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Abstract: Glyphosate is still the subject of much debate, as several studies report its effects on
the environment. Sunflower (GK Milia CL) was set up as an experimental plant and treated with
glyphosate concentrations of 500 ppm and 1000 ppm in two treatments. Glyphosate was found to be
absorbed from the soil into the plant organism through the roots, which was also detectable in the leaf
and root. Glyphosate was also significantly detected in the plant 5 weeks after treatment and in plants
that did not receive glyphosate treatment directly, so it could be taken up through the soil. Based on
the morphological results, treatment with higher concentrations (1000 ppm) of glyphosate increased
the dried mass and resulted in shorter, thicker roots. Histological results also showed that basal
and transporter tissue distortions were observed in the glyphosate-treated plants compared to the
control group. Cells were distorted with increasing concentration, vacuoles formed, and the cell wall
was weakened in both the leaf-treated and inter-row-treated groups. In the future, it will be worth
exploring alternative agricultural technologies that can reduce the risk of glyphosate while increasing
economic outcomes. This may make the use of glyphosate more environmentally conscious.

Keywords: Helianthus; sunflower; morphological; sustainable; glyphosate; pesticide; residue; pollu-
tion; weed control; organic plant production

1. Introduction

Glyphosate (NA-(phosphono-methyl) glycine) was introduced commercially in
1974 [1] and is considered to be the most widely used herbicide in the history of agri-
culture [2,3], a postemergent, systemic, non-selective chemical [4,5] that poses a high risk
to human health and the environment [4]. In 2014, farmers in the United States sprayed
enough glyphosate to reach about 1 kg per hectare of cultivated land, amounting to nearly
0.53 kg/ha for all crops in the world [6]. In 2017, glyphosate accounted for 33% of herbicide
sales in Europe. One-third of the sown area of annual crop systems and half of the area
of trees received glyphosate annually. Glyphosate is widely used for at least eight agricul-
tural purposes, including weed control, plant drying, sealing of cover crops, temporary
grassland removal, and permanent grassland renewal [7]. It has been widely used for the
past 40 years, with the assumption that side effects are minimal [8]. Since the mid-1990s,
there have been significant changes in the timing and manner of application of glyphosate
herbicides, resulting in a drastic increase in total application rates [6]. There are currently
no public data on the use of glyphosate in Europe [7].
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1.1. Glyphosate

Glyphosate is a highly potent broad-spectrum herbicide that targets 5-enolpyruvyl
shikimate-3-phosphate synthase (EPSPS) [9]. The majority of soybeans (Glycine max L.)
planted in the United States are resistant to glyphosate due to the introduction of a gene
encoding glyphosate-insensitive 5-enolipyruvylsikimate-3-phosphate synthase [10]. Gene
expression studies have also shown that the gene encoding EPSPS is maximally expressed in
meristems, so glyphosate must migrate to plant growth sites to be effective [11]. Glyphosate
was metabolized to the same extent in Sorghum halepense (L.) Pers. in both glyphosate-
resistant and -sensitive populations, and there was no significant difference in the inhibition
of 5-enol-pyruvylsikimate-3-phosphate synthase (EPSPS), nor in the basic activity [12].

It is used primarily against deep-rooted perennial weeds in agriculture, forestry,
and wetlands and parks. The focus is on its agricultural use, and the possible presence of
residues that also accumulate in crops and human and animal tissues. According to a World
Health Organization (WHO) report, the residue content in plant organs is negligible [4], yet
several studies point to the opposite [13]. The effect of low-dose glyphosate on animals and
humans has recently been documented, suggesting changes and shifts in the composition
of microbial communities in plants and the animal gut [8]. For spring wheat (Triticum
aestivum L.), a number of laboratories are currently investigating both its accumulation and
its toxicity in both animals and plants [14].

