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Abstract: This study investigates the relationship between climate variables such as rainfall amount,
temperature, and carbon dioxide (CO2) emission and the triple dimension of food security (availability,
accessibility, and utilization) in a panel of 25 sub-Saharan African countries from 1985 to 2018. After
testing for cross-sectional dependence, unit root and cointegration, the study estimated the pool mean
group (PMG) panel autoregressive distributed lag (ARDL). The empirical outcome revealed that
rainfall had a significantly positive effect on food availability, accessibility, and utilization in the long
run. In contrast, temperature was harmful to food availability and accessibility and had no impact on
food utilization. Lastly, CO2 emission positively impacted food availability and accessibility but did
not affect food utilization. The study took a step further by integrating some additional variables
and performed the panel fully modified ordinary least squares (FMOLS) and dynamic ordinary
least squares (DOLS) regression to ensure the robustness of the preceding PMG results. The control
variables yielded meaningful results in most cases, so did the FMOLS and DOLS regression. The
Granger causality test was conducted to determine the causal link, if any, among the variables. There
was evidence of a short-run causal relationship between food availability and CO2 emission. Food
accessibility exhibited a causal association with temperature, whereas food utilization was strongly
connected with temperature. CO2 emission was linked to rainfall. Lastly, a bidirectional causal link
was found between rainfall and temperature. Recommendations to the national, sub-regional, and
regional policymakers are addressed and discussed.

Keywords: climate change; food security; sub-Saharan Africa; PMG; DOLS; FMOLS

1. Introduction

Food security is one of the most trending topics and a growing concern of the century.
In 2020, approximately 690 million people (8.9% of the global population) were projected
to be in a state of hunger [1]. The recent COVID-19 pandemic has exacerbated global
hunger [1]. The number of undernourished people worldwide is likely to have risen
between 83 and 132 million and could reach 840 million (9.8%) by 2030 [2]. More than 20%
of the SSA population lives in food insecurity on average [3].

In 2015, the United Nations rated “ending hunger, achieving food security, enhancing
nutrition, and promoting sustainable agriculture” the second among 17 Sustainable Devel-
opment Goals for 2030, emphasizing food security [4]. However, while food systems are
being transformed to make healthier diets more available globally, hunger, on the other
hand, remains a challenge. The global undernourished population is still increasing [5],
making the UN’s 2030 goal more perplexing to attain [6].

Food insecurity is more exacerbated by climate change and its variability. It is expected
that mean and annual peak temperatures will continue to rise, despite overall higher
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average rainfall. Several temperature observations collected in SSA show statistically
substantial evidence of global warming between 0.5 and 0.8 degrees Celsius (◦C) between
1970 and 2010 over Africa utilizing remotely sensed data originally described [7]. SSA is one
of the most vulnerable regions to rising temperatures and unpredictable wet weather [8].
For example, rainfall in West Africa’s semi-arid and sub-humid zones was 15–40% lower
on average over the previous 30 years (1968–1997) than between 1931 and 1960 [9]. There
was a 2.8-fold decrease in water availability throughout Africa and a 40–60% decrease
in the average river discharge in West Africa [10]. By 2025, up to 370 million people in
Africa will be under water stress [11]. The Central and Eastern African regions are the most
vulnerable [12]. Studies in Chad revealed a strong diminishing trend of rainfall for three
decades, especially during the dry season, causing drought conditions for many years. As
for temperature, each of the three decades has witnessed a rise of 0.15 ◦C from 1950 to
2014 [13]. Both rainfall and temperature fluctuations were unequally distributed across the
country [14].

Agriculture is the economic backbone of most SSA economies, accounting for up to
14% of gross domestic product (GDP) [15]. In 2019, it employed 52.9% of the workforce in
the sub-region [16]. However, agriculture is still traditional and very sensitive to climate
change. Rainfed agriculture is prevalent in most countries. Increasing temperatures and
shifts in rainfall patterns have affected agricultural production with significant drops in
crop and livestock production, thus impacting food distribution [17].

In the light of the above food security concern, this study investigates the long-run
effects of climate change on food security measured by three of its indicators over the period
1985–2018 from 25 sub-Sahara African countries. Research in 2019 assessed the impact of
rainfall variability on food security [18]. Few other studies evaluated climate change’s effect
on crop yield [19–21]. Furthermore, the impact of climate change on food accessibility was
thoroughly discussed [2,22–25]. A few other studies emphasized the relationship between
crop nutritional value and climate change [26–30]. However, these studies mainly focused
on a single climate variable and one indicator of food security. The uniqueness of this study
lies in its attempt to go beyond previous empirical investigations by incorporating three
food security indicators (food availability, accessibility, and utilization) into a single study.
Cereal crops (i.e., maize, rice, millet sorghum, and wheat) are chosen as the study’s primary
focus because they are the primary source of dietary energy in the diets of SSA people [31].
They are high in energy, carbs, protein, fiber, and macronutrients, particularly magnesium
and zinc [32].

Cereal yield (CY) serves as a proxy measure of food availability. Food accessibility
is measured by the agriculture gross domestic product (GDPA), while food utilization is
determined by the Cereal Dietary Energy Supply (CDES). The motives for including these
three variables are first because they comprehensively measure the three food security
indicators. A pragmatic policy-oriented discussion, based on empirical determinants and
relative effects, is likely to coincide with such studies. Second, it is difficult to reach a
conclusion based solely on the impact (positive/negative) of the absolute value of food
availability, which most researchers consider when gauging food security at the aggregate
level. Third, climate variability and change directly affect food availability by increasing or
reducing agriculture yields, impacting the total domestic food supply. Another reason is
that agriculture GDP measures agriculture contribution to economic growth (agriculture
value-added). Agriculture is SSA’s first job provider involving more than 50% of the
population. Even though its share in the total GDP has reduced in recent years, it is a
good indicator of farmers’ economic wellbeing, without which they could not afford food
commodities. Finally, because of the data unavailability on the nutritional value of food in
the sub-region, the study uses cereal dietary energy supply to represent food utilization.
Cereal dietary energy supply measures the total calories provided by cereal consumption
daily and is paramount in the SSA population food diet. On this premise, cereal dietary
energy supply is used as a proxy for food utilization.
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The rest of the paper is structured as follows: Section 2 provides empirical literature of
the previous studies on related topics. Section 3 describes the data, materials, and methods,
while Section 4 presents the empirical results. Section 5 is devoted to the discussion of the
results. Lastly, Section 6 presents the conclusion and policy implication.

