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Abstract: Fibre-reinforced cement mortar (FRCM) has been widely utilised for the repair and restora-
tion of building structures. The bond strength between FRCM and concrete typically takes precedence
over the mechanical parameters. However, the bond behaviour of the FRCM–concrete interface
is complex. Due to several failure modes, the prediction of bond strength is difficult to forecast.
In this paper, effective machine learning models were employed in order to accurately predict the
FRCM–concrete bond strength. This article employed a database of 382 test results available in the
literature on single-lap and double-lap shear experiments on FRCM–concrete interfacial bonding. The
compressive strength of concrete, width of concrete block, FRCM elastic modulus, thickness of textile
layer, textile width, textile bond length, and bond strength of FRCM–concrete interface have been
taken into consideration with popular machine learning models. The paper estimates the predictive
accuracy of different machine learning models for estimating the FRCM–concrete bond strength and
found that the GPR model has the highest accuracy with an R-value of 0.9336 for interfacial bond
strength prediction. This study can be utilising in the estimation of bond strength to minimise the
experimentation cost in minimum time.

Keywords: GPR; bond strength prediction; FRCM; FRCM–concrete interface; ANN; SVM

1. Introduction

The necessity for retrofitting existing concrete infrastructure is essential due to ageing,
environmental-induced degradation, lack of maintenance, or the need to fulfill current
design standards [1]. Developed countries are mainly affected due to the above-mentioned
issues, where RC infrastructure components were being used for decades [2–4]. The de-
molition of deteriorated structures is not a sustainable solution, and it is also expensive.
To address such kinds of problems and also to increase the capacity (flexure, shear, axial
and moment) of structural elements, researchers introduced a new class of composite
materials called fibre-reinforced polymer (FRP) [5–12], fibre-reinforced cement mortar
(FRCM) [13–16] or textile-reinforced mortar (TRM) [17–19] and textile reinforced concrete
(TRC) [20–23]. In the last two decades, FRP composites have been utilized progressively
in construction industry for their high tensile strength and low weight [24]. FRP compos-
ites are widely used as an external strengthening material with the use of epoxy resin.
However, recent studies show that that FRP has same drawbacks or limitations such as
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poor performance at elevated temperatures, poor vapour permeability and, sometimes,
compatibility issues with concrete or masonry substrate [25]. These limitations restrict the
use of FRP.

Various researchers have been suggested that the organic matrices (epoxy resins) can
be replaced with inorganic (mortar) matrices to ease the difficulties associated with the
usage of epoxies. However, due to the size of the grains in the mortar, the penetration and
impregnation of the fibre sheets has been proven to be extremely difficult in this situation;
even a thin mortar cannot saturate fibre bundles as resins can [26,27]. Hence, fibre sheets
were replaced by the textile material to increase the bond strength conditions. The TRM
or TRC materials were introduced initially in Europe and later in the US with the name of
FRCM. The textiles utilized as reinforcement are generally long woven, unwoven or knitted
rovings produced in at least two orientations (typically orthogonal).

TRM composites have been increasingly used from the last one and a half decades in
the repair and rehabilitation industry, as well as in the new prefabricated structural elements.
TRMs have a diverse variety of mechanical characteristics due to many types of textile and
mortar matrices available. Alkali-resistant glass (ARG) [28–30], basalt [31–34], carbon [35–39],
polyphenylene bezobisoxazole (PBO) [40,41] and other natural (e.g., flax [42,43], hemp [44]
and sisal [45–47]) fibres are the most frequent non-metallic materials used in textiles and can
be dried, coated or impregnated into the matrix. Figure 1a–f depict images of textiles made
from various fibre materials and geometries. The amount, materials and spacing between
rovings in both orthogonal directions may be adjusted independently, resulting in textiles
with varied geometries and materials in both orthogonal directions. In order to increase
bond quality, these fibres are generally organized in bundles, and their configuration can
be changed from unidirectional to bidirectional textile. The various advantages of TRM
includes fire resistance, ease of application, low cost and good compatibility with concrete
and masonry substrate.

Figure 1. Types of FRCM.

The bond between TRM and the concrete substrate plays an important role in the
strengthening procedure and effectiveness. The connection between the reinforcing material
and the concrete substrate determines how efficient external strengthening systems are
at transmitting stresses. A bond is used to transfer forces from the reinforcement to the
mortar. The geometry of roving, surface condition (dry or wet), degree of impregnation
and surface preparation are the key parameters which affect TRM–concrete bond strength.
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In case of fire, TRM performs better compared to FRP because the of breathability and
non-flammability offered by cement mortar as an adhesive material. Commonly, single and
double shear tests are used to investigate the TRM-concrete bond strength.

Only limited analytical models are available in the literature to predict the FRCM–
concrete bond strength. Jung et al. [48] provided the bond strength prediction formula,
which is a modification of the FRP–concrete bond strength formula. The foundation of
these models are based on a specific database, therefore the model can predict the bond
strength for that database only. Furthermore, these models used various assumptions to
represent the complicated nonlinear connection between bond strength and crucial key
parameters during the theoretical deduction process, which decreases the model efficiency.
The development of an accurate and computationally efficient prediction technique for
FRCM textile bond strength has become necessary.