Glyphosate-resistant, genetically modified crops have been used since 1996 and are
becoming more widespread worldwide [9]. Commercially available glyphosate-based
formulations typically contain 41% or more of the active ingredient, while household
formulations contain 1% glyphosate [15]. However, glyphosate can also have extensive,
undesirable effects on nutrient efficiency, compromising agricultural sustainability. It
weakens the defenses of plants against pathogens and pests as it also accumulates in
meristem tissues [2]. The toxicity formulations vary due to the value being influenced by
multiple factors. The toxicity of the preparation depends on the quality and quantity of
surfactants. Experimental results suggest that the toxicity of the polyoxyethyleneamine
(POEA) surfactant is greater than that of glyphosate alone or the average toxicity of most
commercially available agents [15]. Few plant species are inherently resistant to glyphosate.
In addition, measurements of glyphosate did not result in any evidence of resistance of
weeds to the active substance in the field. This may be explained, among other things,
by the lack of glyphosate residue in the soil [16]. Recent evidence, however, calls into
question the inactivation properties and safety of glyphosate. Glyphosate can be retained
and transported in soil [17].

Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite
of glyphosate in plants [18]. Glyphosate and the metabolite AMPA accumulate in the
environment [8]. Glyphosate-based herbicides have been found to cause abnormal growth
structures and phenological changes in some agriculturally relevant plants, such as one
or more morphological changes in anthers, anthers, pollen, or flowers, and to reduce the
number of seeds in the glyphosate-resistant plant [19]. In soybean plants, glyphosate-
containing formulations had no effect on chlorophyll content, the dry weight of roots and
shoots, and the number of shoots, but reduced shoot biomass by 21–28% [20]. There is
a significant difference in glyphosate and AMPA levels between some plant species [18].
In some first- and second-generation glyphosate-resistant Glycine max L., photosynthesis
becomes inhibited [21]. The content of sikhate is twice as high for older leaves and 16 times
as high for young leaves in non-glyphosate-resistant plants [22], with the highest sensitivity
to glyphosate at the beginning of the vegetative stage [23]. This affects nutrient uptake,
leading to a decrease in biomass. Its effect increases with increasing glyphosate levels [21].
The increasing glyphosate ratio showed a significant decrease in photosynthetic activity,
accumulation of leaf tissue macro- and microelements, and decreased nutrient uptake in
Glycine max L. individuals [24]. In Glycine max L. Merr. ‘Williams’ individuals, glyphosate
also reduced chlorophyll content [25] but accumulated in nodules [26]. In Lupinus albus
L. plants, nitrogenase activity was reduced 24 h after glyphosate treatment, even at the
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lowest and sublethal doses (1.25 mM). In the longer term (5 days), the starch content of
the shoots and the amount of sucrose synthase also decreased, while the sucrose content
of the shoots increased [27]. In Eichhornia Kunth. plants, glyphosate was also detectable
in the plants on day 14 after treatment [28]. Glyphosate also affects the mineral content.
In plants of Glycine max L., glyphosate has been shown to interfere with the uptake and
retranslocation of Ca, Mg, Fe, and Mn, most likely to bind and thus immobilize them.
The decrease in iron, manganese, calcium, and magnesium concentrations in seeds by
glyphosate is very specific and may affect seed quality [22]. Gossypium hirsutum L. has
been shown to accumulate significantly more glyphosate in reproductive tissues than in
vegetative tissues [29]. Agropyron repens (L.) Beauv. glyphosate treatment showed that
offspring closer to the mother plant survived glyphosate treatment more easily than those
farther away. This suggests that higher bud death near the rhizome peak is attributable to
higher glyphosate accumulation [30].

Searching major scientific databases (Google Scholar, ScienceDirect) for “glyphosate,”
“herbicide use,” and “pesticide use” leads to just a few articles reporting global sales of
glyphosate. The lack of public data on the use of glyphosate has already been highlighted
by several NGOs and researchers. Based on data and additional estimates, the total volume
of glyphosate sold in the EU in 2017 was 49,427 tonnes [7].