2. Literature Review
2.1. Climate Change and Food Availability

The supply side of food security is addressed as food availability. Domestic food
production, commercial food imports and exports, food aid, and domestic inventories all
contribute to the total amount of national food availability. Food availability is the most
broadly used, studied, and researched aspect of food security. Climate uncertainty impacts
agricultural-related activities, particularly production, impacting food availability (crops
and livestock). Climate change has a few favorable effects, such as a prolonged agricultural
season in northern latitudes. However, most of the previous findings on cereal crops across
geographic locations for each predicted climatic scenario are consistent with the negative
effect of climate change on crop production [33,34].

Climate change factors, including CO2 emissions, average temperature, and average
precipitation, positively influence wheat productivity in Pakistan both in the short-run
and long-run [35]. Likewise, an increase in annual temperature decreases both date and
cereals output, while cereals production is positively affected by the yearly rainfall in
Tunisia [36]. Rainfall variability and change worsen food insecurity by lowering per capita
food supply, increasing the undernourished population [18]. Drought is one of the causes
of malnutrition, hunger, and undernutrition. It has lowered the global food supply by
producing a global grain deficit [37,38]. Lack of water inhibits plant productivity and
growth, decreasing carbon absorption and higher vulnerability to pests and diseases [39].

A systematic analysis of crop production in Africa and South Asia highlighted a possi-
ble decline in crop yields by 8% by 2050. More importantly, crop yields were anticipated
to fall by 17% (wheat), 5% (maize), 15% (sorghum), and 10% (millet) across Africa as
against 16% (maize) and 11% (sorghum) across South Asia as a result of climate change [19].
Similarly, an increment of 20% in intraseasonal precipitation variability reduces maize,
sorghum, and rice yields in Tanzania by 4.2%, 7.2%, and 7.6%, respectively [20].

Furthermore, temperature changes can affect the yield of crops. For instance, higher
temperatures may accelerate plant carboxylation and boost photosynthesis, respiration, and
transpiration. Higher temperatures can partly stimulate blooming, while low temperatures
can reduce energy use and increase sugar storage. The emergence of new diseases in
grain crops due to climate change, such as wheat blasts, poses a challenge to farmers and
jeopardizes their food supply [40].

A study conducted in the Gambia found a steady negative relationship between mini-
mum temperature, maximum temperature, and detrended yields [41]. A slight temperature
rise in temperate regions (1–3 ◦C mean temperature, not more than 3 ◦C) is beneficial
for crop yields. Increased evaporative heat and agricultural water stress will occur as
temperatures rise in tropical areas. The rising global temperature would have disastrous
effects on tropical agriculture, particularly in developing countries [42]. Similarly, Iizumi
et al. (2021) [43] analyzed the consequences of rising temperatures on Sudan’s domestic
wheat output and consumption by 2050 under two distinct warming scenarios (1.5 ◦C
and 4.2 ◦C) and five different socioeconomic scenarios (SSPs). Even with similar future
investment, technology development, and crop management assumptions, it is assumed
that climate change would lead to a wheat supply deficit in Sudan by 2050.

2.2. Climate Change and Food Accessibility

Food accessibility refers to food prices, availability, and preferences that enable people
to turn their hunger into need [44] effectively. Climate change impacts food production
and farmers’ income, accessibility, supply, and security [22].
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Many countries’ local food supplies mainly depend on global food markets, but
climatic factors change agricultural products at national and regional levels [45]. Crop
failures resulting from climate change negatively impact developing countries, lacking
preparedness skills and ability [46].

Studies have found rainfall variability to affect smallholder crop income during the
cropping season substantially negatively [22]. Similarly, a study conducted in Nepal found
an increase in temperature and rainfall to negatively impact the net wheat revenues [21].
Declining agricultural productivity will intensify poverty and restrict access to food by the
poor in rural and urban areas [23]. Climate variability has a significant and negative impact
on economic growth in developing countries [47]. Developing countries’ financial resources
are vulnerable to climatic fluctuations because a disproportionate share of their GDP is
spent in climatically sensitive sectors. A reduction in agricultural production, exports, and
investments in research and development can reduce output and the economy’s ability to
grow. Similarly, climate shocks will decrease the amount of money available to governments
by impacting economic development (low tax revenues, for example) [47].

Extreme weather occurrences can also affect the supply of food products, resulting
in price increases and a reduction in the livelihood of the poor, especially in low-income
countries. Consequently, allocating a high proportion of revenues toward food supplies
would negatively impact people’s purchasing power [44,48,49]. This scenario would lead
to worldwide hunger and food insecurity, worsened by high food costs, climate extremes,
fluctuation, and limited access to food [2]. Climatic instability, for instance, increases
childhood hunger in sub-Saharan Africa by rising food prices [50].

Household food budgets are tested when climate change impacts income sources [24].
An increase in food prices will influence the accessibility to and use of food, putting around
38 million people in Asia and the Pacific at risk of starvation [25]. Farmers who cultivate,
process, and eat food directly from their farmland, such as subsistence and smallholder
farmers, are expected to be the most exposed to climate change repercussions [51,52]. Those
smallholders depend on farm productions for most of their income [53].

It has also been argued that reaching a high GDP comes with a high level of CO2
emission [54,55]. Likewise, studies examined the relationship between CO2 emission and
GDP and showed a long-run causal relationship between the two [56–58].

2.3. Climate Change and Food Utilization

Food utilization refers to a person’s or a family’s ability to consume and profit from
food [59]. In changing climatic conditions, food utilization is the least studied but most
dramatically influenced component of food security [59]. Because actual food distribution
across diverse populations, localities, and households is primarily understudied, focusing
on food availability rather than food intakes has several drawbacks [60].

The majority of micronutrients consumed by poor households are obtained from plant
consumption. Climate change could directly impact micronutrient consumption in three
ways: affecting crop yields of essential micronutrient sources, changing the nutritional
composition of a specific crop, or impacting crop selection decisions [61]. Additionally,
price increases due to climate change result in a significant decrease in the consumption of
all food groups, lowering nutrient intake. The poorest people in the country, who already
spend most of their income on food, will continue to use negative coping strategies like
eating less, relying on lower-quality food, and decreasing expenditure on non-food items
such as health care and education [23]. To adapt to these conditions, farmers minimize the
daily food consumption of all household members equally or prioritize the household’s
breadwinners in times of food scarcity [62]. For instance, farmers in Nyando district,
Western Kenya, were compelled to cut their food intake due to the impact of hazardous
climatic events, which limited the content, variety, and frequency of meals consumed
daily [52]. Smallholder farmers in Madagascar responded to food scarcity by eating smaller
meals per day, modifying their food ingredients, and substituting wild plants [53].
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Climate variability affects grain quality [63,64]. Zinc and iron insufficiency is frequent
in low-income areas, such as sub-Saharan Africa and South and Southeast Asia, depending
on grain diets, creating a severe global human health concern [27]. A study on climate
change and its impact on child malnutrition among subsistence farmers in low-income
nations discovered a strong relationship between weather and child stunting [28]. Climate
change hinders access to food nutritional values and safe drinking water, increasing the
risk of vector and waterborne diseases [28,61]. It also restricts access to proper sanitation
facilities, facilitating diarrhea conditions, a leading cause of death (particularly vulnera-
ble to climate change). As a result, it can directly cause infant morbidity and low food
utilization by restricting nutrient absorption [61]. Climate change will increase diarrhea
by approximately 10% in some geographical areas by 2030 due to water shortage, while
higher temperatures accelerate pathogen growth [65].