One such approach would be to use soft computing such as machine learning (ML)
techniques. As a prominent domain of artificial intelligence (AI), ML applications have
been investigated in a variety of civil engineering areas for the prediction, optimisation
and categorisation.

Chen et al. [49] used a gradient-boosted regression trees (GBRT) ensemble leaning
algorithm to predict FRP–concrete bond strength. The elastic modulus of fibres, the tensile
strength of fibres, the thickness of fabric material, the width of the fibre bonding length,
the compressive strength of concrete and the width of concrete block were the input pa-
rameters, and the debonding force was considered as the output parameter. The coefficient
of determination for the training and testing data were 0.9627 and 0.9269, respectively.
The ANN and SVM models were also adopted to compare the results of performance
indices. The R-square value of the SVM and ANN models were 0.9151 and 0.8998, respec-
tively. The GBRT method performs with 3.86% higher accuracy than the SVM model and
has 5.46% higher accuracy than ANN model.

Basaran et al. [50] utilized the machine learning algorithms to forecast the FRP–
concrete bond strength. Five ML models, GPR, ANN, SVMR, regression tress and MLR
models, were used to predict the FRP–concrete bond strength, and it was found that the
GPR approach has the best accuracy, with a mean value of 0.95 and at standard deviation
of 0.14. Baghaei and Hadigheh [51] explored the durability analysis of FRP–concrete bond
strength with data-driven machine learning models. The SVM, ANN and decision tree
were used to forecast the FRP bond strength and found that, among these models, the ANN
model performs best. Su et al. [52] used ANN, MLR and SVM algorithms to predict the
interfacial bond strength between FRP and concrete. The input and output parameters
used in this study were similar to Chen et al. [49]. In terms of accuracy and efficiency,
the SVM-ML technique performs best for predicting interfacial bond strength.

Wang et al. [53] studied the FRP–concrete bond strength behaviour with machine
learning algorithms and code formulations. An ANN was optimized with two hybridized
algorithms: (i) genetic algorithm (GA) and (ii) particle swarm optimization (PSO). The test
results showed that both GA-ANN and PSO-ANN models performs better compared to the
traditional ANN model. Because of its unique information-sharing method, the PSO-ANN
beats the GA-ANN when it comes to convergence speed and prediction error. Sun et al. [54]
explained the multi-objective optimization of a graphite-slag conductive composite applied
a SVR (support vector regression) based model. The correlation coefficient achieved was
approximately 0.981 on the test datasets with higher accuracy.

Abuodeh et al. [55] used machine learning techniques to predict the shear strength of
FRP-strengthened beams. Within the verified resilient back-propagating neural network,
the recursive feature elimination method and neural interpretation diagram were utilized to
determine the factors that strongly impact the prediction of FRP shear capacity. The findings
showed that the resilient back-propagating neural network with the specified parameters
was better at predicting FRP shear capacity (R2 = 0.885) than the RBPNN with all original
15 parameters (R2 = 0.668) when compared to conventional models such as fib14, ACI
440.R-17, and CNRDT200.
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Nikoo et al. [56] used a hybrid approach called bat algorithm-ANN to predict the
shear strength of FRP-reinforced RC beams. The application was defined using a total of
six characteristics relevant to both concrete and FRP properties. The R2 values obtained by
the ANN-BA, ANN-PSO and ANN-GA prediction models were 96.7%, 93.8% and 91.5%,
respectively based on the performance indices, it was found that the ANN-BA model
performs the best.

Alam et al. [57] developed a machine leaning prediction model to analyze the shear
capacity of FRP-strengthened RC beams using Bayesian optimisation algorithm-support
vector regression. The results found that the correlation coefficient (R) and fractional bias
(FB) were determined as 0.977 and 0.0033, respectively, which are approximately near to 1
and 0, suggesting that the prediction is accurate enough.

Hybrid ensemble machine leaning models were used by Chou et al. [58] to predict
the shear strength of RC beams. To increase the prediction accuracy of the model, a
smart firefly algorithm (SFA) was used to optimize least squares support vector regression
(LSSVR). The use of this model decreases the application’s complexity and eliminated the
requirement for computationally expensive modelling.

Fu et al. [59] proposed a time-dependent machine learning model to predict the shear
strength of corroded RC strengthened beams. Gradient boosting regression tree (GBRT)
algorithm was applied on the 158 shear tests of corroded RC beams. Geometric dimensions,
material qualities, reinforcing details and the amount of corrosion were considered as input
parameters while shear strength was considered as an output parameter. The developed
model makes good predictions, with an R2 value of 0.9.

The FRP–concrete bond strength was evaluated by Juncheng et al. [60] using machine
learning methods. The methodologies used were artificial bee colony (ABC)-ANNN
and imperialist competitive algorithm (ICA)-ANN and found that the ICA-ANN model
performed better than the ABC-ANN model.

The interfacial law parameters of FRP strips externally bonded to concrete examined
by Su et al. [61] using ANN methods. According to the database of load–displacement
responses generated from the FE model, the trained ANN model can accurately and
concurrently identify the cohesive law parameters.

Machine learning assessment work was conducted by Naser et al. [62] to predict the
strength of FRP strengthened RC members. An optimized ANN with genetic algorithms
was used to develop a bond–slip model and identify probable failure modes in FRP-
strengthened structures. The proposed bond–slip strength prediction model was compared
to five existing empirical models, with the optimized ANN-GA model outperforming
them all.

