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Abstract: The nonlinear dynamics of the determining factors of the morphometric characteristics
of cracks in expansive soils make their typification a challenge, especially under field conditions.
To overcome this difficulty, we used artificial neural networks to estimate crack characteristics in
a Vertisol under field conditions. From July 2019 to June 2020, the morphometric characteristics of
soil cracks (area, depth and volume), and environmental factors (soil moisture, rainfall, potential
evapotranspiration and water balance) were monitored and evaluated in six experimental plots in a
tropical semiarid region. Sixty-six events were measured in each plot to calibrate and validate two
sets of inputs in the multilayer neural network model. One set was comprised of environmental
factors with significant correlations with the morphometric characteristics of cracks in the soil. The
other included only those with a significant high and very high correlation, reducing the number
of variables by 35%. The set with the significant high and very high correlations showed greater
accuracy in predicting crack characteristics, implying that it is preferable to have fewer variables
with a higher correlation than to have more variables of lower correlation in the model. Both sets
of data showed a good performance in predicting area and depth of cracks in the soils with a clay
content above 30%. The highest dispersion of modeled over predicted values for all morphometric
characteristics was in soils with a sand content above 40%. The model was successful in evaluating
crack characteristics from environmental factors within its limitations and may support decisions on
watershed management in view of climate-change scenarios.

Keywords: artificial intelligence; swelling and shrinking; Vertisol; tropical dry regions

1. Introduction

Soil cracking is a natural phenomenon observed in soils with expansive clay minerals
upon desiccation, and occurs mostly in drylands that cover approximately 40% of the
world’s land area [1] in South Africa, Australia, America, India, and China. Vertisols cover
approximately 335 Mha [2], and are more common in the semiarid tropics [2,3] with an
annual rainfall between 500 mm and 1000 mm, expanding when wet and contracting
when dry, due to the high content of the expansive 2:1 clay mineral. The swelling and
shrinking nature of expansive vertic soils may damage civil engineering structures [4,5],
promote environmental pollution through preferential flow paths and compromise carbon
storage [6], compromise tilling in agricultural fields [7,8], and affect slope stability [3,9].

Even though there is relevant information available [3,10], understanding the expan-
sion and contraction processes in expansive soils at the field scale still remains a challenge
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to optimize their use and management [3,10–12]. Field studies on the cracks–soil–water–
environment interaction are scarce [3,10] when compared with laboratory studies [3].

Because of the scarcity of data on the morphometric characteristics of soil cracks at
most locations, there is a need to develop models to be applied at locations with monitoring
limitations. These models should rely on input variables obtained at lower costs in relation
to traditional collection methods. Artificial intelligence has been successfully applied
in the field of water resource management [13,14], and in recent years models based on
artificial neural networks (ANN) have attracted researchers to the study of water–soil–
environment interactions.

Prediction models using artificial neural networks need less calibration and validation
data than traditional models. Thus, the technique is more economical and easier to use
while maintaining the accuracy of the results. This research aims to develop and apply an
artificial neural network model based on climate variables to estimate the morphometric
parameters of cracks formed under field conditions in a semiarid environment.

2. Materials and Methods
2.1. Study Area

The study was developed in a catchment representative of a seasonally dry tropical
forest in a semiarid environment. The historical mean annual rainfall of the region is
997 ± 300 mm, of which 89% is concentrated in the period from December to May [15]. The
average potential evaporation is 2113 mm year-1, with an aridity index of 0.48 [16].

The 2.8 ha first-order catchment study area is under regeneration after deforestation,
burning and planting of pasture in 2010 in northeastern Brazil. Six (1 m × 1 m) plots
(P1–P6) were randomly placed in the soft relief catchment to monitor crack characteristics
(Figure 1). The plots were visited every week, with additional visits after a rainfall event.
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The catchment soil is classified as a Vertisol [17], with a predominance of expansive
2:1 clay minerals of the montmorillonite group. The soil characteristics of each plot are
presented in Table 1.
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Table 1. Soil properties.