Climate change could also increase new pest and disease trends and enable vector-
borne diseases to become more frequent in places prone to floods, affecting human
health [66]. Moreover, increased temperatures can affect pathogen and toxin exposures.
This is the case regarding Salmonella, Campylobacter, and Vibrio parahaemolyticus in raw
oysters, and mycotoxigenic fungi, all of which canthrive better in warmer temperatures [30].

Higher CO2 concentrations can speed up the growth of some crops, causing a decrease
in nutrient quality of staple plants such as potatoes, barley, rice, and wheat [67–69]. Many
staple crops had higher carbohydrate concentrations and lower plant-based protein and
mineral content in laboratory studies of the impact of CO2 on human nutrition [29]. In-
creased carbon dioxide levels in the environment can also reduce dietary iron, zinc, protein,
and other macro- and micronutrients in some crops [30]. For instance, Weyant, C. et al.,
(2018) [70] estimated that an additional 125.8 million disability-adjusted lives could be
attributed to the impacts of rising atmospheric CO2 on zinc and iron levels (95% reliable
interval 113.6138.9), globally between 2015 and 2050, owing to an increase in infectious
diseases, diarrhea, and anemia. Notwithstanding CO2 is plant food, however, changes in
plant chemistry produced by CO2 would have global implications for all living creatures
that consume plants, including humans.

3. Materials and Methods
3.1. Data and Variables

The current empirical research included 25 SSA countries’ secondary panel data from
1985 to 2018. A summary of the variables used in the study is provided in Table 1.

Table 1. Variables Description and Data Source.

Variable Description Source

CY Cereal yield (kg per hectare)

https://data.worldbank.org/indicator (accessed on 31
August 2021)

LCP Land under cereal production (hectare)
GDP Gross domestic product (current USD)

GDPA Agricultural gross domestic product (current USD)
CO2 Carbon dioxide emissions (metric tons per capita)
PG Population growth (%)
INF Inflation, GDP deflator (annual %)

T Average annual temperature (◦C) https://climateknowledgeportal.worldbank.org/
download-data (accessed on 2 August 2021)RF Average annual rainfall (millimeter)

CP Cereal Production (tonnes) http://www.fao.org/faostat/en/#data/FBSH
(accessed on 5 August 2021)CDES Cereal dietary energy supply (kcal/capita/day)

3.2. Cross-Sectional Dependency Test

This research used the cross-sectional dependency method to determine which test best
detects unit root problems. Cross-sectional dependence distorts the orthodox panel unit
root and cointegration tests, making them ineffective. If cross-dependence is established,

https://data.worldbank.org/indicator
https://climateknowledgeportal.worldbank.org/download-data
https://climateknowledgeportal.worldbank.org/download-data
http://www.fao.org/faostat/en/#data/FBSH
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augmented tests such as the cross-sectionally augmented Im–Pesaran–Shin (CIPS) test and
the Westerlund error-correction dependent cointegration test must be used [71,72]. Thus,
the Breusch–Pagan test will be used to check any cross-sectional dependency [73]. This test
is focused on the Lagrange multiplier (LM) statistic used to evaluate the null hypothesis of
zero cross equation error correlations and the CIPS test. The test is recommended for small
samples with a small T dimension run for that purpose. The mathematical equation of the
LM cross-sectional dependence test is given below, adopted from [74,75].

CDlm = P
n−1

∑
i=1

n

∑
j=i+1

γ̂ij (1)

where γ̂ij is the sample estimates of the pairwise correlation of residuals, i = 1, 2, 3, . . . , n.
However, Breusch and Pagan (1980) [73] elucidate that the LM test is only valid for

large N and small T. Considering this shortcoming, Pesaran (2004) [76] addresses this
weakness by introducing the cross-sectional dependence test among errors which is helpful
for a variety of panel data models. The unit root dynamic heterogeneous panels and
stationary with big N and small T are included in this test. The results are robust to
multiple or single structural breaks in single regression and slope coefficient error variance.
As stated in the LM test, Pesaran (2004) [76] introduced the pairwise correlation coefficients
dependence test instead of the squares of correlation [74,75].

CD =
√

2T
n(n−1)

(
∑n−1

i=1 ∑n
j=i+1 γ̂ij

)
T = 1, 2, 3, . . . ,

(2)

3.3. Panel Unit Root and Cointegration Tests

The unit root and cointegration tests were performed after testing for cross-sectional
independence and failing to reject the null hypothesis of cross-sectional independence. The
central assumption of the panel cointegration approach used in this study is that all the
variables have a unit basis. After examining the cross-sectional dependency, this study used
Pesaran’s second-generation panel unit root test [77]. The Pesaran unit root test builds the
test statistics and uses the cross-section mean to proxy the common factor, keeping in mind
the t ratio of the ordinary least square estimator βi(βi) in the cross-sectional augmented
Dickey–Fuller (CADF) regression.

dYit = αi + βiYi,t−1 + ϕidYt + rij (3)

However, one way is to use the mathematical calculations below to consider the
expanded version of the CIPS test:

CIPS(n, T) = t− bar = n−1αn
i=1(n, T) (4)

Additionally, for the ith cross-section unit, (n, T) denotes the ADF statistics across the
cross-section, which is determined by the t ratio of coefficient (Yi, t− 1) in CADF regression.

The next step was to conduct the cointegration test for heterogeneous panels on
panel data, assuming cross-sectional independence and non-stationarity of the variables.
The Westerlund (2007) [72] cointegration test was run. The latter is a second-generation
cointegration test, which uses the bootstrap method to produce the sample and a new
sample to create two-panel statistics and two groups’ mean. This method determines
whether the model has converging error terms for the entire panel or individual classes.
This method assesses the model to see if it has converging error terms for the whole panel
or specific groups:

dYit = νi + αi(Yi,t−1 − βiXi,t−1) + α
pi
j=1αijdYi,t−j + α

pi
j=0δijdXi,t−j + rit (5)
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where the term αi indicates the speed of adjustment. H0 : αi = 0 means that variables are
not cointegrated and that there is no error correction term, whereas H1 : αi < 0 denotes
that error correction is present and that variables are cointegrated [75].