1.2. Histological and Morphological Changes

The persistence of glyphosate residues in plant tissues varies depending on the species
and plant tissue type [31]. In maize (Zea mays L.), glyphosate reduced the efficiency of
photosynthesis, causing changes in leaf anatomy and stem physical properties, leading to
a decrease in grain size [32]. In Rosa acicularis plants, 2 years after glyphosate treatment,
the effect of the chemical was also detected in pollen, petals, and flower tissues [19]. It
did not affect the number of flowers, but it did affect the cumulative number of flow-
ers [33]. Glyphosate-treated tomato seedlings (Solanum lycopersicum L.) showed increased
root growth and elongation of chloroplasts when seeds were sown in glyphosate con-
taining soil and if sprayed with glyphosate [34]. Glyphosate has been shown to have a
detrimental effect on the yield and growth of young cocoa plants [35]. In Sida acuta Burm.f.
specimens treated with glyphosate, the stem was swollen and bent. The leaves turned
yellow, while the roots were swollen and necrotic. Vegetative growth decreased, and the
plants eventually withered [36]. In plants of Salvinia cucullata, glyphosate was ecotoxic [37].
In this plant species, concomitant use with copper may increase the ecological risk [38].
The active substance accumulation in Lemna minor plants was tenfold compared to the
maximum acceptable residue level (MRL) after 7 days of glyphosate treatment [39]. In
wheat (Triticum aestivum L.), the use of glyphosate did not affect the primary and secondary
structure of the proteins [40]. Chloris elata Desv. specimens have been shown to form wax
crystals around the stomas of older plants, which contributed to a decrease in glyphosate
sensitivity [41]. The use of glyphosate and paraquat negatively affected the germination
of Vicia faba, Phaselolus vulgaris, and Sorghum bicolor seeds, photosynthetic pigments, and
amino acids [42].

1.3. Effects of Glyphosate on the Human Environment

Exposure to carcinogens is responsible for a number of human health problems [43].
We are increasingly facing the severe social and economic effects of environmental degra-
dation worldwide [44], and seasonal changes also affect soil habitats [45]. The use of
glyphosate causes potential health problems [46]. Decreases in plant diversity and numbers
have been widely reported in the agricultural ecosystems of North America and Europe.
Intensive use of herbicides within arable land and drift from neighboring habitats are
partly responsible for the change [47]. Its toxicity is not limited to plant organisms but
can be clearly demonstrated in human cells, so a human health risk analysis process for
glyphosate should be developed in the future [48]. The rapid transport of glyphosate
is well illustrated by the detection of glyphosate residues in bottled drinking water and
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human urine in Mexico [49]. Glyphosate [50] is the most widely used pesticide in In-
donesia. Occasionally, there are reports of contamination of drinking water sources with
herbicides (including glyphosate) in Taiwan. Glyphosate is not yet a chemical in the assess-
ment of Taiwanese drinking water quality standards [51]. Glyphosate and its metabolite,
aminomethylphosphonic acid (AMPA), have recently been identified as potential contribu-
tors to the development of various diseases such as autism, Parkinson’s and Alzheimer’s
disease, and cancer [52]. However, several researchers in Australia have a number of
objections to the harmful effects of residues on human health. Glyphosate-based products
are being intensively tested by governments at all levels. Some jurisdictions have already
banned or restricted its use [53].

Glyphosate and AMPA are largely retained in the surface soil layer as residues [54],
and AMPA persists longer than the parent compound of glyphosate [55]. It was also shown
that the content of pesticides in water samples from reservoirs, including glyphosate,
was higher during the agricultural season (1 April–15 September) than during the off-
season [56]. Residual concentrations of herbicides and their metabolites in harvested
Zea mays L. plants increased in direct proportion to increasing the application rate of
herbicides [57]. Glyphosate was also detected in soil and rice grains in rice production [58].
The persistence of herbicides, including glyphosate, in the soil and its effect on soybean
yield has also been studied in soybeans [59].

1.4. Genetic Changes Due to Glyphosate in Living Organisms

The vast majority of negative results in well-conducted bacterial reversion and in vivo
mammalian micronucleus and chromosome aberration tests indicate that glyphosate and
typical glyphosate-based formulations (GBF) are not genotoxic in these nuclear assays.
Reports of positive results for endpoints of deoxyribonucleic acid (DNA) damage indicate
that glyphosate and GBFs tend to induce DNA damage at high or toxic doses, but the data
suggest that this is due to cytotoxicity rather than the GBF activity of DNA that may be
associated with surfactants [60].