Soil Properties
Observed Plots

P1 P2 P3 P4 P5 P6

Grain size analysis
Sand (%) 21 26 41 22 27 44
Silt (%) 43 46 33 41 41 36

Clay (%) 36 28 26 37 32 20
Organic matter (%) 0.8 1.5 1.3 1.4 1.9 2.2
Base saturation (%) 92 95 84 95 92 89

pH 6.6 7.1 6 6.8 6.6 6.7
Specific gravity 2.79 2.57 2.53 2.53 2.48 2.52
Liquid limit (%) 43 38 28 42 40 33
Plastic limit (%) 14 27 21 32 26 27
Plasticity index 30 12 7 10 14 7

Textural Classification Clay loam Clay loam Sandy clay loam Clay loam Clay loam Sandy clay loam

2.2. Data Acquisition

From July 2019 to June 2020, the morphometric characteristics of soil cracks (area,
depth and volume), and environmental factors (soil moisture, rainfall, potential evapo-
transpiration and water balance) were monitored and evaluated in the six experimental
plots. All readings were taken weekly and after a rainfall event, which totaled 65 days. A
(0.05 m × 0.05 m) grid was permanently mounted at each (1 m × 1 m) plot with yellow
plastic tape to follow the crack development (Figure 2b).
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readings; (c) rod to read depth of cracks; (d) photographic image without correction for the horizontal;
(e) image corrected for the horizontal plane.

During the monitoring visits, we took photographic images from each plot (Figure 2a).
The camera was installed at 1 m height and at an angle of 30◦ relative to the experimental
plot. All images were recorded with the same camera configuration—best shooting function,
without zoom and with constant focus area [18]. The photographic images were corrected
for a horizontal plane (Figure 2d,e) using the software GNU Image Manipulation Program
(GIMP) version 2.10.10 (Available in: https://www.gimp.org/ accessed on 13 July 2020).

There were 390 selected images (65 days × 6 plots) based on technical criteria (shadow
luminosity). After correction and selection, the images were analyzed for crack detection
and the crack characteristics evaluated with the Software Crack Image Analysis System
(CIAS) (Available in: http://acei.cn/program/CIAS/ accessed on 24 July 2020), iteratively.

https://www.gimp.org/
http://acei.cn/program/CIAS/
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After image digital processing and topological transformation, automatic quantification of
the cracks’ geometric characteristics (length, perimeter and area) was assessed as proposed
by Liu et al. [19].

Based on the (0.05 m × 0.05 m) grid setup for each plot (Figure 2b) and a metric
scale, we identified and measured crack characteristics (Figure 2c)–location, length, width
and depth (Figure 2b,c). The measurements were taken with the aid of a caliper, a ruler,
small vegetable rods and a laser distance meter. The volume of the cracks was evaluated
assuming a parallelepiped form [20], being the product of the area of the crack by its depth
(data available as Supplementary Materials).

Soil moisture content (SM) was determined daily, next to each plot, using the thermo-
gravimetric method at a depth of 0.0–0.1m. Daily rainfall (PPT) was measured with a Ville
de Paris rain gauge located at the outlet of the watershed, and potential evapotranspiration
(PET) evaluated by the Hargreaves and Samani method [21] with calibrated parameters for
the study area [22]. A simple water balance (WB) based on PPT and PET was evaluated
daily (WB = PPT − PET).

2.3. Artificial Neural Network

To predict the morphometric characteristics of cracks in the soil based on climate
and environmental data, we developed artificial neural network (ANN) models with the
acquired data. We applied a Pearson correlation (p < 0.05) (Appendix A) between the input
climatic variables and the output of cracks in the soil (Table 2).

Table 2. Input and output variables for the ANN model.

Input Environmental Variables Output Cracks’ Morphometric
Characteristics Variables

• SM–daily soil moisture (%);
• PPT01–PPT10–accumulated precipitation from previous 1 to 10 days (mm);
• ET01–ET10–total potential evapotranspiration from previous 1 to 10 days (mm)
• WB01–WB10–mean simplified water balance (mm)

• Depth
• Area
• Volume

Two models were developed:

• Model I—this model included all variables with a significant correlation (p < 0.05)
(Appendix A), which were SM, PPT01-PPT10, ET01-ET10, WB01-WB10

• Model II—this model included the variables with a high or very high Pearson coeffi-
cient (0.6 ≤ |r| < 0.8 or 0.8 ≤ |r| < 1, respectively), as suggested by Bisquerra et al. [23]
with a significant correlation (p < 0.05), which were SM, ET01-ET10 (Appendix A).