3.4. Pooled Mean Group (PMG) Estimator

The panel autoregressive distributed lag (ARDL) approach was employed to evaluate
the long-run relationships between the variables and extract the ECM (error correction
version) of the panel characteristics for the short-run dynamic. In addition, substitute
cointegration methods, such as the Johansen and Juselius (1988) [78] and traditional Jo-
hansen [79] methods, were used to achieve similar results. However, the panel ARDL
technique was chosen over cointegration because of its beneficial features. The standard
cointegration approach examines the long-term relationship within the system of equations
in the background, whereas the panel ARDL employs an individually briefed form of
equation [80]. Regardless of whether the tested variables were I(0), I(1), or both I(0) and
I(1), the panel ARDL approach could be applied [81]. Many lags can exist in a panel
ARDL with multiple variables in the equation, which are unsuitable when using the typical
cointegration test.

Furthermore, panel ARDL simultaneously generates long-term and short-term coeffi-
cients [66,82]. Equation (7) shows the popular output function of panel ARDL that should
be studied for the bounds test approach [83]:

Yit = αi + β′iXit + εit (6)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T, αi is an intercept term, βi is a k × 1 vector of
coefficients (which are allowed to be heterogeneous and vary across countries) and Xit is
a k × 1 vector of the explanatory variable. Xit can be divided into two regressor subsets,
Zit and Ft. The resulting autoregressive distributed lags (ARDL (p, q)) specification can be
generated by extending the model to a dynamic panel specification and including lags of
the dependent variable as well as lagged independent variables:

Yit = αi +
p

∑
q

λijYi,t−j +
p

∑
j=0

β′iXi,t−j + εit (7)

The below ECM equation can be adjusted in:

∆Yit = φi
[
Yi,t−1 − θ′i Xit

]
+

p−1

∑
j=1

λ∗ij ∆Yi,t−j +
q−1

∑
j=0

β′∗ij ∆Xi,t−j + αi + εit (8)

where

φi = −
(

1−
p

∑
j=1

λij

)
, θi =

∑
p
j=0 βij

(1−∑k λik)
, λ∗ij = −

p

∑
m=j+1

λim (j = 1, 2, p− 1) (9)

and

β∗ij = −
p

∑
m=j+1

βim (j = 1, 2, . . . , p− 1) (10)

The term in parentheses denotes the long-run link between the dependent and ex-
planatory variables, and θit is the vector of long-run elasticity. When there is a long-run
connection between the dependent and independent variables, the parameter φit (speed
of adjustment term) is significantly different from zero. Under the hypothesis that the
variables converge to long-run equilibrium, φit is projected to be significantly negative.
Different ways to estimate the dynamic heterogeneous panel model can be utilized when
the N and T dimensions are large. If only the intercepts differ between classes, a dynamic
fixed-effects (DFE) estimator can be used. This method produces inconsistency in estima-
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tions when the homogeneity of slope coefficients is insufficient. The intercepts (long and
short-run) slopes and error variances are varied across groups. However, the model can
be estimated independently for each group, and a simple average of the coefficients is
assessed, providing Pesaran and Smith’s mean group estimator.

PMG estimate introduced by Pesaran and Smith (1999) [84] was employed. This
method combines pooling and averaging and can be considered a middle ground between
DFE and MG (mean group) estimators [85]. Intercepts, short-run coefficients, and error
variances are unregulated and differ between classes in the PMG estimator, while long-run
coefficients must be homogeneous (i.e., θi = θ, ∀i).

The estimating model thus becomes:

∆Yit = φi
[
Yi,t−1 − θ′Xit

]
+

p−1

∑
j=1

λ∗ij ∆Yi,t−j +
q−1

∑
j=0

β′∗ij ∆Xi,t−j + αi + εit (11)

3.5. Robustness Test

Panel dynamic ordinary least squares (DOLS) and fully modified ordinary least
squares (FMOLS) were used to confirm the PMG model’s results against the model’s
supposed endogeneity and serial correlation problems as a robustness measure. Pedroni
(2004) [86] proposes FMOLS and DOLS to obtain the long-run cointegrating coefficients.
When there are “unit root variables,” the influence of super reliability may not be enough
to manage the regressors’ endogeneity problem effect if ordinary least square is used.
The authors [87] suggested that the FMOLS estimator postulates optimal estimates for
cointegrating regressions. This method modifies the least squares to account for “serial
correlation” effects as well as “endogeneity” in the regressors caused by the existence of
a cointegrating interaction [88]. Furthermore, FMOLS asymptotic behavior was further
explored in models with the full rank I(1) regressors, models with I(1) and I(0) regressors,
models with unit roots, and models with solely stationary regressors [89]. The fully updated
estimator was constructed to evaluate cointegrating relationships by explicitly adjusting
conventional OLS. The FMOLS corrections can assess how significant these effects are in
scientific practice, which is one reason why this technique has proven to be helpful in
practice. As a result, the method has become less of a “black box” for clinicians. When there
are substantial variations with OLS, the source or causes of those differences are usually
easy to find, which helps to empower the researcher by offering more information about
essential data properties. Recent simulation experience and empirical research suggest that
the FM estimator outperforms alternative approaches for estimating the cointegrating rela-
tionship [90–93]. DOLS and FMOLS estimates are preferable to OLS estimates for a variety
of reasons: (1) although OLS estimates are pretty trustworthy, the t-statistic has become
non-stationary, and the I(0) terms are only approximately regular [94]. (2) Although OLS is
super-consistent, OLS estimates may encounter serial correlation and heteroskedasticity in
the presence of “a strong finite sample bias” because the excluded dynamics are captured by
the residual, rendering regular table inference invalid even asymptotically [95]. As a result,
“t” statistics for OLS estimates are useless. (3) DOLS and FMOLS address endogeneity by
using leads and lags in their models (DOLS). Aside from that, white heteroskedastic norm
errors are employed [96,97].

