larger the penalty factor is, the smaller the
tolerance to the training set error will be, which may lead to the overfitting of the training
set. Moreover, overfitting will result in a model that predicts well in the training set yet
poorly in the test set, and the poor generalization ability of the model. However, if the
setting of the penalty factor is small, there will be an extremely large error and failure of
the prediction model.

g is the parameter setting of the RBF kernel function, which determines the distribution
of the data mapped to the new feature space. g is the default value 1/K, and K is the total
number of categories. The smaller the value of g is, the more support vectors there are. The
number of support vectors is related to the speed of model training and prediction.

3.4. Electricity Substitution Potential Prediction Model

Regarding the construction of the regional electrical power substitution potential
prediction model, firstly, the input variables of the model are determined as GDP per capita,
total regional GDP value, CO2 emission per unit GDP, total CO2 emission value, ratio of
fixed asset investment in electrical power construction to fixed asset investment in energy,
fixed asset investment in electrical power, total energy consumption and energy consump-
tion per unit GDP, and historical electrical power substitution. The output variables of the
model are electrical power substitution potential values.

The main steps for optimizing the SVM model based on the multi-algorithm improved
the sparrow search algorithm (SSA) are as follows:

Step 1: Set the parameters related to the sparrow search algorithm with a maximum number
of 100 iterations and a population size of 20.

Step 2: Generate the sparrow population by using Tent chaotic mapping, including the
population ratio of both explorers and followers.

Step 3: Generate new individuals. By introducing the chicken swarm optimization (CSO)
to update the follower positions and the Cauchy–Gaussian mutation strategy (CG)
to mutate the individuals, the positions of explorers, followers and sparrows under
the early warning mechanism are updated. Meanwhile, new solutions are generated
continuously and iteratively, and the current optimal solution for the explorer
positions and the global optimal solution are recorded.

Step 4: The fitness function is evaluated to obtain the best adapted individual. SSA should
take appropriate measures to ensure the best parameter settings to improve the
prediction accuracy of the model. In the SSA, the K-fold cross-validation ( K− CV)
method is used to optimize the model parameters. K-fold cross-validation can
effectively solve the situation of poor generalization ability of the model overfitting,
and the mean square error MSE of the prediction model is selected as the fitness
function. K-fold cross-validation takes advantages of the no-repeat sampling: each
individual has only one chance to be included in the training set or test set in each
iteration. Combined with the sample size in this paper, K = 5, where the model
evaluation index is yi, the true value, and ŷi is the predicted value.

MSE =
SSE

n
=

1
n ∑m

i=1 (yi − ŷi)
2 (16)

Step 5: Stop the loop criteria. There are two stopping criteria: one is that the number
of iterations reaches the set criteria, and the other is that the model error reaches
the expected level. When the iterations meet the stopping criteria, the prediction
results are output. Otherwise, repeat the third and fourth steps until the number of
iterations reaches the preset value. With cyclic iterations, the best fitness function
value is obtained and the best model parameters are obtained. Then, the sparrow
search algorithm’s model parameters, C and g, are updated to the SVM model, and
eventually the ISSA-SVM prediction model is obtained.
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The flow chart of ISSA-SVM electrical power substitution potential prediction model
is in Figure 1.

Figure 1. Flow chart of electrical power substitution potential prediction model.

4. Case Study
4.1. Data Sources and Model Evaluation

With the purpose of analyzing the effectiveness of the prediction model of electrical
power substitution potential established in this paper, Jiangsu Province was used as an
example (2000–2019), and the data sources were China Statistical Yearbook, China Energy
Statistical Yearbook and Jiangsu Statistical Yearbook. All these resources were used to
predict the potential of electrical power substitution in Jiangsu Province.

The platform used for this experiment is Matlab 2020b, and the running environment
is AMD R7-5800H with 16 G memory and 512 G solid state drives. Simulations were
performed in Matlab software using a program written by ourselves. The penalty parameter
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C and kernel function parameters of the model proposed in this paper are optimized. The
optimal penalty parameter C and kernel function parameters g of ISSA optimization results
are 840.51 and 0.31.

The variables related to the forecast of electrical power substitution potential in Jiangsu
Province (2000–2015) were used as learning samples. ISSA-SVM, SSA-SVM and SVM
models were applied to train the electrical power substitution potential in Henan Province.
The parameters of the benchmark SVM model were determined by the poor method grid
search with parameters of 90 and 0.8, respectively. The optimal penalty parameter C and
kernel function parameters of SSA optimization results were 922.31 and 0.19. The variables
related to the electrical power substitution potential of Jiangsu Province (2016–2019) were
used as the test samples to evaluate the superiority of the electrical power substitution
potential model prediction ability by comparing the model evaluation indexes.

