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Abstract: The rail fastening system plays a crucial role in railway tracks as it ensures operational
safety by fixing the rail on to the sleeper. Early detection of rail fastener system defects is crucial
to ensure track safety and to enable maintenance optimization. Fastener inspections are normally
conducted either manually by trained maintenance personnel or by using automated 2-D visual
inspection methods. Such methods have drawbacks when visibility is limited, and they are also found
to be expensive in terms of system maintenance cost and track possession time. In a previous study,
the authors proposed a train-based differential eddy current sensor system based on the principle
of electromagnetic induction for fastener inspection that could overcome the challenges mentioned
above. The detection in the previous study was carried out with the aid of a supervised machine
learning algorithm. This study reports the finding of a case study, along a heavy haul line in the
north of Sweden, using the same eddy current sensor system mounted on an in-service freight train.
In this study, unsupervised machine learning models for detecting and analyzing missing clamps
in a fastener system were developed. The differential eddy current measurement system was set
to use a driving field frequency of 27 kHz. An anomaly detection model combining isolation forest
(IF) and connectivity-based outlier factor (COF) was implemented to detect anomalies from fastener
inspection measurements. To group the anomalies into meaningful clusters and to detect missing
clamps within the fastening system, an unsupervised clustering based on the DBSCAN algorithm was
also implemented. The models were verified by measuring a section of the track for which the track
conditions were known. The proposed anomaly detection model had a detection accuracy of 96.79%
and also exhibited a high score of sensitivity and specificity. The DBSCAN model was successful in
clustering missing clamps, both one and two missing clamps, from a fastening system separately.

Keywords: rail fastening system; clamps; differential eddy current sensor; anomaly detection;
clustering

1. Introduction

Railway transportation is a significant mode of transportation for reasons of envi-
ronmental friendliness, safety, cost, and lower energy consumptions. It is a sustainable
mode of transportation that supports the economic and industrial expansion of the society
through the mobilization of freight and passengers [1]. The growing demand to shift
huge volumes of passengers and freight traffic and the current state of the existing railway
infrastructure are issues that require substantial attention in the field of transportation [2].
Capital expansion of the railway infrastructure is a cost-intensive and time-consuming
approach. Thus, the maintenance and renewal (M&R) process needs to be subjected to con-
tinuous improvement for the existing infrastructure to meet the capacity demand without
compromising the quality of the provided service [3,4].
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The operational capacity of a given railway infrastructure is significantly influenced
by its utilization methods and its technical state or quality [5]. One of the key aspects of
railway infrastructure maintenance is the inter-dependability of its operational capacity
and the infrastructure condition. A high operational capacity with good service quality is
achieved when the infrastructure is in a good state with high quality. With the increase in
capacity utilization, the infrastructure is subjected to a higher traffic load leading to rapid
deterioration of the infrastructure and degradation to its components. This consequently
leads to higher M&R needs which require track possession, and thus eventually resulting in
the reduction in operational capacity. The downtime arising from these M&R of networks is
responsible for nearly half of all the delays to passengers. In Sweden, an average of 572.7 h
per year of delay is incurred due to the failure of components in the railway track [6]. To
mitigate such delays and to ensure safe, sustainable, and reliable operation, the track and
its components need to be inspected frequently.

Rail fastening systems are a vital component in the railway track system as they clamp
the rail to the sleepers, preventing the longitudinal, transverse, and lateral deviation of
the rail from the sleepers, thus aiding in preserving the designed track geometry. Failures
of fasteners can also widen the gauge, increase wheel flange wear, reduce the safety of
train operations, and may lead to catastrophic accidents [7]. At present, the inspection of
track fasteners is carried out by manual inspection or using track inspection cars. Manual
inspections are slow, labor-intensive, pose safety issues for maintenance staff, and are prone
to human errors. Manual inspections are furthermore time-consuming and expensive
for railroad companies, especially for long-term and large-scale development projects.
Fastener inspection based on inspection cars has limited capabilities when it comes to
inspection frequencies and requires track possession during the inspection process, thus
reducing the operational capacity [8]. With the continuous expansion of the railway
network and recent technological developments, an automated rail inspection system
based on machine vision has gained significant importance. To inspect track defects and
detect the presence/absence of the fastening bolts, References [9,10] introduced their vision
system for real-time infrastructure inspection (VISyR) system, which was a fully automatic
and configurable field programmable gate-array (FPGA)-based vision system for real-time
infrastructure inspection. The system used a Dalsa Piranha 2 line camera (Matrox) with
1024 resolution to acquire images of the rail. An image-based detection device comprising
of two industrial laser range scanners, one for each rail, was used by Babenko [11] to
inspect fasteners. On the acquired images, a convolutional filter bank was applied in this
study. Each fastener type had a filter associated with it and the coefficients for each were
estimated using an illumination normalized version of the Optimal Trade-off Maximum
Average Correlation Height (OT-MACH) filter. A track cart was used by Resendiz et al. [12]
to capture the video of the railroad track with off-the-shelf cameras. A texture classification
with a bank of Gabor filters followed by support vector machine (SVM) was used to
determine the location of the rail components from the captured video. Structured light
sensors were employed by Mao et al. [13] to inspect fastener conditions and they used a
decision tree classifier to classify the defects in the fastening system.