We have developed multi-layer perceptron models, commonly applied in hydro
environmental studies [24], which have a three-layer structure: the input layer, output layer
and hidden layer (Figure 3). We used the hyperbolic tangent to activate the hidden layer
and the identity function to activate the output layer, and we included a bias [14].

The models were trained and tested with different parts of the dataset (cross-validation).
The choice of the data to be included in each sub-datasets (training and testing) was made
so that each included all domains of the variables and contained the extreme values for
calibration in order to be representative of all the available sample space.
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2.4. Model Performance

To analyze model performance, we compared the estimated to the observed results with
coefficients that measure the average tendency of the simulated values to be larger or smaller
than their observed ones: Nash–Sutcliffe (NS) coefficient [25] as suggested by Teixeira et al. [13]
and Moriasi et al. [26], and percentage bias (PBIAS) [27] according to Moriasi et al. [26]: NS >
0.8 and PBIAS < 10—Excellent; 0.70 < NS ≤ 0.8 and 10 ≤ PBIAS < 15—Good; 0.45 < NS ≤ 0.7
and 15 ≤ PBIAS 20—Satisfactory; and NS ≤ 0.45 and PBIAS ≤ 20—Poor.

3. Results and Discussions
3.1. Spatial and Temporal Variability of Cracks’ Morphometric Characteristics

The morphometric characteristics of soil cracks (area, depth and volume) (Figure 4)
expressed variability over the period studied. The variability was associated with climatic
seasonality. Over the dry period there was shrinking of the clays and forming of cracks,
whereas when the rainy season began the clays expanded and the cracks were sealed [11].
Plots P1, P4 and P5 recorded the highest means for depths, area and volume of cracks, as
well as the greatest variability.

During the study period all cracks sealed superficially at some point (Figure 4), and a
value of zero was attributed to the variables of area, depth and volume. The highest values
of area, depth and volume were recorded in Plot P1, which is closer to outlet (Figure 1).
Although Plot P1 did not have the highest clay content, it had the highest limit of plasticity,
which directly influenced the expansion/contraction process, both in the magnitude of
occurrence and in the speed of the processes [4,28] when compared with the other plots.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 
Figure 4. Morphometric descriptive characteristics of cracks in the Vertisol studied: area, depth and 
volume (× represent the median values and ° represent the outliers). 

3.2. Models Performance 
In determining the depth of cracks in the soil, Model II showed an excellent perfor-

mance in both calibration and validation for all plots (Table 3), according to the classifica-
tion criteria from Mosiari et al. [26]. Model I also showed an excellent performance for 
Plots P1, P2, P4 and P5 and satisfactory performance for Plots P3 and P6 on both calibra-
tion and validation. The lower clay content in Plots P3 and P6 (Table 1) reduced the degree 
of self-healing, being at that time governed by soil plasticity, which determines the poten-
tial for soil swelling and shrinking [28] directly, with a greater impact on Model I perfor-
mance. 

Table 3. Model performance for determination of morphometric characteristics. 

Depth of Cracks 

Plot Models 
NS PBIAS 

Calibration Validation Calibration Validation 
P1 Model I 0.94 0.91 0.62 0.97 

Figure 4. Cont.



Sustainability 2022, 14, 675 6 of 16

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 
Figure 4. Morphometric descriptive characteristics of cracks in the Vertisol studied: area, depth and 
volume (× represent the median values and ° represent the outliers). 

3.2. Models Performance 
In determining the depth of cracks in the soil, Model II showed an excellent perfor-

mance in both calibration and validation for all plots (Table 3), according to the classifica-
tion criteria from Mosiari et al. [26]. Model I also showed an excellent performance for 
Plots P1, P2, P4 and P5 and satisfactory performance for Plots P3 and P6 on both calibra-
tion and validation. The lower clay content in Plots P3 and P6 (Table 1) reduced the degree 
of self-healing, being at that time governed by soil plasticity, which determines the poten-
tial for soil swelling and shrinking [28] directly, with a greater impact on Model I perfor-
mance. 

Table 3. Model performance for determination of morphometric characteristics. 