The panel DOLS model will be estimated as:

Yit = ∂i + θiXit + eit (12)

where Xit refers to the m× n matrix of our independent variables and the interaction term.
While θi is the m× 1 vector of all the coefficients of the regressors. DOLS regression corrects
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endogeneity and serial correlation through differenced leads and lags, prevalent with the
ordinary least square estimator. The following equation might be used to express this:

Yit = ∂i + X′itθi +
q

∑
k=−q

λip∆Xit+p + eit (13)

If Yit and Xit are I(1) and cointegrated, the authors’ [98,99] methodology can be used
to estimate the long-run coefficients of OLS and DOLS as follows:

θ̃OLS =

(
N

∑
i=1

T

∑
t=1

(
Xit − Xi

)(
Xit − X

)′)−1( N

∑
i=1

T

∑
t=1

(
Xit − Xi

)(
Yit − X

)′) (14)

θ̃DOLS = N−1
N

∑
i=1

(
T

∑
t=1

βitβ
′
it

)−1( T

∑
t=1

βit
(
Yit −Yi

))
(15)

where Yit and βit are the dependent variable and the vector of independent variables.
The panel FMOLS will be estimated as:

θ̂ =

(
T

∑
t=1
ZtZ ′t

)−1( T

∑
t=1
Zty+t − T

[
λ̂+

12
0
′
])

(16)

where y+t and λ̂+
12 stand for the endogeneity of regressors and serial correlation in error

correction terms, respectively. Equations (17) and (18) express the endogeneity and serial
correlation correction terms, respectively:

y+t = yt − ω̂−1
22 V̂2 (17)

λ̂+
12 = λ̂12 − ω̂12Ω̂−1

22 ∧̂22 (18)

where Ω̂ and ∧̂ are the long-run covariance matrices computed using the residuals V̂t =(
V̂1t, V̂2t

)
′. V̂1t is the residual computed from Equation (19) and V̂2t is obtained directly

from Equation (21) or indirectly from Equation (22):

yt = x′tβ + D′1tγ + V1t (19)

∆y2t = ε2t (20)

εt =
(
V ′1t, ε′2t

)
is assumed strictly stationary with zero mean and infinite covariance

matrix ∑.
∆xt = Γ̂

′
21∆D1t + Γ̂

′
22D2t + V̂2t (21)

V̂2t = ∆ε̂2t (22)

3.6. Heterogeneous and Panel Causality

A deeper understanding is gained by tracing the causal links between variables
toward empirical results’ policy implications [100]. Therefore, this study has incorporated
the Granger panel causality test [101]. Correlation does not mean causation. The Granger
solution to whether x causes y is to assess how much of the current y can be described by
past y values, and then to see if introducing lagged x data can improve the explanation. If x
helps in the prediction of y, or if the coefficients on the lagged x’s are statistically significant,
y is said to be Granger caused by x [102].

For a case with only two variables, the model can be written as follows:

yt = α0 + α1yt−1 + . . . αlyt−l + β1xt−1 + . . . βl x−l + εt (23)
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xt = a0 + a1xt−1 + . . . al xt−l + b1yt−1 + . . . bly−l + µt (24)

where α1 to αp and a1 to ap are coefficients for the lagged dependent variables, and 1 to βp
and b1 to bp are coefficients for the lagged independent variables. For all possible pairs
of (x, y) series in the group, the reported F-statistics are the Wald statistics for the joint
hypothesis for each equation:

β1 = β2 = . . . = βl = 0 (25)

b1 = b2 = . . . = bl = 0 (26)

The null hypothesis is that in the first regression, x does not Granger cause y, and in
the second regression, y does not Granger cause x.

The coming sections will address climate change and food availability, climate change
and food accessibility, and climate change and food utilization as models 1, 2, and 3.

4. Results

The estimation process begins with the descriptive statistics of the variables included
in the study (Table 2). Secondly, cross-dependency tests are run to check the existence
of cross-sectional dependence between the variables. Table 3 reports Breusch–Pagan and
Pesaran tests for cross-sectional dependence test statistics and p-values. Both tests reject
the null hypothesis of cross-sectional independence as they are all significant at a 1% level
in all three cases, meaning there is a cross-sectional dependence. The third step consists
of testing the presence of unit root in the variables. For this purpose and based on the
previous cross-dependency test, two second-generation unit root tests such as the Pesaran
cross-section augmented Dickey–Fuller unit root test and cross-section Im–Pesaran–Shin
are the best unit root tests to use. As clearly presented in Table 4, some variables are
stationary at the level. In contrast, others become stationary after the first difference, a
combination of I(0) and I(1), suitably fitting panel ARDL estimators’ application.

The fourth step is Westerlund’s (2007) [72] cointegration test (Table 5). The idea is to
see whether there is an error correction model (ECM) for individual panel members or the
entire panel by testing for no cointegration. The null hypothesis of no cointegration and
the alternative hypothesis can be evaluated using two separate tests: group mean tests
(G) and panel tests (P). Westerlund’s (2007) test produces four-panel cointegration test
statistics (Gt, Ga, Pt, and Pa) based on the error correction model (ECM). The p-value and
the robust p-value are above 10%; therefore, the null hypothesis of no cointegration in a
heterogeneous panel could not be rejected in all three cases, indicating that the variables
have no cointegration in the long run.

Table 2. Summary statistics.

Variables Mean Std. Dev. Minimum Maximum Obs

CY 1145.946 495.418 34.3 3007.4 850
GDPA 1.78 × 109 2.68 × 109 1.80 × 107 3.00 × 1010 850
DES 1086.782 358.036 219 1873 850
RF 989.745 551.429 66.029 2838.75 850
T 25.479 2.739 18.268 29.541 850

CO2 0.548 0.865 0.008 7.639 850
GDP 8.12 × 109 1.06 × 1010 1.30 × 108 8.80 × 1010 850
CP 1,330,548 1,419,678 1000 1.00 × 107 850

LCP 1,311,570 1,746,534 3300 1.10 × 107 850
INF 11.713 23.016 −29.173 189.975 850
PG 2.651 1.016 −6.766 8.118 850

Notes: CY (cereal yield), GDPA (agriculture gross domestic product), GDP (gross domestic product), RF (rainfall)
T (temperature), CO2 (carbon dioxide), CP (cereal production), LCP (land under cereal production), INF (inflation
rate), PG (population growth rate), and CDES (cereal dietary energy supply).
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Table 3. Cross-section dependency tests.

Test Breusch–Pagan LM Pesaran CD

Model 1

Statistics 1361.3 *** 0.81

Model 2

Statistics 1712.08 *** 4.19 ***

Model 3

Statistics 3014.59 *** 39.59 ***
Notes: *** indicate significant at 1%, respectively. Breusch–Pagan LM. (Breusch–Pagan Lagrange multiplier) and
Pesaran CD (Pesaran cross-section dependence).

Table 4. Unit root test.