He et al. [63] studied the comparison of different machine learning models for the
assessment of delamination in FRP composite beams. BPANN, ELM, and SVM models
were used as inverse algorithms for assessing delamination parameters, with a focus on
interface prediction. Among these proposed models, the SVM-based model outperforms.

Almustafa and Nehdi [64] studied the structural response of FRP-retrofitted RC slabs
subjected to blast loading with machine leaning. Gaussian process regression (GPR) and
the Gaussian process regression synthetic (GPR-syn) model were used. GPR and GPR-
syn had coefficients of determination of 0.9246 and 0.941, respectively. According to
statistical performance criteria such as R2, MAE and MAPE, the constructed GPR-syn
model produced improved predictions as compared to GPR.

A self-tuning machine learning model was proposed by Alwanas et al. [65] to simulate
the load-carrying capacity and failure modes of beam–column joint connection. A newly
introduced intelligence model called ELM was applied on the 153 experimental datasets.
The input features included different dimensions of data from the beam–column junction
and concrete specifications, which were constructed to be given for the prediction model.
The suggested self-tuning predictive model was evaluated against the multivariate adaptive
regression spline (MARS) model, which is a widely used regression model. In comparison to
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the MARS model, the findings showed that the ELM model had a more accurate prediction
performance with an RMSE 18.63 and 14.44, respectively.

Pajand et al. [66] used machine leaning models to predict the crack spacing in the
FRP-strengthened RC beams with lap-spliced bars. The flexural crack spacing is predicted
using four machine learning models: an adaptive neuro-fuzzy inference system (ANFIS),
multilayer perceptron (MLP) neural network, SVR and least mean squares regression. MLP
and ANFIS models had better performance than other models.

A gene expression programming (GEP) approach was used by Nguyena et al. [67] to
predict the deflection of FRP-strengthened beams. The work trained GEP using a database
developed by calculating the effective moment of inertia of 108 constructed beams using 10
equations taken from the literature, taking into consideration the benefits of both theoretical
and empirical models. The deflection of FRP-reinforced beams may be predicted with 99%
accuracy using a GEP-based model.

The feasibility and reliability of machine learning models such as GPR, SVM, ANN,
DT, linear regression and ensemble trees in predicting FRCM–concrete bond strength were
studied in this work. For the first time, an experimental database containing 382 unique
records of single and double-lap shear tests, as well as 8 characteristics, was gathered and
processed for this purpose. In the literature, there is no computer-based model available
for predicting the bond strength of the FRCM system. Following that, the framework of
the hybrid modelling technique and data processing approach used in this study has been
described. The prediction performance of ML models have been evaluated and analysed.

The rest of the paper is organised as follows: Section 2 contains the laboratory methods
of bond strength determination. In Section 3, the research significance of this research article
has been discussed. Section 4 is about the experimental data collection from the literature
and description of the machine learning models. The findings of the prediction models and
comparisons with experimental datasets are presented in Section 5. The outcomes of this
study have been briefly discussed in the last Section 6 of this article.

2. FRCM–Concrete Bond Test

A variety of established in situ techniques of reinforcing structures with TRM-textiles
exist as a result of inspecting the concrete surface and determining the parameters required
for strengthening. Premature TRM debonding, on the other hand, is still a key impediment
to efficient TRM-textile usage. This might occur as a result of the reinforced structures being
exposed to unfavourable environmental conditions in the future. Premature debonding
might also occur as a result of unanticipated changes in load patterns that were not taken
into account during the strengthening process. The current research direction on building
dependable bond models to anticipate debonding in order to overcome this issue. However,
due to the related costs, construction time and small quantity of data obtained after the
excessive work, the characterisation experiments required to create such bond models on
full-scale buildings are not practical. As a result of these variables, more well-designed
TRM textile–concrete bond tests in the laboratory are required, particularly for parametric
research and quality control.

2.1. Single-Shear Lap Test

In this test, a tensile force is applied to a concrete block via TRM fibres attached to one
side of the block, as depicted in Figures 2 and 3a. TRM fibres are adhered to the concrete
surface with the use of suitable mortar paste. Before applying the adhesive, the surface of
the concrete is prepared by eliminating the loose layer of mortar from the concrete substrate
using suitable methods such as sand blasting, grinding, water jet, etc. To prevent wedge
type of failure in the concrete block, the FRCM textiles are normally left unbonded from the
end of the specimen to the inner direction of the specimen. To maximize the potential of
TRM textiles, the bonded part must meet the requirement of effective length. Specimens are
mounted on steel plates and fastened with bolts throughout the testing process. At the end,
the projected TRM fabric is attached to the jaw of testing machine, and the load is applied
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in a controlled displacement manner. It is the most commonly used method and adopted
by various researchers [68–70]. The RILEM guidelines for FRCM bond characterization [71]
is shown in Figure 2.

Figure 2. RILEM guidelines for bond characterization.

2.2. Double-Shear Lap Test

This approach involves concurrently applying tensile force to two TRM textiles bonded
on opposing sides of two serially stacked concrete blocks as shown in Figure 3b. The con-
crete surface roughness and FRCM adhering procedures are the same as for the single
lap test. A steel rod is partially inserted into each concrete block to aid in the application
of appropriate force throughout its length. Several studies have utilized this technique,
including those by Raoof and Bournas [72], Cao et al. [73] and others.
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Figure 3. Configurations shear test: (a) Single-lap shear test; (b) double-lap shear test.