Depth of Cracks 

Plot Models 
NS PBIAS 

Calibration Validation Calibration Validation 
P1 Model I 0.94 0.91 0.62 0.97 

Figure 4. Morphometric descriptive characteristics of cracks in the Vertisol studied: area, depth and
volume (× represent the median values and ◦ represent the outliers).

3.2. Models Performance

In determining the depth of cracks in the soil, Model II showed an excellent perfor-
mance in both calibration and validation for all plots (Table 3), according to the classification
criteria from Mosiari et al. [26]. Model I also showed an excellent performance for Plots
P1, P2, P4 and P5 and satisfactory performance for Plots P3 and P6 on both calibration
and validation. The lower clay content in Plots P3 and P6 (Table 1) reduced the degree of
self-healing, being at that time governed by soil plasticity, which determines the potential
for soil swelling and shrinking [28] directly, with a greater impact on Model I performance.

Model I showed a better performance (excellent) than Model II (good) for the variable
area (Table 3) in Plots P1 and P5, and a satisfactory performance for the other plots, which
showed an excellent performance in Model I and good performance when using Model I.

Still in Table 3, we observed that for the variable area in Plots P1 and P5, Model II
presented performance classified as excellent according to Moriasi et al. [26], whereas Model
I showed a good performance. For the other plots, both models displayed satisfactory
performances. Plots P1 and P5 developed the largest crack areas (Figure 4), increasing
the soil–crack connectivity [12] and interactions with external factors, leading to a higher
performance of the models.

Of all soil crack morphometric characteristics (depth, area and volume) estimated by
the two models (Table 3), the volume of cracks in Plot P6 was the only characteristic that
in both models showed poor performance. For the other plots, the two models showed a
satisfactory performance. Plot P6 had higher sand and lower clay contents and smaller
crack areas, depths and volumes, revealing a smaller crack network which may have
influenced the accuracy of the models [29].
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Table 3. Model performance for determination of morphometric characteristics.