Glyphosate affects the composition and activity of the microbial community in the
rhizosphere and increases protein metabolism and decreases amino acid synthesis [61].
Glyphosate can also genetically modify living organisms. Glyphosate resistance appears at
different levels in giant ragweed (Ambrosia trifida). Introns show a higher expression pattern
with data measured in resistant individuals following putative glyphosate treatment [62].
In Conyza bonariensis individuals, many genes are differentially expressed upon glyphosate
treatment, so treatment involves a large number of genes [63]. Glyphosate inhibits the
pathway of tryptophan biosynthesis in the apical bud of soybean (Glycine max) [64].

Transcripts in the microbial community were affected by glyphosate. Some cyanobacte-
ria, such as Synechococcus, may use glyphosate as a source of P. In many metabolic pathways,
genes are overexpressed under glyphosate stress [65]. Polymerase chain reaction (PCR)
analysis of mammalian somatic cells has shown that glyphosate induces gene expression
changes [66].

The aim of our study was to demonstrate that glyphosate does not degrade in soil and
is incorporated into crops, even several weeks after glyphosate treatment. Glyphosate can
also be taken up by the plant through the soil. The main question of our study was whether
or not there was a significant difference between the amount of glyphosate absorbed
through the soil and the amount of glyphosate applied to the plant through the leaf. This
is demonstrated by morphological residue detection and microscopic examination. Our
model plant was the sunflower (Helianthus annuus L.).

2. Materials and Methods
2.1. Materials Used

For our experiments we used a non-glyphosate-resistant GK Milia CL sunflower
hybrid variety, which is a variety bred by Gabonakutató Nonprofit Közhasznú Ltd. (Szeged,
Hungary) [67], and is also owned by the Ltd. GK Milia CL is a commercially available
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sunflower variety that ripens early and tolerates abiotic stress well and can be treated with
the 2018 certified Clearfield® weed control technology [68]. The seed was harvested in
2020, uncoated.

Glialka, manufactured by the Monsanto Company (St. Louis, MO, USA) and owned
by Bayer GMBH (Monheim am Rhein, Germany), was used for the experiment. Total
herbicide with active ingredient 360 g/L glyphosate.

2.2. Experimental Conditions

The experiment was carried out at the Budatétény Station of the Institute of Land-
scape Architecture, Urban Planning, and Garden Art of MATE in 2021 under greenhouse
conditions. The seeds were sown in a plastic propagation tray measuring 59 cm × 29 cm
× 7 cm. For this purpose, a medium suitable for growing seedlings in trays (Klassmann-
Deilmann TS 3 Fine, Geeste, Germany) was used, the properties of which were as follows:
pH (H2O) 6, N 140 mg L−1, P (P2O5) 100 mg L−1, K (K2O) 180 mg L−1, Mg 100 mg L−1,
S 150 mg L−1. The trays were lined with 40 seeds in sowing and 5 replicates in a random-
ized block arrangement. Germinating weeds were mechanically removed in half of the
boxes, and no weed removal was performed in the other half. Fourteen days before sowing,
the weeds were removed in the weed trays with the Glialka chemical. The following
concentrations were used in each case: 500 ppm, 1000 ppm, and 2000 ppm.

The sunflower seeds were sown on 16 September 2021 in a glyphosate-free medium
and the other part in a medium sprayed with Glialka. Plants sown in the herbicide-free
medium were sprayed with Glialka at 3 weeks post-sowing. The amount of spray was
applied in each case at a rate of 2 L/100 m2 [68], in the 3 concentrations already mentioned.
The plants were kept at 20 ◦C and only irrigation water was obtained during the experiment.
The control group was seeded in a clean medium and received only irrigation water.
Seedlings were evaluated at 5 weeks post-sowing. The following vegetative parameters
were surveyed: Root and stem length, the fresh and dried weight of root and shoot, and
the number of leaves. Plants that received a concentration of 2000 ppm were killed during
the experiment and were therefore not evaluated further.