Since a single error indicator does not fully reflect the reliability of the prediction
model, in order to verify the predictive performance of the model, multiple indicators of
the correlation coefficient r, root mean square error (RMSE), mean absolute error (MAE)
and mean percentage error (MAPE) were used to evaluate the prediction model in this
paper. The relevant evaluation indicators are calculated as follows:

MAE =
1
n ∑n

i=1|ŷi − yi| (17)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (18)

r = ∑n
i=1(yi − y)(ŷi − y)√

∑n
i=1(yi − y)

√
∑n

i=1(ŷi − y)
(19)

MAPE =
100%

n
·

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (20)

RE(t) =
|X (̂t)− X(t)|

X(t)
× 100% (21)

In the above equation, yi is the true value of the sample and ŷ is the predicted value
of the model. These evaluation indexes can be used to evaluate the accuracy of the pre-
diction model, where the value of correlation coefficient r tending to 1 indicates a higher
accuracy of the prediction model, and the value of the rest of the evaluation indexes tend-
ing to 0 indicates a higher accuracy of the prediction model and higher reliability of the
model. The combined use of multiple model evaluation indexes can evaluate the predictive
performances of the models in a more scientific and objective way.

4.2. Analysis of Prediction Results

The forecast input and output variables of electrical power substitution potential in
Jiangsu Province were brought to ISSA-SVM, SSA-SVM and SVM models, and the forecast
results of different models were obtained as shown in Table 1.

The prediction results of the three electrical power substitution potential forecasting
models are shown in Figure 2. As seen intuitively, the predicted value of the electrical
power substitution potential of the prediction model selected in this paper has a better
fitting with the actual value, and the prediction accuracy has been improved to some extent.
Especially in the test sample (2016–2019), the ISSA-SVM determined in this paper is closer
to the true value; thus, it can be seen that the multi-algorithm improved sparrow search
algorithm optimized model has a better generalization ability.
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Table 1. Forecast results of electrical power substitution potential in the case of Henan province.

Year Actual Data ISSA-SVM SSA-SVM SVM

2000 76.30 84.42 171.07 608.46
2001 155.44 170.54 202.75 589.98
2002 246.48 230.12 246.09 584.55
2003 355.66 330.25 299.72 587.39
2004 401.35 402.99 401.76 802.31
2005 409.30 412.31 441.88 662.51
2006 590.94 530.45 504.19 679.70
2007 774.91 721.36 649.17 774.52
2008 807.77 840.31 835.69 927.85
2009 849.93 870.36 949.27 1023.15
2010 1185.80 1150.41 1130.43 1186.21
2011 1414.42 1415.42 1414.03 1402.46
2012 1582.65 1581.32 1591.80 1545.87
2013 1921.37 1821.31 1775.56 1661.06
2014 1908.90 1910.63 1920.41 1733.44
2015 1957.96 2100.14 2103.11 1801.85
2016 2215.35 2214.25 2215.76 1794.47
2017 2523.52 2453.41 2349.81 1796.93
2018 2840.47 2650.31 2438.29 1800.17
2019 2883.96 2699.89 2498.21 1752.16

Figure 2. Fitting effects of the three models in the case of Henan Province.

To verify the forecasting performance of the three models in the test set, the evaluation
index of relative error is introduced and the predictive ability of the three models is
compared. The relative errors of the test sets of the three models are shown in Table 2.

Table 2. Relative error of test sample in the case of Henan province.

ISSA-SVM SSA-SVM SVM

1 0.049 0.018 23.454
2 2.857 7.392 40.435
3 7.175 16.494 57.789
4 6.8178 15.441 64.594

As shown in Table 2 and Figure 3, the multi-algorithm improved sparrow search
algorithm (ISSA) optimized SVM has a better prediction accuracy in the test set than the
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other two comparison models. This indicates that the multi-algorithm improved model
proposed in this paper has a better generalization ability and overcomes the over-learning
of the model to a certain extent.

Figure 3. The relative error in the case of Henan Province.

To further study the forecasting accuracy of these three models, this paper will compare
and analyze the three models in terms of various indicators of the correlation coefficient r,
RMSE, MAPE and MAE. The evaluation results of the three models are shown in Table 3
and Figure 4.

Table 3. Evaluation indicators of different models in the case of Henan province.