Depth of Cracks

Plot Models
NS PBIAS

Calibration Validation Calibration Validation

P1
Model I 0.94 0.91 0.62 0.97
Model II 0.96 0.98 0.40 0.28

P2
Model I 0.70 0.77 1.29 0.88
Model II 0.92 1.86 0.34 0.51

P3
Model I 0.73 0.57 0.82 0.66
Model II 0.86 0.82 0.45 0.51

P4
Model I 0.88 0.88 0.68 0.79
Model II 0.93 0.94 0.40 0.4

P5
Model I 0.82 0.83 1.22 0.84
Model II 0.83 0.84 1.2 1.19

P6
Model I 0.65 0.55 0.56 0.66
Model II 0.75 0.76 0.80 0.77

Area of Cracks

Plot Models
NS PBIAS

Calibration Validation Calibration Validation

P1
Model I 0.80 0.79 2.36 2.42
Model II 0.83 0.82 2.03 2.07

P2
Model I 0.70 0.47 0.44 1.92
Model II 0.80 0.69 0.90 1.09

P3
Model I 0.68 0.52 1.01 1.30
Model II 0.84 0.82 0.49 0.50

P4
Model I 0.82 0.68 0.53 2.45
Model II 0.71 0.46 0.87 2.18

P5
Model I 0.95 0.83 0.35 1.29
Model II 0.95 0.83 0.35 1.26

P6
Model I 0.66 0.52 0.38 1.47
Model II 0.65 0.46 0.38 1.5

Volume of Cracks

Plot Models
NS PBIAS

Calibration Validation Calibração Validação

P1
Model I 0.82 0.86 0.44 0.88
Model II 0.8 0.64 0.47 0.28

P2
Model I 0.74 0.62 0.07 0.09
Model II 0.88 0.87 0.03 0.03

P3
Model I 0.63 0.69 0.07 0.05
Model II 0.80 0.82 0.04 0.03

P4
Model I 0.85 0.92 0.07 0.04
Model II 0.82 0.86 0.04 0.02

P5
Model I 0.81 0.84 0.1 0.06
Model II 0.86 0.94 0.16 0.06

P6
Model I 0,38 0.32 0.09 0.04
Model II 0.42 0.36 0.08 0.04

3.3. Morphometric Characteristics of Soil Cracks

Both models predicted crack depth more accurately than the other variables at all
plots (P1–P6), as may be observed in (Figures 5–10). Even though the models showed a
satisfactory performance on the plots with higher sand contents (P3 and P6 in Table 1),
there was high dispersion of the data when comparing the models’ outputs with the
observed data.
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The estimates of the area of the cracks in the plots studied (Figures 5–10) with both
models showed lower dispersions than were observed in the field in Plots P1 and P5, which
had the highest plasticity indexes. The swelling/shrinking processes can occur quickly in
clay with a high plasticity index [4,28]; hence, a faster response to climate variations can
also occur. The higher sand content in Plots P3 and P6 decreased water adsorption when
compared to soils with higher clay content [5], decreasing the cohesion forces [28], with
consequent distinct responses to climatic conditions when compared to plots with higher
clay contents (Figures 5–10). For the other plots (P2, P3, P4 and P6), there was greater
dispersion of the models’ outputs when compared to the observed values. It is also noted
that in Plot P4, Model II underestimated the observed values when compared to Model I
output, suggesting an influence of clay content on model response.

The temporal evolution of cracks’ behavior is followed by both models (Figures 5–10),
except for Plot P6, for which both models did not follow what was observed in the field:
the models estimate a constant volume, although there are variations observed in the field.
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Due to the higher sand content in this plot, the soil surface was under a higher stress caused
by evaporation and resulting reduced soil moisture. These processes have an influence on
the infiltration capacity/infiltration rate, which will affect crack formation, orientation and
distribution, as well as crack sealing [30,31].

4. Conclusions

The neural network models developed in this study, based on climatic data to predict
the morphometric characteristics of cracks in an expansive clay soil, determined well the
area and depth of cracks in plots with a clay content above 30%. The models performed
best when the input climatic variables showed high or very high correlations with the
morphometric characteristics of cracks in the soil. The highest dispersions of modeled
relative to observed values for all morphometric cracks’ characteristics (area, depth and
volume) were in plots with higher sand contents (above 40%). The model is suitable to be
applied in regions with heavier soils and of higher clay contents.
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Appendix A

Table A1. Correlation between external environmental characteristics and morphometric features
of cracks.

Variables
Plot P1 Plot P2 Plot P3 Plot P4 Plot P5 Plot P6

Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol

SM −0.89
**

−0.90
**

−0.87
**

−0.84
**

−0.89
**

−0.75
**

−0.85
**

−0.88
**

−0.83
**

−0.75
**

−0.88
**

−0.71
**

−0.77
**

−0.81
**

−0.69
**

−0.74
**

−0.82
**

−0.63
**

ET1 0.61 ** 0.78 ** 0.72 ** 0.72 ** 0.76 ** 0.74 ** 0.66 ** 0.67 ** 0.68 ** 0.65 ** 0.76 ** 0.71 ** 0.77 ** 0.71 ** 0.73 ** 0.70 ** 0.70 ** 0.61 **
ET2 0.63 ** 0.87 ** 0.79 ** 0.79 ** 0.84 ** 0.82 ** 0.71 ** 0.72 ** 0.72 ** 0.76 ** 0.84 ** 0.81 ** 0.85 ** 0.79 ** 0.83 ** 0.74 ** 0.74 ** 0.60 **
ET3 0.67 ** 0.89 ** 0.83 ** 0.82 ** 0.86 ** 0.84 ** 0.75 ** 0.76 ** 0.75 ** 0.78 ** 0.85 ** 0.82 ** 0.87 ** 0.79 ** 0.83 ** 0.77 ** 0.78 ** 0.61 **
ET4 0.67 ** 0.90 ** 0.82 ** 0.83 ** 0.87 ** 0.85 ** 0.74 ** 0.76 ** 0.75 ** 0.78 ** 0.88 ** 0.83 ** 0.88 ** 0.82 ** 0.84 ** 0.75 ** 0.77 ** 0.61 **
ET5 0.68 ** 0.90 ** 0.83 ** 0.84 ** 0.88 ** 0.87 ** 0.74 ** 0.78 ** 0.75 ** 0.80 ** 0.89 ** 0.85 ** 0.89 ** 0.83 ** 0.86 ** 0.75 ** 0.77 ** 0.61 **
ET6 0.67 ** 0.91 ** 0.83 ** 0.86 ** 0.89 ** 0.88 ** 0.74 ** 0.78 ** 0.76 ** 0.83 ** 0.90 ** 0.87 ** 0.91 ** 0.84 ** 0.88 ** 0.76 ** 0.77 ** 0.62 **
ET7 0.67 ** 0.91 ** 0.83 ** 0.86 ** 0.90 ** 0.89 ** 0.75 ** 0.79 ** 0.77 ** 0.83 ** 0.90 ** 0.88 ** 0.92 ** 0.85 ** 0.89 ** 0.77 ** 0.78 ** 0.63 **
ET8 0.69 ** 0.93 ** 0.84 ** 0.87 ** 0.91 ** 0.90 ** 0.77 ** 0.80 ** 0.79 ** 0.84 ** 0.91 ** 0.88 ** 0.92 ** 0.85 ** 0.89 ** 0.78 ** 0.79 ** 0.63 **
ET9 0.68 ** 0.92 ** 0.84 ** 0.86 ** 0.90 ** 0.90 ** 0.75 ** 0.79 ** 0.77 ** 0.84 ** 0.91 ** 0.88 ** 0.92 ** 0.85 ** 0.89 ** 0.77 ** 0.78 ** 0.63 **
ET10 0.67 ** 0.92 ** 0.83 ** 0.85 ** 0.90 ** 0.89 ** 0.75 ** 0.79 ** 0.76 ** 0.84 ** 0.90 ** 0.88 ** 0.92 ** 0.84 ** 0.89 ** 0.76 ** 0.77 ** 0.63 **