The application of automated machine vision for fastener inspection has predominated
over the past two decades, but the detection methods from these images have varied over
time. Image processing and deep learning-based methods are the two commonly employed
methods for detecting fasteners from the images [8]. Locating and segmenting the fastener
region, extracting fastener features, and using a classification algorithm for fastener defect
identification are the three main aspects of the image processing-based method. For detect-
ing missing hexagonal-headed bolts, Marino et al. [9] made use of a multilayer perceptron
neuron classifier. Stella et al. [14] employed principal component analysis and wavelet
transform for pre-processing the fastener images and used a neural network classifier to
detect missing hook-shaped fasteners. To match the fastener images, Yang et al. [15] used
direction field as a template and used linear discriminant analysis (LDA) for matching and
to obtain the weight coefficient matrix. Ruvo et al. [10] adopted an error backpropagation
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algorithm on the rail images to model two types of fasteners and introduced a FPGA-
based architecture [16] using the same algorithm. AdaBoost [17,18], structure topic model
(STM) [19], line local binary pattern (LLBP) [20], support vector machines (SVM) [21], and
edge detection methods [22] are other frequently used techniques to detect fasteners from
rail images. These traditional methods aid in fastener inspection with minimal manpower
and reduced equipment resources; however, the detection accuracy could easily stagnate as
it is difficult to manually design robust and accurate features for rail components due to the
diversity of shapes and complex backgrounds [23]. With the increase in computing power
and development of the graphical processing unit (GPU), deep learning methods [24-28]
for detecting fasteners from rail images have gained substantial importance.

Over the past few years, significant advancements have been made in detecting fas-
teners and identifying the defects from railway track images; however, there are some
underlying drawbacks associated with this method. The robustness and position accuracy
are two major concerns associated with this mode of fastener detection [26]. It is a rela-
tively expensive task to mount and maintain a reliable and high-quality automated visual
inspection system as they are integrated with the operation and are subjected to vibrations,
brightness fluctuations, and motion blurring during high-speed travel. This can deteriorate
the accuracy of fastener condition detection and can raise safety concerns. Furthermore,
the detection task becomes complicated when rail and its components are concealed due to
the presence of rust and dust. Another significant drawback of this method is its inabil-
ity to detect the rail and its components when they are obscured due to the presence of
snow, sand, stones, and other debris. This calls for a removal process or additional rail
surface treatments that add to the expense of the railroad companies. In Sweden, around
298,080 EUR were spent in 2014 to inspect two lines with a track length of ca. 300 km,
of which more than 75% was utilized to inspect track components that exhibit magnetic
characteristics (rail fastening, weld joints, insulation joints, etc.) [29]. With the extension
of high-speed railway networks, the maintenance managers are striving to reduce these
operation and maintenance costs through effective condition-based maintenance (CBM),
while augmenting the quality and capacity of the rail services.