2.3. Histology

Histological samples were taken from three points of the measured plants: From the
root collar, from the stem 1 cm above the root collar, and from the stem above the lowest leaf.
The plants were cleaned with distilled water and pruned mechanically with a hand scalpel.
A Euromex bScope BS.1153-PLi biological microscope with a compatible camera (Levenhuk
m1400 plus) was used for the survey. Due to the pruning procedure, the oil immersion
lens arrays could not be used, so due to the nature of the sections, PLi 4/0.1 lenses were
used, which provided forty-fold magnification. The eyepiece was of the WF120×/20 type
and size. The samples were not stained. The images were post-corrected with GIMP 2.10
(owned by Spencer Kimball, Peter Mattis).

2.4. Residue Testing

The test method of Gonclaves and Catrinck [69] was used for the measurements. The
Varian GC/MS/MS 4000 instrument was used for the tests (Table 1), using the following
materials:

• EPA 547 Glyposate solution 1000 µg/mL in H2O; Sigma-Aldrich (St. Louis, MO, USA);
Lot: LRAC4997.

• BFTFA + 1% TMCS; Sigma-Aldrich; Lot: BCCD0447.
• Acetonitrile; Merck (Budapest, Hungary); Lot: I09677130 829.
• Pyridine; Scharlau (Barcelona, Spain); Lot: PI0123.
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Table 1. Chromatographic conditions used for residue testing [69].

Parameters Values

Column Rxi-5Sil MS, 30.00 m, 0.25 mm ID, 0.25 µm
Injector temperature: 280 ◦C

Injected volume: 1 µL
Split ratio: splitless

Carrier gas: helium 5.0
Carrier gas volume flow constant, 2 mL/perc

MS settings

Ion trap temperature 150 ◦C
Ion source temperature 200 ◦C

Transfer line temperature 220 ◦C
Ionization EI

Measurement mode SIS

SIS parameters

Stored masses (m/z)
232
312
340

Temperature (◦C) 100 300
Scale of temperature increase (◦C/min) 0.0 8.0
Time to maintain temperature (minutes) 0.00 0.00

Total time (minutes) 0.00 25.00

In the measurement procedure, approximately 1× g of sample was weighed to a cen-
trifuge tube and 10 mL of acetonitrile was added (in the case of a smaller sample, propor-
tions were kept). It was shaken for 1 h. It was then centrifuged for approximately 3000× g
and filtered through a syringe filter. Then, 300 µL of this clear solution was taken and evapo-
rated to dryness at 60 ◦C. After cooling, 60 µL of pyridine was added to the dry residue and,
after waiting for 5 min, 100 µL of the N, O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) +
1% trimethylsilyl chloride (TMCS) silylating agent was added. This mixture was heated at
60 ◦C for 30 min and then measured by Gas Chromatography—Mass Spectrometry. The
procedure was the same when creating a calibration line.

2.5. Statistical Measurements

The samples were independent, and the correct experimental design and correctness
of the sampling were ensured during the sampling. We used Microsoft Office 365 Excel
to document our measurement data and Microsoft Office 365 Word to edit the text. The
processing, comparison, and analysis of our measurable differences were performed with
IBM SPSS Statistics 25 using a one-way analysis of variance (ANOVA). The measured data
were analyzed with a 95% confidence level (significance) in all cases. When evaluating the
Levene test, if probability value (p) > 0.05, then the Tukey test was used, and if p < 0.05, the
Games-Howell test was used.

3. Results
3.1. Morphology

Performing morphological measurements was an important factor in the series of
measurements. In this way, we can obtain an idea of the changes at the organ level that can
occur in plants that receive glyphosate through leaves or roots. This also demonstrates that
glyphosate is absorbed through the root.