PPT1 −0.37
**

−0.35
**

−0.35
**

−0.39
**

−0.41
**

−0.33
**

−0.35
**

−0.38
**

−0.34
**

−0.33
**

−0.37
**

−0.29
**

−0.31
**

−0.34
** −0.27* −0.29

**
−0.34

**
−0.29

**

PPT2 −0.51
**

−0.48
**

−0.49
**

−0.52
**

−0.52
**

−0.45
**

−0.48
**

−0.50
**

−0.47
**

−0.45
**

−0.47
**

−0.39
**

−0.42
**

−0.44
**

−0.37
**

−0.40
**

−0.47
**

−0.29
**

PPT3 −0.56
**

−0.54
**

−0.54
**

−0.55
**

−0.57
**

−0.47
**

−0.52
**

−0.55
**

−0.50
**

−0.48
**

−0.51
**

−0.42
**

−0.45
**

−0.48
**

−0.40
**

−0.43
**

−0.51
**

−0.31
**

PPT4 −0.61
**

−0.59
**

−0.58
**

−0.58
**

−0.59
**

−0.51
**

−0.55
**

−0.59
**

−0.53
**

−0.50
**

−0.54
**

−0.45
**

−0.49
**

−0.51
**

−0.43
**

−0.46
**

−0.55
**

−0.34
**

PPT5 −0.63
**

−0.61
**

−0.59
**

−0.60
**

−0.61
**

−0.52
**

−0.57
**

−0.61
**

−0.55
**

−0.52
**

−0.56
**

−0.46
**

−0.50
**

−0.53
**

−0.44
**

−0.47
**

−0.55
**

−0.34
**
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Table A1. Cont.