Non-destructive testing (NDT) plays a significant part in the condition-based mainte-
nance of railway infrastructure. Eddy current (EC) testing is one of several NDT methods
that work on the principle of electromagnetism, which is used for examining metallic com-
ponents. In earlier research, the authors proposed a train-based differential eddy current
sensor [6,29] for fastener inspection that can overcome the major challenges associated with
the visual inspection. EC sensors work on the principle of electromagnetism and are not
affected by the presence of nonconductive materials in the sensor-to-target gap. EC sensors
can be used in dirty environments, such as water, oil, etc., where other inspection system
fails. The proposed inspection technique using differential eddy current sensors was able to
detect fastener signature when mounted on a trolley system at a distance of 65 mm above
the railhead. The results presented in the previous literature were based on controlled
measurements carried out on multiple short track sections, where the likelihood of distur-
bances was minimal. The missing clamp detection model in the previous study made use
of supervised machine learning models with data points that had predefined labels to train
the model and optimize their label recognition capacity in a given data set. The present
study reports a case study where the measurement system was mounted on an in-service
freight train and where the fastener condition and other likelihood of disturbances were
unknown. This case study aims to implement unsupervised anomaly detection to the
measurements obtained from a train-based differential eddy current sensor for monitoring
railway fastening systems. The purpose of this study was to facilitate the development of a
train-based automated measurement system for inspecting railway fastening systems and
detect and analyze anomalies from the fastener inspection measurement.

The remainder of this paper is structured as follows. Section 2 elaborates the research
methodology followed for this case study. The results and analysis from the study are
explained in Section 3 and the conclusions and future work are discussed in Section 4.
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2. Methodology

The proposed unsupervised fastener detection models are based on applying algo-
rithms capable of recognizing patterns and relationships in the data, without any prior
knowledge. The devised detection model will make use of two unsupervised machine
learning models. The first model is implemented for detecting anomalous behavior from
the given data points to separate the healthy class from the anomalous class. The next
model will make use of a clustering technique on the data points to segregate them into
different groups to extract meaningful information regarding the anomalous points.

2.1. Data Collection
2.1.1. Differential Eddy Current Sensor—Lindometer

For decades, the eddy current method has been well known for the non-destructive
testing of electrically conductive objects [30]. EC testing is based on the phenomenon of
electromagnetic induction, where an alternating current passing through a conducting
coil creates an oscillating magnetic field. Every coil is characterized by an impedance (Z;),
which is a complex-valued generalization of resistance, for a single frequency sinusoidal
excitation f. The impedance of the coil (refer Equation (1)) [31] can be expressed as:

Vi .
Z; = T = R; +jX; (where X; = 21t fL;) (1)
1
where V; and I; are the voltage and current across the coil and R; is the resistance and X; is
inductive reactance of the coil with an inductance of L;. Impedance Z; has a magnitude
|Z| and phase ¢ [31] (refer Equations (2) and (3)).

|1Z] = \/R? + X2 @)
Q= tan_1 (1)2) (3)

EC inspections are based on Faraday’s law of electromagnetic induction which states
that a circular current is induced in an electric conductor due to an alternating magnetic
induction flux. In turn, the induced circular current, known as the eddy current, creates
a secondary magnetic field that tends to weaken the effect of the primary magnetic field.
As the EC intensity increases in the test piece, the imaginary part of the coil impedance
decreases. The real part of the coil impedance also reduces as the EC contributes to the in-
crease in power dissipation of energy. The new coil impedance (Z f) (refer Equation (4)) [31]
can be expressed as:

V¢ ,
Zf:?:Rf+]Xf 4)

EC inspection generally measures this change in coil impedance from Z; to Zy in the
form of either current or voltage signals to extract information of the test piece. EC density
is greatest on the surface and is not uniformly distributed throughout the entire volume of
the test piece. The current flow decreases exponentially as the distance from the surface of
the test piece increases. The skin depth (refer Equation (5)) [31] () is the distance from the
surface at which the eddy current density decreases to a level of “1/¢’ of its surface value
and is expressed as:

5= |2 5)
Hwo
where ¢ is the conductivity given by the reciprocal of resistivity (o) o = 1/p, p is the
magnetic permeability, w is the angular frequency of the current given by w = 27f.
In principle, eddy current sensors are sensitive to local fluctuations of the magnetic
permeability (i), conductivity (), and the geometric form of the material, and hence can
be used to detect inhomogeneities along the rail track [30]. For train-based applications,
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differential EC sensors are preferred. The differential EC sensor used for this case study
was developed by Alstom Transport (Stockholm, Sweden) and was named as ‘Lindometer’.
Figure 1 depicts the proposed sensor consisting of one driver coil ‘D" and two pick-up
coils ‘P1” and ‘P2’. The driving coil ‘D’ is driven by a sinusoidal primary current i(f) that
generates an alternating primary magnetic field. Eddy currents are thus induced within
the rail and other electrically conductive components located in the proximity of the sensor.
As a result of these ECs, a secondary magnetic field is generated, which has an opposite
direction to that of the primary field, complying with Lenz’s law.