3.1.1. Root Morphological Changes

Root length was significantly reduced in the treated groups (Figure 1). The control
stock, which did not receive any form of glyphosate treatment, had an average root length
of 11.56 cm at the time of final evaluation, which is significantly different from all treated
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groups. For plants treated with a 500 ppm solution, the lowest value (1.873 cm) was
measured in the group receiving the chemical through the root. There was no significant
difference in root lengths between the 500 ppm leaf-treated and both 1000 ppm treatments.
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Figure 1. Length of roots on Helianthus annuus GK Milia CL after glyphosate treatment. Means with
different letter are significantly different by Tukey’s test at p < 0.05 (Budapest, 2021).

Comparing these data with fresh and dried root weights (Figure 2) it can be observed
that the untreated group had the highest fresh root weight (0.7467 g), which was signif-
icantly different from the mean weight of the treated groups. The average fresh weight
of the roots (0.6067 g) was also significantly higher in the 1000 ppm individuals treated
through the root, but in this case, the root was also shorter. In the groups receiving the
500 ppm solution, the average fresh root weight of the leaf spray group was 0.41 g, from
which the average fresh root weight of the glyphosate uptake (0.2253 g) was significantly
different. The lowest fresh weight value was produced by the group receiving the leaf
spray at a concentration of 1000 ppm (0.106 g). These data show that there are greater
differences in the fresh weights of plants treated through the leaf and root than the higher
concentration of glyphosate. For the groups receiving the 500 ppm solution, this difference,
although showing some difference, is not significant. In summary, the effect of the 1000 ppm
treatments, compared to each other, has already been shown in phenotypic properties.
Compared to the control, much shorter, more fleshy roots were formed in sunflowers
treated through roots at a concentration of 1000 ppm. Increased dry weight may indicate
stress on the plant.
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Figure 2. Parameters of roots on Helianthus annuus GK Milia CL after glyphosate treatment. Means
with different letter are significantly different by Tukey’s test at p < 0.05 (Budapest, 2021).

3.1.2. Stem Morphological Changes

Examining the stem weight results (Figure 3), clearly visible that the highest fresh
(4.564 g) and dry (0.4253 g) stem weights were measured in the untreated individuals.
These data show a significant difference with the results of all treated groups. The results of
the parameters were analogous to the values measured at the roots, so the results measured
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in the group treated through roots with a concentration of 1000 ppm were significantly
higher, both statistically, in the case of fresh (3.2447 g) and dried stems (0.336 g). This
shows that absorption through the root is slower than in the case of leaf treatment with the
same concentration solution, which produced almost the lowest measured average weight
for fresh (0.8953 g) and dry weight (0.176 g). In the case of the treatment obtained with a
solution concentration of 500 ppm, the opposite was observed, whereby the individuals
receiving the leaf spray achieved a higher fresh and dried stem weight than the individuals
treated through the root.
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Figure 3. Rate of fresh and dried stem weight on Helianthus annuus GK Milia CL after glyphosate
treatment. Means with different letter are significantly different by Tukey’s test at p < 0.05 (Budapest,
2021).

3.2. Histology

Examining the stem cross-sections (Figure 4) it can be observed that the stem section
shows a uniform picture in the control group (Figure 4c). The individual tissue areas are
clearly visible and can be distinguished from each other. Epidermal cells close and are
uniform. The location of the vascular bundles is regular and well separable from the basal
tissues. The basal tissue cells are regular, and the cell wall is strong and uniform. No
change or distortion is visible. As the glyphosate concentration increases, the deterioration
and disintegration of the tissue structure can be clearly seen, which increases and becomes
more visible with increasing concentration. Necrosis of pith cells started 4 days after treat-
ment [70]. In the groups treated with a 500 ppm solution (Figure 4a,b), intercellular cavities
(vacuoles) appear, which may indicate glyphosate-induced stress in young seedlings, as
plant cell vacuoles are multifunctional organelles that play a central role in cell develop-
ment strategies. They are involved in cellular responses to environmental and biotic factors
that cause stress [71]. The transport vessel system is thinner, smaller in cross-section than
the control group due to glyphosate, the vascular bundles are damaged, the shape of the
parenchyma tissue cells changes, and the cell wall becomes thinner, which is also a phase
of cell death. Glyphosate also has an effect on the disorganization of the transport tissue
system [72]. This is characterized by the rupture of the plasma membrane [73]. Epidermal
tissue cells adhere more loosely. The cell wall of the epidermis is thinner and not uniform
in thickness.