3. Research Significance

To accurately design and simulate buildings using the FRCM composite system, it is
critical to use an accurate and efficient model for forecasting the bond strength of FRCM-
concrete. There is no computational model available in the literature to forecast the bond
strength of the FRCM system. Very limited analytical models are available in the previous
studies. The findings of this study will give researchers an algorithm to estimate bond
strength, allowing them to plan less experimental work with a higher level of accuracy.

4. Experimental Database Collection
4.1. Database

There is currently no appropriate code for experimental investigations of FRCM–
concrete bond strength. The prior studies have only established a few traditional test
configurations, such as single shear, double shear, pull-out, pull-off and beam bending tests.
Because of its simplicity and efficiency, the single- and double-lap shear tests have become
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popular in the last decade. As a result, a complete database may be gathered in order to
create a data-driven model.

Section 2 explains and illustrates the usual setup of single- and double-lap shear
tests. The FRCM concrete compressive stress (fck ), width of the concrete block (bc), elastic
modulus (E f ), thickness (t f ), tensile strength (f f ), breadth of fabric strip (b f ), bonding
length (L f ) and number of layers (n) are all important parameters to consider.

In this work, the database contains the experimental results of 382 single- and double-
lap shear tests available in the literature between 2010 and 2021, containing diverse failure
modes obtained for examination and assessment of the FRCM–concrete bond forecast
model, as shown in Table 1. The FRCM fabric used by researchers in literature contains
carbon, glass and polyphenylene bezobisoxazole (PBO). Table 2 shows the statistical fea-
tures of each major component in the database. Eight input variables have been used to
construct different models, which includes six FRCM parameters and two concrete param-
eters, and the shear force Pu was specified as an outcome. The amount of experimental
samples in this dataset is more than 10 times the quantity of input variables, ensuring that
a data-driven model may be built [74]. The methodology adopted in this work to achieve
the objective is presented in Figure 4. In addition, Figure 5 shows the relative frequency
distribution of test datasets.

Table 1. Extracted data of FRCM–concrete bond.

Reference n bc (mm) fck (MPa) t f (mm) b f (mm) L f (mm) f f (MPa) E f (GPa) Pu (KN)

[75] 1 100 30 10 100 50–250 5213–5391 271–273 5.19–15.64
[76] 1 150 55 5–10 75–150 75–150 3800 230 8.34–44.1
[77] 1–4 100 14.7–32.8 6 80 50–450 3800 225 7.7–50.75
[72] 3–4 100 29.7–33.7 6 80 200 1518 166.8 9.1–62.2
[68] 1 150 16.8 8 50 100–400 1470 73.5 4.76–7.9
[69] 1 120 20.6 10 90 50–260 1089 56 1.984–5.746
[70] 1 125 33.5 10 34–100 100–450 3014 206 3–21.21
[78] 1–2 100 30 10–13 100 75–200 767–1235 80–270 3.34–29.5
[79] 1 100 40–59.3 6–8 60–100 100–330 4660–4700 231–240 0.78–3.97
[80] 1 100 39–41 12 100 250–400 5800 278 8.98–11.86
[81] 1–2 125 42.5 4–8 34–60 100–330 5800 270 0.97–8.29
[82] 1 150 50 10 50 150 4400 260 7.24–20.39
[83] 1 125 26.9–33.5 10 60–80 330–450 3014 206 0.7–10.01

Figure 4. Methodology of present work.
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Figure 5. Relative frequency distribution of experimental datasets.

Table 2. Statistical features of the gathered database.

Parameter Symbol Used Unit Type Mean Min. Max. Std.

FRCM n - Input 1.5105 1 4 0.8925
t f mm Input 8.7094 4 13 2.2028
b f mm Input 72.6649 34 150 24.0303
L f mm Input 232.8665 50 450 109.7950
f f MPa Input 3584.03 767 5800 1574.20
E f GPa Input 213.4932 56 278 62.0064

Concrete bc mm Input 120.4581 100 150 17.6764
fck MPa Input 35.9937 14.7000 59.30 9.8866

Pu - kN Output 12.7473 0.7000 62.2000 11.2335

4.2. Performance Indices

The study evaluated the performance of the selected techniques using statistical
assessment criteria such as MAE (Mean Absolute Error), MAPE (Root Mean Square Error),
R (Pearson Correlation Coefficient) and RMSE (Mean Absolute Percentage Error). Where
an R-value closer to 1 suggests a better fitting result, and an R-value more than 0.85 shows a
significant connection. The greater the performance of the ML models, the lower the values
are of the three indices, MAE, MAPE and RMSE [84]. The related mathematical expressions
are expressed in Equations (1)–(5):

R =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2(yi − ȳ)2
(1)
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where N is the number of experimental datasets, xi is the measured value at ith level, bar x
is the mean of measured values, yi is the predicted value at ith level and bar y is the mean
of predicted values.

MAE =
1
N

N

∑
i=1
|Ei − Pi| | (2)

where Ei and Pi are the experimental and predicted values, respectively.