Variables
Plot P1 Plot P2 Plot P3 Plot P4 Plot P5 Plot P6

Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol Area Depth Vol

PPT6 −0.64
**

−0.62
**

−0.61
**

−0.61
**

−0.63
**

−0.53
**

−0.61
**

−0.65
**

−0.59
**

−0.54
**

−0.59
**

−0.48
**

−0.51
**

−0.55
**

−0.45
**

−0.50
**

−0.58
**

−0.36
**

PPT7 −0.65
**

−0.63
**

−0.62
**

−0.61
**

−0.63
**

−0.54
**

−0.62
**

−0.66
**

−0.61
**

−0.53
**

−0.60
**

−0.49
**

−0.53
**

−0.57
**

−0.47
**

−0.52
**

−0.60
**

−0.37
**

PPT8 −0.67
**

−0.65
**

−0.64
**

−0.61
**

−0.64
**

−0.54
**

−0.64
**

−0.68
**

−0.62
**

−0.54
**

−0.62
**

−0.50
**

−0.54
**

−0.58
**

−0.48
**

−0.53
**

−0.61
**

−0.38
**

PPT9 −0.68
**

−0.66
**

−0.65
**

−0.61
**

−0.64
**

−0.54
**

−0.65
**

−0.68
**

−0.63
**

−0.54
**

−0.62
**

−0.50
**

−0.55
**

−0.60
**

−0.49
**

−0.54
**

−0.62
**

−0.39
**

PPT10 −0.68
**

−0.67
**

−0.65
**

−0.61
**

−0.64
**

−0.54
**

−0.66
**

−0.69
**

−0.64
**

−0.55
**

−0.64
**

−0.51
**

−0.56
**

−0.61
**

−0.50
**

−0.56
**

−0.63
**

−0.40
**

WB1 −0.41
**

−0.40
**

−0.40
**

−0.44
**

−0.46
**

−0.38
**

−0.39
**

−0.43
**

−0.38
**

−0.38
**

−0.43
**

−0.34
**

−0.36
**

−0.39
**

−0.32
**

−0.34
**

−0.39
** −0.25*

WB2 −0.55
**

−0.54
**

−0.55
**

−0.57
**

−0.59
**

−0.52
**

−0.53
**

−0.55
**

−0.52
**

−0.51
**

−0.53
**

−0.46
**

−0.49
**

−0.50
**

−0.44
**

−0.46
**

−0.53
**

−0.34
**

WB3 −0.61
**

−0.61
**

−0.60
**

−0.61
**

−0.63
**

−0.54
**

−0.57
**

−0.61
**

−0.56
**

−0.54
**

−0.58
**

−0.49
**

−0.53
**

−0.54
**

−0.47
**

−0.49
**

−0.58
**

−0.36
**

WB4 −0.65
**

−0.65
**

−0.64
**

−0.64
**

−0.66
**

−0.58
**

−0.60
**

−0.64
**

−0.59
**

−0.57
**

−0.61
**

−0.52
**

−0.56
**

−0.58
**

−0.50
**

−0.52
**

−0.60
**

−0.39
**

WB5 −0.67
**

−0.68
**

−0.65
**

−0.66
**

−0.68
**

−0.59
**

−0.62
**

−0.67
**

−0.61
**

−0.58
**

−0.63
**

−0.53
**

−0.57
**

−0.59
**

−0.51
**

−0.53
**

−0.61
**

−0.39
**

WB6 −0.68
**

−0.69
**

−0.66
**

−0.68
**

−0.70
**

−0.60
**

−0.66
**

−0.71
**

−0.64
**

−0.61
**

−0.66
**

−0.55
**

−0.59
**

−0.62
**

−0.53
**

−0.56
**

−0.64
**

−0.41
**

WB7 −0.69
**

−0.70
**

−0.68
**

−0.68
**

−0.70
**

−0.61
**

−0.68
**

−0.71
**

−0.66
**

−0.60
**

−0.68
**

−0.56
**

−0.61
**

−0.64
**

−0.55
**

−0.58
**

−0.66
**

−0.43
**

WB8 −0.71
**

−0.72
**

−0.70
**

−0.69
**

−0.71
**

−0.62
**

−0.69
**

−0.73
**

−0.68
**

−0.62
**

−0.70
**

−0.58
**

−0.63
**

−0.66
**

−0.56
**

−0.60
**

−0.68
**

−0.44
**

WB9 −0.72
**

−0.74
**

−0.71
**

−0.69
**

−0.72
**

−0.63
**

−0.70
**

−0.74
**

−0.69
**

−0.62
**

−0.70
**

−0.58
**

−0.64
**

−0.67
**

−0.57
**

−0.61
**

−0.68
**

−0.45
**

WB10 −0.72
**

−0.75
**

−0.72
**

−0.69
**

−0.73
**

−0.63
**

−0.71
**

−0.75
**

−0.70
**

−0.63
**

−0.72
**

−0.60
**

−0.66
**

−0.68
**

−0.58
**

−0.62
**

−0.69
**

−0.46
**

area (m2); depth (m); vol, volume (m3); SM, soil moisture (%); ET1-ET10, accumulated potential evapotranspiration
from 1 to 10 days (mm day-1); PPT1-PPT10, accumulated precipitation from 1 to 10 days (mm); WB1-WB10,
simplified water balance accumulated from 1 to 10 days (mm); ** Significant values at the level of 5%.
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