In the groups treated with the 1000 ppm solution (Figure 4d,e), the process of cell
death can be observed more and more strongly. In plants receiving this concentration, the
tissues responded even more strongly. In these groups, the enlargement and disintegration
of cells in the central parenchyma tissue and the weakened state of the transport tissue
system became even more intense. These cells are necrotically disrupted, cell walls are
not always separable, and cells are small in size. The vascular bundles were irregularly
arranged, not delimited. The epithelial cells are small, do not adhere tightly, and the cell
walls are weak, in several cases torn apart. Chloroplasts also disintegrated, which is also
related to Lee’s 1981 [74] finding that there was an inhibition of chlorophyll synthesis by
glyphosate.
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Comparing the histological changes caused by root and leaf treatments, it can be
observed that the histological changes in the root-treated groups are weaker than in the
leaf-treated groups, but the effect of glyphosate is also very pronounced in the untreated
groups. A more advanced state of the glyphosate effect can be observed in the plants of
the leaf-treated groups, which confirms our partial result presented earlier: The effect is
stronger in the leaf-treated individuals and the absorption of the chemical is faster. This
is confirmed by the worse condition of the cells, the thinner cell walls, and the greater
disorder of the transport tissue system.

Overall, the effect of glyphosate can be observed in individual tissue areas, the effect
of which is directly proportional to the increase in concentration.

3.3. Result of Residue Tests

In the case of residue measurements, the root and stem parts were evaluated separately
(Figure 5). This was considered important because it allows the extent of glyphosate uptake
by the root to be monitored even more. Glyphosate accumulated in both leaf-treated
and root-treated plants when treated with 500 ppm and 1000 ppm solutions, respectively.
The amount detectable for the latter is higher in both concentrations compared to the
control treatment. We found that in plants treated with leaf spray, the residue value was
significantly higher in the root than in the stem.
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Figure 5. Glyphosate residue in leaf and root on Helianthus annuus GK Milia CL after glyphosate
spray treatment on leaves. Means with different letter are significantly different by Tukey’s test at
p < 0.05 (Budapest, 2021).

In the groups treated through the root, it can be said that glyphosate residue was
detectable in all cases (Figure 6). In the group treated with the 500 ppm solution, the residue
measured in the roots (0.19 mg/kg), despite the lower concentration, is not statistically
different from the results measured in the root at a concentration of 1000 ppm (0.2 mg/kg).
However, when examining the shoots, there is a significant difference between the two
concentrations. In the group treated with the 500 ppm solution, the residue detectable in
the shoot was as low as in the control treatment (0.07 mg/kg), while in the group treated
with 1000 ppm, it was more than twice as high. Overall, glyphosate was absorbed from the
root into the plant organism, which was also detectable in the leaf and root.
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Figure 6. Glyphosate residue in leaf and root on Helianthus annuus GK Milia CL after glyphosate
spray treatment on root. Means with different letter are significantly different by Tukey’s test at
p < 0.05 (Budapest, 2021).

4. Discussion

Glyphosate is a worldwide used herbicide [9] that, according to several studies, can
both modify the gene pool of living organisms [60,63] and also have an adverse effect on
the biosphere [46,47]. It may also be responsible for the development of Alzheimer’s and
Parkinson’s disease [52].

Glyphosate is also a major herbicide in field crops. The sunflower (Helianthus annuus
L.) cultivar GK Milia CL [67] is a very environmental stress-tolerant variety, which was
used in our studies.