MAPE =
1
N

N

∑
l=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (3)

MSE =
∑N

i=1(Ei − Pi)
2

N
(4)

RMSE =

√
∑N

i=1(Ei − Pi)
2

N
(5)

4.3. Pre-Processing of Data

The data were collected from the literature as mentioned in Section 2. All the data were
normalized in the range of −1 to +1 using Equation (6). The plotmtrix of the normalized
data is shown in Figure 6:

Xnormalized =

[
2× y− ymin

ymax − ymin

]
+ 1 (6)

In this equation, Xnormalized is the final outcome of normalized data, y is the value to
be normalized, ymin is the minimum value in the data set and ymax is the maximum value
in the dataset.

Figure 6. Plotmatrix of normalized dataset.

After that, the dataset was divided into two parts on a random basis. A total of 70% of
the records were chosen as a training set for the ML models to be trained using supervised
leaning. Following that, the remaining 30% of the datasets were utilized as a test set to
check the networks performance and assess their generalization capabilities.
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4.4. Machine Learning Methods
4.4.1. Linear Regression

Linear regression is a supervised-learning-based machine learning technique. Re-
gression analysis (RA) is a type of statistical examination that is often used to scrutinize
the connection between a dependent variable and one or more independent variables.
The connection is modelled in order to forecast the future state of the dependent variable.
The RA with a single independent variable is known as one-variable or simply called re-
gression analysis (SRA), while an RA using more than one independent variable is known
as multiple regression analysis (MRA). Linear regression models are those that are stated
by linear equations, whereas nonlinear regression models are those that are not [85]. This
information may be acquired by employing the regression line, which is a line that can be
computed using Equation (7):

E(y) = βo + β1x (7)

where E(y) is the predicted value of the dependent variable Y, βo is the intercept, β1 is the
regression coefficient and x is a given value of the independent or predictor variable.

MRA is a regression model that estimates the dependent variable based on two or
more independent variables that are related to the dependent variable. The independent
factors explain the whole variation in the dependent variable. This model may be used
to interpret the direction of the relationship between the independent variables and the
dependent variable. For a total of n number of independent variables, the mathematical
model of MLR analysis is provided in Equation (8):

E(y) = βo + β1x1 + β2x2 + β3x3 + β4x4 + · · ·+ βnxn (8)

where β1, β2, β3, β4 and βn are the regression coefficients of x1, x2, x3, x4 and xn, respec-
tively.

When other independent variables are maintained constant in an MLR model, the slopes
βi correspond to the increase in the dependent variable E(y) as a consequence of the unit
increment in the respective independent variable (xi) [86].

4.4.2. Regression Tree

In 1984, Leo Breiman proposed regression trees for the first time [87]. As a result,
decision tree (DT) learning has sparked a lot of attention. In regression analysis, a case is
defined as (x, y), where x is the attribute vector and y is the target. A regression function is
used to estimate how the goal y changes as x is changed when the connection between x and
y is changed. In the proposed approach, all types of regression trees were applied. Three
steps are involved in the construction of an RT: (1) tree growth using a learning dataset; (2)
tree pruning with a test dataset or cross-validation; and (3) best pruned tree selection.

The concepts of training, validation and test sets, as well as the concerns of over-
fitting versus under-fitting, have been applied to DT. A tree in a graph-theoretic sense is
the fundamental model in DT learning. However, there is a stylized control flow that is
overlaid on the tree structure that must be recognized. A decision-type question is asked
at each inner node of the tree, also containing the root. Based on the answer, the next
child node will be decided. At last we reach to the leaf node and have classification of the
dataset because each leaf node has its class level. DT learning has the benefit of being able
to capture more complicated decision boundaries than other learning approaches such as
logistic regression. There is no hyperplane that divides samples of two different classes,
therefore, DT learning is useful for samples that are not linearly isolated. The capacity of
decision trees to represent complicated decision boundaries can be a trap in and of itself,
since overfitting can occur unless other approaches, such as “pruning the tree”, are used.

Decision trees are popular due to a few other benefits. To begin with, they frequently
result in a clear visual representation of how the ML system conducts categorization.
Additionally, the training process is generally quick and can handle huge amount of
data. Finally, decision trees are commonly employed in ensemble learning approaches
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such as AdaBoost and random forests. Bagging is a large category of machine learning
algorithms that includes random forests. Overfitting is particularly well-served by bagging
methods. Multiple decision trees are learnt in random forests, which are then combined
to form a graph-theoretic forest. The various decision trees in the forest categories are
based on the new feature vectors. The final classification is created by combining these
separate categories.

Each final region is given a value in order to estimate the intended output. The tree
may be represented as a function defined by h as given in Equation (9), with Rj defined as
the disjoint areas allocated to each leaf of the DT:

h(x) =
j

∑
j=1

bj1{x∈Rj} (9)

4.4.3. Support Vector Machine (SVM)

Support vector machines (SVMs) were created in the 1990s by Vladimir Vapnik and
are based on statistical learning theory. An SVM examines the extreme limits and draws the
edges, which are commonly referred to as hyperplanes, that divide two classes. Decision
limits that are not ideal can cause the new data point to be misclassified. The extreme data
points assist in determining the limitations, known as support vectors, and they prefer to
disregard the training data points [88].