Test Variables ‡ CY ‡ GDPA ‡ GDP RF T CO2 ‡ CP ‡ LCP INF PG ‡ CDES

Level −3.28
*** −2.63 *** −2.63

***
−5.22

***
−4.45

***
−1.45

***
−3.30

***
−3.23

***
−4.80

*** −2.15 −2.68
***

CIPS
First

differ-
ence

−6.06
*** −5.73 *** −5.45

***
−6.19

***
−6.19

***
−5.46

***
−5.97

***
−5.89

***
−6.11

*** −1.69 −5.59
***

Level −2.70
*** −2.38 ** −2.48

***
−3.66

***
−2.95

*** −1.36 −2.52
***

−2.47
***

−3.57
***

−3.69
***

−2.62
***

PESCADF
First

differ-
ence

−5.15
*** −4.65 *** −4.29

***
−5.70

***
−5.58

***
−4.06

***
−5.18

***
−4.79

***
−5.79

***
−4.10

***
−4.69

***

Notes: ‡ indicates variables in logarithm form. **, *** indicate significant at 5%, and 1%, respectively. CY (cereal
yield), GDPA (agriculture gross domestic product), GDP (gross domestic product), RF (rainfall), T (temperature),
CO2 (carbon dioxide), CP (cereal production), LCP (land under cereal production), INF (inflation rate), PG
(population growth rate), CDES (cereal dietary energy supply), CIPS (cross-section Im–Pesaran–Shin), and
PESCADF (Pesaran and augmented Dickey–Fuller).

Table 5. Cointegration tests.

Statistics Value Z-Value p-Value Robust p-Value

Model 1

Gt −2.92 0.51 0.69 0.09
Ga −4.21 8.17 1 0.69
Pt −7.82 6.13 1 0.80
Pa −2.34 7.39 1 0.97

Model 2

Gt −1.64 8.28 1 0.87
Ga −1.37 10.25 1 1
pt −6.05 8.76 1 0.75
pa −1.07 8.68 1 0.89

Model 3

Gt −1.95 4.63 1 0.56
Ga −1.07 8.99 1 1
pt −6.90 5.56 1 0.67
pa −1.08 6.80 1 0.99

Notes: Group mean tests (Gt and Ga) and panel tests (Pt and Pa).

The study uses three different techniques to estimate the long-run relationship between
the variables after testing for cointegration. These techniques include pool mean group
(PMG), panel dynamic ordinary least square (DOLS), and panel fully modified ordinary
least square (FMOLS).
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4.1. Impact of Climate Change on Food Availability

Table 6 reports the PMG estimation results. The results show that rainfall amount
and CO2 emission have a positive and significant effect on food availability in the long
run. In contrast, temperature change depicts a negative and significant impact. Two
robustness checks are implemented. First, the model includes the GDP and land under
cereal production as control variables. Both have a positive and significant impact on food
availability. Second, panel FMOLS and DOLS are estimated (Table 6). The results confirm
the PMG estimation’s findings except for rainfall in the DOLS model, which negatively
impacts food availability.

Table 6. Model 1 PMG, DOLS, and FMOLS.

Dependent Variable: ‡ CY

Variable PMG Panel FMOLS Panel DOLS

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

RF 0.001 *** 0.0001 0.0001 ** 4.39 × 10−5 −8.86 × 10−5 0.0001
T −0.169 *** 0.041 −0.051 ** 0.020 −0.167 *** 0.042

CO2 0.679 *** 0.089 0.071 *** 0.025 0.266 *** 0.097
‡ LCP 0.228 *** 0.060 0.038 0.028 0.074 0.070
‡ GDP 0.080 *** 0.023 0.123 *** 0.013 0.047 * 0.026

Error correction term −0.302 *** 0.114
Country 25 25 25

Observation 850 850 850
R square 0.80 0.93

Notes: ‡ indicates variables in logarithm form. * (**) *** indicate significant at 10%, 5%, and 1%, respectively.
CY (cereal yield), PMG (pooled mean group), FMOLS (fully modified ordinary least square), DOLS (dynamic
ordinary least square), RF (rainfall), T (temperature), CO2 (carbon dioxide), LCP (land under cereal production),
and GDP (gross domestic product).

4.2. Impact of Climate Change on Food Accessibility

The result from the PMG estimation (Table 7) highlighted a significantly positive effect
of rainfall on food accessibility. However, the impact of the temperature is negative instead.
CO2 emission does not affect food accessibility. In addition to that, other control variables
such as cereal production quantity, GDP, and inflation rate are added for the first step of
the robustness check. An increase in cereal production quantity and GDP are revealed to
influence food accessibility positively and substantially, while the inflation rate affects food
accessibility negatively. The second step of the robustness check consists of estimating the
FMOLS and DOLS (Table 7). Both estimators’ results show a significantly positive effect of
rainfall and a negative impact of CO2 emission on food accessibility.

Table 7. Model 2 PMG, DOLS, and FMOLS.

Dependent variable: ‡ GDPA

Variable PMG Panel FMOLS Panel DOLS

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

RF 0.001 *** 0.0001 6.83 × 10−5 ** 3.36 × 10−5 0.0002 *** 9.45 × 10−5

T −0.362 *** 0.057 −0.017 0.013 −0.004 0.036
CO2 0.012 0.077 −0.09 *** 0.032 −0.179 * 0.098
‡ CP 0.229 *** 0.058 0.085 *** 0.017 0.046 0.042

‡ GDP 0.747 *** 0.039 0.834 *** 0.019 0.894 *** 0.032
INF −0.01 *** 0.001 −4.25 × 10−5 0.0002 0.001 0.001

Error correction term −0.146 *** 0.038
Country 25 25 25

Observation 850 850 850
R square 0.99 0.99

Notes: ‡ indicates variables in logarithm form. * (**) *** indicate significant at 10%, 5%, and 1%, respectively.
GDPA (agriculture gross domestic product), PMG (pooled mean group), FMOLS (fully modified ordinary least
square), DOLS (dynamic ordinary least square), RF (rainfall), T(temperature), CO2 (carbon dioxide), CP (cereal
production), GDP (gross domestic product), and INF (inflation rate).
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4.3. Impact of Climate Change on Food Utilization

The PMG estimation results in Table 8 show a positive and significant rainfall effect
on food utilization. In contrast, temperature and CO2 emission respectively exhibit a
negative and positive but non-significant effect on food utilization. Furthermore, some
control variables (cereal production, GDP, and population growth) are added, and the panel
FMOLS and DOLS are estimated for the robustness check. Cereal production and GDP
positively influence food utilization. However, population growth has the opposite effect.
The FMOLS and DOLS results depict a positive effect of rainfall, whereas temperature and
CO2 emission negatively affect food utilization. However, rainfall effect is insignificant in
both outputs, while temperature does not affect food utilization in DOLS output.