ISSA-SVM SSA-SVM SVM

RMSE 61.22 130.52 391.68
r 0.99 0.98 0.48

MAE 22.27 48.11 165.97
MAPE 4.62 9.84 46.57

Figure 4. Errors of three models in the case of Henan Province.

Statistical analysis of the cases: The average percentage error of the model proposed
in this paper is reduced by about 5 percent compared with the support vector machine
improved by the single sparrow search algorithm and by about 40 percent compared with
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the unoptimized support vector machine. The average absolute error and root mean square
error of the model proposed in this paper are 22.27 and 61.22, compared with 48.11 and
130.25 for the model optimized by the single sparrow search algorithm and 165.97 and
391.68 for the unoptimized support vector machine. In the correlation coefficient between
the test sample and the true value, the correlation coefficient r of the proposed model is
0.99, thus indicating that the predicted value of the proposed model fits the true value best.
As shown in multiple model evaluation metrics in Figure 3, the predictive ability of the
SVM optimized by the sparrow search algorithm is greatly improved compared with the
SVM model optimized by the algorithm. In Figure 4 it can be concluded that the Tent chaos
mapping with the CSO and the Cauchy–Gaussian mutation improved the Sparrow Search
Algorithm in terms of the root mean square error (RMSE), the mean absolute error (MAE),
the mean percentage error (MAPE), and Relative Error (RE) on the evaluation metrics of
model prediction ability are all improved.

5. Further Study

Further study of the model: Studying the reliability and applicability of the model,
this paper introduces relevant data from another region of China as a further case study
to predict the potential of electrical power substitution in Henan Province, using relevant
electrical power substitution data from Henan Province as an example. The four model
evaluation indicators mentioned above are still used here to compare the prediction ability
of the model. The prediction results are shown in Figure 5 and Table 4; the relative errors
of the test set are shown in Figure 6 and Table 5; the three model evaluation metrics are
shown in Table 6; and the error pairs are shown in Figure 7.

Figure 5. Fitting effects of three the models in the case of Jiangsu province.

Figure 5 shows that the predicted value curve obtained from the prediction results of
the model proposed in this paper has the best fitting with the true value curve. In order
to further verify the prediction ability of the model proposed in this paper, the evaluation
index of relative error is introduced. Figure 6 also well reflects the relative error of the test
sample, and it can be concluded that the relative error of the model proposed in this paper
is smaller and has better prediction ability in the test set. From Table 5 and Figure 6, it can
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be concluded that the proposed model in this paper has the smallest relative error in all
four test samples.

Table 4. Forecast results of electrical power substitution potential in the case of Jiangsu province.

Year Actual Data ISSA-SVM SSA-SVM SVM

2000 0.00 31.68 27.57 128.22
2001 49.38 49.78 49.78 115.68
2002 99.53 37.85 38.35 99.93
2003 80.37 38.26 39.10 82.54
2004 5.61 6.01 6.01 199.45
2005 25.98 26.38 26.38 98.93
2006 51.10 79.36 88.48 97.68
2007 190.66 180.11 190.26 191.06
2008 249.48 249.88 249.88 304.73
2009 290.22 399.27 416.82 430.75
2010 633.57 579.83 590.06 537.06
2011 803.75 803.35 803.35 695.61
2012 850.23 822.78 817.26 778.08
2013 912.55 860.10 865.90 838.83
2014 843.61 888.52 882.87 843.21
2015 853.20 857.35 853.60 829.77
2016 965.02 965.42 940.42 793.29
2017 1156.62 1157.02 1138.22 741.08
2018 1363.55 1241.36 1183.92 757.97
2019 1342.10 1276.86 1139.32 690.21

Figure 6. Relative error in the case of Jiangsu province.
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Table 5. Relative error of the test sample in the case of Jiangsu province.

ISSA-SVM SSA-SVM SVM

1 0.271 2.619 21.647
2 0.819 1.616 56.072
3 7.135 15.172 79.894
4 13.128 17.798 94.448

Table 6. Evaluation indexes of different models in the case of Jiangsu province.

ISSA-SVM SSA-SVM SVM

RMSE 30.97 60.96 92.23
r 0.97 0.91 0.74

MAE 9.41 21.27 92.23
MAPE 3.76 9.31 60.31

Figure 7. Errors of three models in the case of Jiangsu Province.