In classification applications, support vector machines are extensively utilized. The pro-
cedure of identifying the function f(x) with the least difference between empirically ex-
perimental responses and predictions for all training datasets is referred to as classical
regression analysis. In order to obtain a generalized performance, one of the major feature
of SVM is to strive to attain the smallest generalized error limit rather than the small-
est observed training error. This generalized error limit is defined by a combination of
the arrangement term, which limits the complexity of a collection of functions, and the
training error.

A training set expressed in the regression process is in Equation (10):

Z = {(x1, y1), (x2, y2), . . . , (xm, ym)} (10)

where ym and xm express the dependent and independent variables of the regression
models, respectively.

yi =
n

∑
i=1

(αi − βi)× (x, xi) + b (11)

where b is the bias and αi and βi represent Lagrange multipliers. In the nonlinear case, the
modified equation with added Kernel function is given by:

yi =
n

∑
i=1

(αi − βi)× k(x, xi) + b (12)

where k(x, xi) is the Kernel function. Kernel functions include polynomial, radial basis
function and hyperbolic tangent.

4.4.4. Gaussian Process Regression (GPR)

“The Concept of Gaussian processes (GP) is named after Carl Friedrich Gauss since
it is based on the Gaussian distribution (normal distribution)”. A GP is an infinite group
of random variables with a constant joint Gaussian distribution in any of its finite subsets.
A mean function and a covariance function are used to represent a GP [89,90]. The mean
function is commonly assumed to be zero since the GP is a linear combination of random
variables with a normal distribution. GP can be viewed as a nonlinear function distribution.
GP is defined as:

f (x) ∼ GP
(
µ(x), k

(
x, x′

))
(13)
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where µ(x) = mean, and k(x, x′) = positive-semi definite kernel function which define the
covariance between any two realization of f (x) and f (x′):

k
(

x, x′
)
= cov

(
f (x), f

(
x′
))

(14)

The mean is often assumed to be zero, i.e., µx = 0, and the kernel has parameters
θ, i.e., k(x, x′|θ). For any infinite collection of inputs X = (x1, x2, . . . . . . , xn), the f (X) =
( f (x1), f (x2), . . . . . . , f (xn) have joint multivariate Gaussian distribution.

f (x) ∼ N(0, KXX(θ)) (15)

where the elements of N-by-N covariance matrix are defined by the kernel function:

[KX,X(θ)]i,j = k
(
xi, xj | θ

)
(16)

The covariance function aids in the implicit specification of model properties such as
periodicity, smoothness, stationarity and so on. As shown in Equation (17), the fundamental
and extensively used GPR is made up of a squared exponential covariance function and
simple zero mean:

k
(
x, x′

)
= σ2

f exp
[
−r
2

]
(17)

In addition, the value of r is expressed in equation:

r =
|x− x′|2

l2 (18)

where, l and σf are the hyper-parameters and effect the performance of Gaussian Process.
σf denotes the model noise and l is the scale of length. In this paper, all the kernel function
rational quadratic, square exponential, matern 5/2 and exponential function are being used.
The information and formulation of these function were mentioned in the literature [91,92].

4.4.5. Ensembles of Trees

Several separate trees are joined together to make an ensemble of trees. Despite being
one of the most efficient and understandable classification techniques, decision trees have
a limited generalization ability. As a result, they have a low bias in the sample but a
significant variance out of the sample. Rather than employing a single decision tree, they
mix multiple to provide greater prediction results. The ensemble model is based on the idea
that a number of weak learners may be united to generate a strong learner. Bagging and
boosting are the most common approaches for training ensemble decision tree models [93].

The boosted regression tree (BRT) [94,95] is a hybrid of regression tree and boosting.
Many decision trees, such as the random forest model, have been fitted to the BRT multiple
times in order to increase the model’s accuracy. There was a distinction between the two
approaches utilized to generate the data’s selected trees. In both strategies, all data for
the building of each new tree was chosen at random, as shown in Figure 7. The baggage
approach was utilized in the random forest model, which revealed that the probability
of successive samples being selected for each occurrence was the same. The input data
were weighted in the trees, and BRT was employed as a boosting strategy. The weights
were inadequately approximated when using this model, resulting in the prior tree being
selected as the new tree. This means that the first tree fitted to the model will account for the
inaccuracy and will become a new tree. Taking the old tree against a new tree enhanced the
model’s accuracy and made it a powerful model. The boosted regression tree considered
two parameters such as tree complexity and learning rates.
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Figure 7. Boosted regression tree [95].

When we want to minimize the variance of a decision tree, we employ bagging
(bootstrap aggregation). The primary idea behind this method is to create various subsets
of data from the training sample, which is chosen at random via replacement. Each subset
of the data is utilized to train the decision tree model that corresponds to it as presented
in Figure 8. As a result, a variety of models emerge. Finally, rather than using a single
decision tree, the average of all forecasts from several trees is employed, which is more
powerful and accurate.

Figure 8. Bagging regression tree [95].