Table 8. Model 3 PMG, DOLS, and FMOLS.

Dependent Variable: ‡ CDES

Variable PMG Panel FMOLS Panel Dynamic OLS

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

RF 6.73 × 10−5 * 3.78 × 10−5 2.99 × 10−5 3.38 × 10−5 1.03 × 10−5 6.23 × 10−5

T −0.012 0.016 −0.032 ** 0.016 −0.003 0.023
CO2 0.001 0.047 −0.088 *** 0.019 −0.128 *** 0.026
‡ CP 0.182 *** 0.018 0.112 *** 0.015 0.113 *** 0.021

‡ GDP 0.053 *** 0.013 0.048 *** 0.01013 0.044 *** 0.014
PG −0.026 *** 0.006 −0.015 ** 0.006 −0.044 *** 0.009

Error correction term −0.261 *** 0.048
Country 25 25 25

Observation 850 850 850
R square 0.95 0.98

Notes: ‡ indicates variables in logarithm form. * (**) *** indicate significant at 10%, 5%, and 1%, respectively. CDES
(cereal dietary energy supply), PMG (pooled mean group), FMOLS (fully modified ordinary least square), DOLS
(dynamic ordinary least square), RF (rainfall), T (temperature), CO2 (carbon dioxide), CP (cereal production), LCP
(land under cereal production), and PG (population growth rate).

4.4. Pairwise Granger Causality Tests

The study also checked the causal relations among the variables by performing the
Granger causality test. Tables 9–11 outputs exhibit positive and short-run causal relation-
ships among the variables. There is evidence of unidirectional causality running from food
availability to CO2 emission. Land under cereal production Granger causes food availabil-
ity and CO2 emission. Food accessibility exhibits a causal association with temperature.
Similarly, there is evidence of a causal association between food accessibility and inflation
rate, whereas food accessibility is Granger caused by GDP. Another unidirectional causality
runs from temperature to food utilization. Furthermore, a causal connection between
rainfall and CO2 emission is observed. Temperature is associated with land under cereal
production, whereas GDP Granger causes temperature. There is substantial evidence of a
causal association between GDP and temperature, while another causality relationship runs
from temperature to cereal production. The latter, in turn, Granger causes CO2 emission
and inflation rate, respectively. CO2 emission has a causality association with population
growth while being Granger caused by cereal production. Likewise, temperature is as-
sociated with cereal production and population growth. The final unidirectional causal
relationship runs from GDP to temperature.
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Table 9. Model 1 pairwise Granger causality test.

∆‡CY ∆RF ∆T ∆CO2 ∆‡ LCP ∆‡ GDP

∆‡ CY 0.959 0.788 3.778 *** 1.895 3.470 **
∆RF 0.896 6.281 *** 3.610 ** 0.867 0.144
∆T 0.697 5.874 *** 1.174 3.099 ** 0.995

∆CO2 0.452 0.048 1.831 2.036 0.220
∆‡ LCP 5.427 *** 0.784 0.071 3.457 ** 0.920
∆‡ GDP 3.097 ** 0.325 5.503 *** 0.811 0.036

Notes: ‡ indicates variables in logarithm form. **, *** indicate significant at 5%, and 1%, respectively. CY (cereal
yield), RF (rainfall), T (temperature), CO2 (carbon dioxide), LCP (land under cereal production), and GDP (gross
domestic product).

Table 10. Model 2 pairwise Granger causality test.

∆‡GDPA ∆RF ∆T ∆CO2 ∆‡ CP ∆‡ GDP ∆INFL

∆‡ GDPA 1.243 4.153 ** 1.925 2.847 * 0.429 20.589 ***
∆RF 2.284 6.281 *** 3.610 ** 2.235 0.144 0.921
∆T 5.553 *** 5.874 *** 1.174 3.596 ** 0.995 1.467

∆CO2 2.443 * 0.048 1.832 0.748 0.220 0.422
∆‡ CP 8.350 *** 0.626 0.616 4.669 *** 1.507 2.774 *

∆‡ GDP 5.357 *** 0.325 5.503 *** 0.811 1.112 44.85
∆INF 1.713 1.471 0.153 0.182 0.361 0.134

Notes: ‡ indicates variables in logarithm form. * (**) *** indicate significant at 10%, 5%, and 1%, respectively.
GDPA (agriculture gross domestic product), RF (rainfall), T(temperature), CO2 (carbon dioxide), CP (cereal
production), GDP (gross domestic product), and INF (inflation rate).

Table 11. Model 3 pairwise Granger causality test.

∆‡CDES ∆RF ∆T ∆CO2 ∆‡ CP ∆‡ GDP ∆PG

∆‡ CDES 1.141 0.346 0.756 0.072 0.349 5.867 ***
∆RF 0.020 6.281 *** 3.610 ** 2.235 0.144 0.290
∆T 8.929 *** 5.874 *** 1.174 3.596** 0.370 38.115 ***

∆CO2 2.187 0.048 1.832 0.747 0.220 5.176 ***
∆‡ CP 0.577 0.626 0.616 4.667 *** 1.507 13.62 ***

∆‡ GDP 1.172 0.325 5.503 *** 0.811 1.112 2.563 *
∆PG 11.845 *** 0.506 0.182 0.093 3.760 *** 9.788 ***

Notes: ‡ indicates variables in logarithm form. * (**) *** indicate significant at 10%, 5%, and 1%, respectively.
CDES (cereal dietary energy supply), RF (rainfall), T (temperature), CO2 (carbon dioxide), CP (cereal production),
LCP (land under cereal production), and PG (population growth rate).

Several bidirectional causal relationships are observed. The first four observed bidi-
rectional Granger causality are between food availability and GDP, food accessibility
and temperature, food accessibility and cereal production, and between food utilization
and population growth. Furthermore, bidirectional associations are observed between
rainfall and temperature, and GDP. Lastly, cereal production and population growth, on
the one hand, and GDP and population growth, on the other hand, share bidirectional
Granger causality.