Further statistical analysis of the prediction results of the model can be performed
in Tables 4 and 6. First, the prediction ability of the model is evaluated from the RMSE,
and it can be seen that the RMSE of the model proposed in this paper is 30.97, while the
RMSE of the support vector machine without algorithmic optimization is 92.23, which
proves that the intelligent algorithm proposed in this paper has the ability to optimize
the model. Additionally, it is further found that the RMSE of the SVM optimized by the
single sparrow search algorithm is found to be 60.96, which proves that the strategy of
chaos mapping and chicken swarm optimization (CSO) used in this paper to optimize the
sparrow search algorithm is effective. Similarly, the same conclusion can be obtained in the
mean percentage error and the mean absolute error of the prediction model, in which the
mean percentage error of the proposed multi-strategy hybrid improved sparrow search
algorithm optimization model is improved by about 6 percent, compared with the single
sparrow search algorithm optimization model. The proposed model has the best fitting
effect. Using data from the two regions, Henan Province and Jiangsu Province in China, it is
again demonstrated that the tent chaotic mapping, chicken swarm optimization (CSO), and
Cauchy–Gaussian mutation strategy (CG) are effective in optimizing the sparrow search
algorithm (SSA). This shows that the multi-algorithm hybrid strategy proposed in this
paper is successful in predicting the electrical power substitution potential by SVM.

From Figure 5, it can be seen that all three models fit well in the training set. However,
according to the fitting in the test set in Figure 6, the model proposed in this paper has
best fitting in both predicted value and true value. Further analysis of the evaluation
metrics of the model also leads to the conclusion that ISSA-SVM has better prediction
ability. In summary, it can be concluded that optimizing Support Vector Machines through
a combination of strategies of tent chaos mapping, chicken swarm optimization (CSO),
Cauchy–Gaussian (CG), and sparrow search algorithm (SSA) is applicable in electrical
power potential substitution.
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6. Conclusions

The electrical power substitution development strategy is a critical way to achieve the
carbon neutrality and carbon peak targets in China. Moreover, electrical power substitution
is an important form of energy consumption structure transformation. The development
strategy of electrical power substitution will also become a significant way to achieve
sustainable green economy in China. Therefore, it is essential to study the potential of
regional electrical power substitution development. The tent chaos mapping and chicken
swarm optimization (CSO) with the Cauchy–Gaussian mutation improved the sparrow
search algorithm optimized SVM, namely the is ISSA-SVM model proposed in this paper,
which is used to predict and analyze the potential of electrical power substitution in two
Chinese provinces. The relevant conclusions obtained are as follows:

(1) From the perspectives of economic development, environmental constraints, techno-
logical progress, and policy support, the forecasting and analysis of electrical power
substitution potential in Henan Province were carried out, and quantitative indexes
are also given for the above four factors and electrical power substitution potential.
The quantitative results show that the electrical power substitution potential of Jiangsu
Province and Henan Province in China is increasing year by year, which is consistent
with the trend of electrical power substitution strategy promotion.

(2) A forecasting model of electrical power substitution potential is proposed; i.e., the
sparrow search algorithm with tent chaos mapping and chicken swarm optimization
(CSO) and Cauchy–Gaussian mutation optimization is introduced to optimize the
SVM model. For the forecasting of electrical power substitution potential in two Chi-
nese provinces, the data relevant to electrical power substitution potential in Jiangsu
Province and Henan Province are used as examples, and both case studies show that
the proposed model has improved in prediction accuracy and generalization abil-
ity. The mean percentage error (MAPE) of the proposed multi-strategy optimization
model is reduced by about five percent compared with that of the single sparrow
search algorithm, and the relative error (RE), mean absolute error (MAE), and root
mean square error (RMSE) are reduced to different degrees. It can be concluded
that the tent chaos mapping, chicken swarm optimization (CSO), and the Cauchy–
Gaussian mutation strategy do improve the optimality finding of the sparrow search
algorithm, showing that the multi-algorithm hybrid strategy proposed in this paper is
successful in predicting the electrical power substitution potential by SVM.

(3) It provides quantitative indicators of the factors influencing the potential for electrical
power substitution and forecasts the potential. In addition, it provides theoretical
support and a scientific decision-making basis for better guidance of the comprehen-
sive promotion of electrical power substitution, which makes a contribution to the
sustainable development of China.
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Notations and Abbreviations

CSO Chicken Swarm Optimization
SSA Sparrow Search Algorithm
CG Cauchy–Gaussian Mutation
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean Absolute Percentage Error
r Correlation coefficient
RE Relative Error
SVM Support vector machines
Tent Tent chaos mapping
ISSA-SVM Tent-CSO-CG-SSA-SVM
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