4.4.6. Artificial Neural Network

Artificial Neural Networks (ANNs), discovered by McCulloch and Pitts, play a critical
role in Artificial Intelligence (AI) [96]. Artificial neural networks (ANNs) are sophisticated
data processing systems based on the human brain system [97]. ANNs are made up of basic
elements (which are also known as nodes or neurons). To build a layer, the neurons must
interact with one another and combine. Neurons are linked together via connection links,
each of which has a different weight. Every neuron captures a weighted sum of inputs
(signal). Each neuron has a unique transfer function (sometimes referred to as the activation
function), and the output signal is created when the weighted sum of inputs exceeds a
specified threshold. Because the flow of information occurs in the forward direction, this
activity is termed feed-forward. Gradient descent and backpropagation are commonly em-
ployed to decrease error (the difference between output and goal variables). The suggested
network design is depicted in a simplified form in Figure 9. This proposed ANN model has
three hidden layers. The Levenberg–Marquardt backpropagation algorithm was used to
train the model. The capacity of ANN to learn is a key aspect in forecasting bond strength.
A collection of input/output data can be used by ANN to build a non-linear structure [98].
ANN has been successfully employed by several studies to forecast the strength of the
FRP–concrete connection [99,100].
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Each neuron receives inputs from the top layer, calculates the weighted total of those
inputs and uses an activation function to create outputs for the next layer. The set of inputs
X = (x1, x2, . . . , xn) will be multiplied by the weight vector Wj = (wj1 , wj2 , . . . , wjn). Lastly,
the biases are added into it as shown in the following equation:

Yj =
n

∑
i=1

wjixi + bj (19)

where Yj is the weighted sum of outputs.

Figure 9. Neural network architecture.

5. Results and Discussion

It is common to evaluate the model performance once a predictive approach has
been fully constructed.The analytical estimates produced from the ANN, regression tree,
GPR, linear regression, SVM, ensemble tree, optimized GPR, optimized SVM, optimized
ensemble tree and optimized regression tree machine learning algorithms are presented
in this section. To evaluate the performance of each algorithm, the statistical assessment
criteria R, RMSE, MAPE and MAE were used. The calculation process was carried out on a
Desktop Intel(R) Core (TM) i5-4570 CPU @3.20 GHz, 8 GB RAM.

It has been found that in linear regression model, the best achieved algorithm was
interactions linear with an off robust option. The R-value of this model is 0.9284, which
is 0.55% lower than the GPR model. Similarly, in regression trees, the best fitted model
was a fine tree with a minimum leaf size of four. In this model, the (regression coefficient)
R-value is 0.9102, which is 2.51% less than the GPR model. The other performance indices
such as RMSE, MAPE and MAE have values of 4.6527, 26.1715 and 2.6228, respectively.
In SVM, the quadratic SVM is the best-fitted model with automatic box constant mode.
The overall R-value of SVM is 0.9239, which is 1.04% lower than the GPR model values.
GPR and ensemble-boosted tree are the best-fitted models, having overall R-values of
0.9336 and 0.9102, respectively. Figure 10 compares the predicted values of all machine
learning methods.

Table 3 shows the results of a number of statistical measures derived from various
models in order to analyze their performance quantitatively. The performance metrics
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R, RMSE, MAPE and MAE for the GPR model are 0.9435, 3.6443, 24.2188 and 2.0179 on
the training data, and 0.9130, 4.7904, 23.8626 and 2.7193 on the test data, respectively, as
shown in Figure 11. The R-value for test data is 3.2326 % lower than for training data,
and the RMSE and MAE for the test data are 31.45% and 34.76% higher, respectively. For the
training data, it was indicated that the GPR model may overfit the data when predicting the
FRCM–concrete bond strength. However, the value of the MAPE testing set is decreased by
1.4927 % compared to the training data.

Table 3. Comparison of performance indices of different models.

Model Data Type R RMSE MAPE (%) MAE

ANN Training 0.9538 3.2952 18.3171 1.5887
Testing 0.8871 5.4525 22.8626 2.8800
Overall 0.9321 4.0238 24.1089 2.2290

GPR Training 0.9435 3.6442 24.2188 2.0179
Testing 0.9130 4.7903 23.8539 2.7193
Overall 0.9336 4.0238 24.1089 2.2291

SVM Training 0.9329 3.9657 24.4248 2.1105
Testing 0.9051 5.0348 24.8017 2.7395
Overall 0.9239 4.3155 24.5383 2.2998

Linear Training 0.9360 3.8623 25.7076 2.2904
Testing 0.9127 4.8056 28.4808 2.8437
Overall 0.9284 4.1688 26.5425 2.4570

Regression Tree Training 0.9287 4.0705 26.2388 2.3611
Testing 0.8729 5.7828 26.0152 3.2303
Overall 0.9102 4.6527 26.1715 2.6228

Ensemble Training 0.9301 4.1701 41.1632 2.7784
Testing 0.8929 5.3720 40.2515 3.2918
Overall 0.9176 4.5654 40.8887 2.9330

Optimized GPR Training 0.9432 3.6526 24.3401 2.0286
Testing 0.9137 4.7731 23.7343 2.7112
Overall 0.9336 4.0229 24.1577 2.2341

Optimized SVM Training 0.9353 3.8944 19.9381 1.9364
Testing 0.9113 4.8730 20.7624 2.6893
Overall 0.9275 4.2130 20.1863 2.1631

Optimized Ensemble Training 0.9404 3.7475 24.4664 2.1357
Testing 0.9042 5.0443 22.7060 2.7824
Overall 0.9286 4.1804 23.9364 2.3303

Optimized Regression Tree Training 0.9329 3.9524 22.6536 .2475
Testing 0.8822 5.5507 22.5035 2.9251
Overall 0.9163 4.4944 22.7346 2.4553

The performance metrics R, RMSE, MAPE and MAE for the ANN model are 0.9538,
3.2951, 18.3171 and 1.5887 on the training data and 0.8871, 5.4525, 22.8626 and 2.8801 on
the test data, respectively. The R-value for test data is 6.99% lower than for the training
data, and the RMSE, MAPE and MAE for test data are 65.47%, 24.82% and 81.28% higher,
respectively. For the training data, it was indicated that the ANN model may overfit the
data when predicting the FRCM–concrete bond strength. Despite the fact that the statistical
metrics of the ANN and GPR models on the training data do not differ much, the overall
performance of the ANN model is significantly better than the other models.