Figure 1 presents a summary of the study’s main findings.
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5. Discussion

To gain new insight on the effect of climate change on food security in SSA, this study,
a first of its kind, attempted to determine the direct impact of climate change (represented
by rainfall, temperature, and CO2 emission) on food security as a whole through three
of its indicators (food availability, accessibility, and utilization). The results acquiescently
show a statistically significant and positive long-run relationship between rainfall and
food availability and between CO2 emission and food availability. In contrast, temperature
change has a significantly negative impact on food availability. The positive effect of
rainfall on food availability is strongly substantiated by Kinda and Badolo (2019) [18].
This empirical result underlines the first-degree importance of rainfall to food availability.
It plays a crucial role in improving the cereal crop yield [103] in SSA where the daily
nutrients are mainly extracted from cereal consumption. Technologies such as irrigation
systems with a great potential to increase crop productivity [104–106] are lacking in SSA
countries [107]. Water from rainfall is the primary source of water used for agricultural
purposes. Such high dependence on rainfall and climate predictions makes SSA uncertain
whether Africa will achieve its food security goal in the nearest future. The positive impact
of CO2 emission on the available food reported in the study corresponds with previous
studies’ estimates [70,108–111]. An increasing amount of atmospheric CO2 is beneficial for
plant growth. Higher CO2 levels are widely recognized to stimulate plant photosynthesis
and development, potentially increasing cereal crop yield, which remains the world’s
most important food source [108]. However, few studies found a harmful impact of CO2
emission on cereal crops production [112,113].

Temperature significantly and negatively influences crop production. These results
are substantial with previous research findings [41,43,114,115]. This finding indicates that a
slight increase in temperature in SSA countries where the climate is tropical and seasonally
dry negatively affects crop production, and thus the quantity of available food in the
sub-region. Many plant species are temperature sensitive; consequently, an increase in
global temperature had adverse effects on crops production [36,116,117].



Sustainability 2022, 14, 759 16 of 22

Further results indicated a positive and significant effect of rainfall on food accessibility.
However, the impact of the average temperature yielded a negative effect. This outcome is
not surprising as it has been established that households’ food budgets are directly affected
by the impact of climate change on income sources [24]. As a result, the price of food
increases, ineluctably affecting food accessibility [25]. Recent World Bank estimations show
that in 2020, 58.75% of the SSA populations were living in rural areas [118], with agricul-
ture being the primary source of income. Subsistence farmers in low-income countries
usually cultivate crops adapted to their region’s long-term precipitation patterns [119,120].
However, yields can suffer when rainfall levels in a given season are significantly below
long-term norms [121,122], thus affecting all the people living on agricultural activities.
Food costs are rising as yields and livestock production drop, making food accessibility dif-
ficult for low-income households [123,124]. Simultaneously, families who earn their living
from agricultural commodity businesses may see a decrease in their revenues [125–127].
Temperature change negatively impacts farmers’ net income by facilitating extreme events
such as drought in rainfed areas, harming livestock, and changing the length of the crop
growing season. Agricultural workers who rely solely on agricultural wages and the
population for whom the market is the second food source will be disproportionately
affected [128]. Declining agricultural productivity will exacerbate poverty and, as a result,
restrict food access for the poor in both rural and urban areas [23]. There was no significant
link between CO2 emission and food accessibility.

Lastly, rainfall significantly and positively influenced food utilization. Water stress
will directly affect the nutritional value of grains, jeopardizing food utilization. When water
stress occurs during grain filling, the nutritious value of grains is reduced chiefly [129].
Drought stress lowers the overall protein, mineral, and antinutrient [130], lessening nu-
tritional value. Similarly, the drought effect has been observed to affect micronutrients
in maize in Uganda (Fe, Cu, and Mn) and macronutrients in Kenya (S and K) [131]. Tem-
perature and CO2 emission had no significant effect on food utilization. These findings
demonstrate that the calories obtained from cereal consumption in SSA are determined
by external factors such as the quantity of cereal available and the income level per capita
rather than climate factors.

Notwithstanding the new findings of this study, it has some limitations. The first
limitation is that the study used only three food security indicators, excluding food stability,
the fourth indicator of food security due to data unavailability. Secondly, the study used
cereal crops production and consumption data to proxy food security, excluding other
important dietary energy sources in the sub-region (tubers, legumes, fruits, etc.). Another
weakness is that the research is carried out in a panel of 25 countries with different climate
conditions. Finally, the results of this study are unlikely to be consistent across a wide range
of econometric approaches. These issues could be addressed in future research. Studies
should be conducted using other sources of dietary energy supply. Instead of a large panel
study, such an examination should be limited to a country-specific setting or divided into
smaller panels with similar climate conditions to draw more specific implications from the
findings. Additional indicators, external factors, and various estimating approaches could
be considered for data analysis to produce more accurate and robust results.

6. Conclusions and Policy Implication

The issue of climate change and its impact on global food security has been for decades
a hot topic of discussion among academics, stakeholders, and policymakers across the
globe. This research contributes to the existing literature by focusing on SSA countries
where the situation is alarming. In summary, the PMG results indicate that rainfall and CO2
emission have a positive and significant effect on food availability in the long run, while
temperature’s effect is significantly harmful. The effect of rainfall and CO2 emission on
food accessibility is positive but only significant for rainfall. Temperature has a detrimental
impact on food accessibility. Lastly, rainfall also has a positive effect on food utilization.
However, temperature and CO2 emission effects on food utilization are non-significant.
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Furthermore, some additional variables were added, and the panel DOLS and FMOLS
tests were conducted to check the PMG estimate’s robustness. In most cases, the results
are robust.

Overall, climate change undeniably affects food security across SSA. Among the
various factors that influence global food security, climate change is becoming the most
problematic factor to challenge food security in all its dimensions [3]. Climate change
influences the diversity of food available, the cost of food, food consumption, and food
safety [46,132–134].

In light of the above findings, the study provides some recommendations to national,
sub-regional, and regional policymakers. Governments should fight collectively against the
impact of climate change on food security by providing some funding to deal with food pro-
duction challenges caused by these changes at the country level. All the countries covered
by this study are members of the least developed countries group, and as a result, agricul-
ture in these countries is still quite traditional. The irrigation system and other advanced
farming systems are underdeveloped. In addition, agriculture in SSA countries is still
dependent on natural conditions compared with developed countries. The policymakers
should assist farmers through subsidies that can enable them to acquire irrigation system
equipment to enhance water management in combating drought and the unbalancing of
rainfall patterns. Additionally, governments should upgrade agricultural research facilities
to assist research on drought-resistant, short-cycled, high-yielding seeds. Promoting and
supporting environmentally friendly agriculture such as zero tillage practices and the use
of organic pesticides could help reduce carbon dioxide emissions, which is the leading
cause of global warming.

Innovative projects such as “AfriCultuReS” are needed. “AfriCultuReS” is a regional-
level project that aims at assisting decision-making in the realm of food security by con-
tributing to integrated agricultural monitoring and early warning systems for Africa.
Climate, drought, land, livestock, crops, water, and weather are all covered by the services
created for users. The services will be offered to stakeholders and serve as a continuous
monitoring framework for early and accurate assessment of factors affecting food security
in Africa [135]. Such initiatives are critical to helping Africa combat the adverse effects of
climate change on food security.
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