Although several studies have shown that glyphosate causes morphological changes
in the plant [32], and glyphosate is rapidly degraded and is not transferred to other living
organisms [4]. By preemergent treatment of a sunflower plant, we would have liked to
investigate that glyphosate remains in the plant for several weeks and is detectable. The
plants were not grown until seed ripening, so the topic of a future series of measurements
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will be the morphological, histological changes, and residue results that can be detected in
the pre-harvest state. In the present experiment, sunflower plants were surveyed at 5 weeks
of age to model the composition and properties of green manure or fodder harvested
in this condition as a result of prior glyphosate treatment. The measurements were also
based on experiments by [23], in which the author explains that the highest sensitivity to
glyphosate can be attributed to the beginning of the vegetative stages of plants. In our
series of measurements, we sought to determine whether the treatment of non-chemically
treated plants with adjacent row spacing and the treatment of plants in adjacent rows with
glyphosate had an effect.

Sunflower plants were evaluated by morphological and histological methods and
residue measurements were performed. Morphological measurements confirmed that
glyphosate, both applied to the leaf and absorbed through the root, is evident in the mor-
phological parameters. Our results were similar to those described by [36] and contradict
the results of Reddy et al. that glyphosate has no effect on root and shoot dry weight but
increases shoot biomass [20].

The morphological results confirmed Zobiole et al.’s [24] measurements that biomass
decreases with increasing glyphosate levels. The presence of glyphosate caused morpho-
logical and histological degeneration in the plant in all cases, as we have shown in our
results. Our results confirm the findings made by Gomes et al. [32] and contradict Khan
et al.’s [34] findings. The appearance of glyphosate in the tissues can be detected as early as
48 h after treatment, and these effects can be observed more and more over time [75], as was
observed in our measurements. Tissue change caused by glyphosate was observed over the
entire surface of the stem cross-section in all tissue areas. All tissue areas were distorted,
disordered, cells were destroyed, and in several cases, vacuum cell death occurred, which
is also related to van Doorn’s [73] work. These tissue and cellular changes can be observed
in the case of root-treated plants as well as in the case of stem-treated plants, which is an
excellent example of our accumulation of glyphosate in root-treated plants.

In the residue evaluation, we found that glyphosate levels were significantly detectable
at week 5 post-preemergent treatment, exceeding Wang et al. [28] finding that glyphosate
was detectable for 14 days after treatment. Higher glyphosate levels were measurable in
the roots, similar to the findings of Pline et al. [29] and Claus and Behrens [30]. This is
also related to Sesin et al.’s [31] findings that glyphosate accumulates in different amounts
in different tissues and organs. The amount of glyphosate in the shoots and roots of
sunflower was significantly different in several cases. All this proved that glyphosate could
be detected in the plant more than 4 weeks after treatment, and that glyphosate in the soil
was absorbed through the root in statistically detectable amounts.

5. Conclusions

One of the great challenges of the present is the continued supply of food to an ever-
increasing human population. This goal can only be achieved effectively if good quality,
high-content, vital plants are produced. The primary task to create this is to produce and
maintain a weed-free area. The use of glyphosate, although currently one of the most
effective herbicides in the world, raises a number of environmental issues. As a result of
our series of measurements, it can be stated that glyphosate is present in the plant even if it
is not in direct contact with glyphosate.

This poses a risk, even if the fodder plant is used for human or animal use. In the
case of young plants, its use as a silage plant may be of even greater concern. Another
dangerous area is its use as green manure, which also means its use at a young age, and
this is related to Lee’s [74] measurements that the residue is more detectable in young
plants. This can be particularly dangerous for the above-mentioned uses in agriculture.
Glyphosate may be present in the plant in an amount that can be determined by testing.

Glyphosate therefore accumulates in the plant even if it does not come into direct
contact with the plant, rather only with the soil of the adjacent row spacing or with the crop
or weed population on it. This is also related to Golt and Wood’s [19] results.
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The use of glyphosate is not expected to decrease in the future if the plant protection
product remains on the market. Due to its decades-long use, glyphosate and its excipients
have been shown to accumulate in the soil, water, and living organisms. Their decom-
position process is slow and carries a high risk to the environment and human health.
In general, glyphosate is currently one of the most effective and widely used herbicides,
the extraction of which can have significant economic effects. Therefore, it is advisable
to consider alternative remediation technologies that can be used to mitigate these risks
while increasing economic outcomes. Thus, it can be an effective tool for environmental
protection.
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