On the basis of performance indices, the best fitted models are ANN and GPR.
The worst models are regression trees, ensemble boosted trees and optimized regres-
sion trees. There is no variation in the performance indices of GPR and the optimized GPR
models. The R-value of the improved SVM model is 0.39% higher than that of the SVM
model. Similarly, the R-value of the improved ensemble boosted tree is 1.18% higher than
that of the ensemble boosted tree model. However, when compared to the regression tree
model, the value of the optimized regression tree model increases significantly. Figure 12
presents the variation of experimental data and machine learning models data with re-
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spect to data order. The R, RMSE, MAPE and MAE comparison of best prediction models
optimized GPR, GPR and ANN is shown in Figure 11.

Figure 10. Comparison of machine learning models.

Figure 13 shows the experimental and predicted bond strength calculated by the
ANN, ensemble tree, GPR, linear regression, regression tree and SVM. Figure 14 shows
the experimental and predicted bond strength calculated by optimized GPR, optimized
regression tree, optimized SVM and optimized ensemble tree. Figures 13 and 14 are used to
analyze the error between experimental and predicted values. To speculate the pattern of
experimental data, different standard models have been used and compared to predict the
variation between experimental data with standard models. The higher variation between
experimental data and standard models reflect higher errors. The blue lines in each figure
represent the experimental values, while the dotted pink lines are the predicted values.
The maroon circles below these values corresponds to their errors.
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Figure 11. R, RMSE, MAPE and MAE compression of best prediction models.

Figure 12. Comparison of ML predicted results with experimental results with respect to data order.
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Figure 13. Experimental and predicted bond strength calculated by ANN, ensemble tree, GPR, linear
regression, regression tree and SVM.

Figure 14. Experimental and predicted bond strength calculated by optimized GPR, optimized
regression tree, optimized SVM and optimized ensemble tree.

In comparison to other models, the bond strength dataset produced from the GPR,
the optimized GPR and ANN models give the maximum precise results and extremely
matched to perfect fit line, as shown in Figure 10a,c,h. Figure 15 also shows the distribution
of absolute error values, which may be used directly to compare the error value ranges
with all ML models. When compared to other models, the absolute error datasets for the
GPR, optimized GPR and ANN models are focused in the lower circle range. As a result,
the GPR, optimized GPR and ANN model performs well with other techniques and has
the greatest precision and resilience. Additionally, the absolute error datasets of GPR,



Sustainability 2022, 14, 845 20 of 25

optimized GPR and ANN lie in often less than 8 kN error range (about 97.07%, 96.97% and
96.43%, respectively).

Figure 15. Absolute error values of prediction models.

6. Conclusions

Various machine learning techniques are used to evaluate the bond strength between
FRCM composites and concrete substrate. Experimental datasets are gathered from the
literature, which includes 382 single- and double-lap shear experimental data. Collected
data were scaled and normalized in the range of −1 to +1 to better visualize the varia-
tion effect. The number of FRCM layers, the compressive strength of the concrete block,
the width of the concrete block, the tensile strength, the elastic modulus, the thickness
of the FRCM plate and the concrete block width were considered as input parameters
to predict FRCM–concrete bond strength. The performance parameters R, RMSE, MAPE
and MAE were used to evaluate the performance of the ANN, GPR, SVM, linear regression,
regression tree, ensemble learning, optimized SVM, optimized GPR, optimized regression
tree and optimal ensemble learning models. The findings revealed that the GPR, optimized
GPR and ANN are the best-fitted models for estimating FRCM–concrete bond strength.The
following are the quantitative outcomes of this study:



Sustainability 2022, 14, 845 21 of 25

• The GPR and optimized GPR model can accurately predict the bond strength with
R-value 0.9435 and 0.9310 (for training) and 0.9432 and 0.9137 (for testing), respectively.

• ANN model founds third best fitted model to predict the bond strength with R-value
0.8871 for training and 0.9538 for testing.

• According to the R, RMSE, MAE and MAPE assessment standards, the precision of the
analytical approximations of the optimized GPR, GPR, ANN, optimized ensemble, lin-
ear regression, optimized SVM, SVM, ensemble, optimal regression tree and regression
tree decreases subsequently.

• The error value distribution was used to assess the optimized GPR, GPR and ANN
models’ resilience and accuracy. The suggested model surpasses other ML models by
having the lowest absolute error values, which are confined to less than 7 to 8 kN of
the Pu range.

The performance of the proposed model can be further enhanced using a large number
of datasets. The developed models are only valid for bond strengths ranging from 0.7 to
62.20 kN, which can be utilized for the accurate prediction of FRCM–concrete bond strength.
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