Pickup Coil P1

Driver coil D
Pickup Coil P2

‘\_s_

Figure 1. Arrangement of the differential eddy current sensor (Lindometer) measuring over a
railhead.

The information along the rail is represented as variations in amplitude or phase or a
combination of both, which are extracted and analyzed using demodulation techniques.
The size of the driving coil is approximately 18 (z), 70 (x), and 155 (y) mm. The two pick-up
coils are encased by the driving coil which acts as an outer winding. The winding is applied
in one layer with 22 turns using a copper wire of 0.7 mm diameter. The pick-up coils have
a size of 18 (z), 30 (x), and 150 (y) mm, with each coil having a winding applied in one layer
with 94 turn with a copper wire of diameter of 0.16 mm. The two pick-up coils are placed
side by side along the x-direction with a gap of 4 mm.

The two pick-up coils are enclosed by the driving coil and differentially coupled as
depicted in the circuit diagram given in Figure 2. The differentially coupled pick-up coils
cancel out the cross talk between the pickup and driver coil, though not completely. The
resulting voltage u(t) is the result of the induction of the ECs along the rail and the cross
talk residue that are linearly superimposed. The quality of the cross talk cancellation is
determined by the geometrical symmetry between the three coils, and hence the windings
are placed in an even layer with no crossovers. EC is generated in the rail and vicinity along
the x-y plane by the driving coil and the pick-up coils are sensitive only to the z-component
of the generated flux due to the geometrical orientation, as depicted in Figure 1. The
differentially coupled pick-up coils (P1-P2) are sensitive only to the changes in the EC
along the rail and its vicinity. If there is an even surface (as an ideal rail with no other
electrical components or defects) with no change in the geometric form of the material, or
conductivity (0) or magnetic permeability (i), the resulting voltage will be zero due to the
induction of similar ECs all across the place. When there is a change in the geometry or
conductivity of magnetic permeability at one single point along the rail and its vicinity,
a change in EC takes place. Only the singular point with the EC change will create a
signal, due to the symmetry of the differentially coupled pick up coils, given by (refer
Equation (6)).

u(t) = Plo(t) — P2o(t) 6)
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Figure 2. Circuit diagram of the differential EC sensor.

The Lindometer encloses two such independent differential EC sensors placed at a
distance of 20 cm apart. The Lindometer uses two driving fields at frequencies of 18 and
27 kHz, respectively. Two channels were installed within the Lindometer to facilitate future
speed measurements using cross-correlation techniques. The above-mentioned frequencies
fall under the rail norms and can be used for inspecting track and its components. For this
case study, only one channel with the driving field of frequency 27 kHz was used for the
measurement along the track. To stabilize the sensor, both against temperature drift and
vibration, the entire unit is vacuum potted with epoxy resin.

2.1.2. Case Study: Train Measurement along the Iron Ore Line, Sweden

The Iron Ore Line (IOL) is the first longer railway in Sweden which was electrified in
1915. It is a 398 km line that runs between Riksgrédnsen and Boden, Sweden. The track is
designed for single-track use and has a track gauge of 1435 mm. On an average annually,
29 million tons (MGT) of iron ore is transported to the ports of Narvik and Lulea via this
line. The maximum allowed speed for an unloaded freight train is 70 km/h and when
loaded the allowable speed limit is 60 km/h. For passenger trains, the speed can vary from
120 to 135 km/h. Figure 3 depicts the geographical location of the Iron line.

Figure 3. The geographical location of the Iron Ore Line, Malmbanan.

For the present study, the Lindometer was mounted on an unloaded freight train (refer
to Figure 4) and measurements were carried out from Kiruna (depicted in Figure 3 as a red
marker with a black arrow indicating the direction of measurement). The speed of the train
was 70 km/h, and the measurement was carried out for a length of approximately 2.5 km.
The measurement was recorded using a standard laptop (Dell Ultrabook). The track section
considered for this case study had a concrete sleeper with Pandrol fast clip fasteners. The
measured track section included one Switch & Crossing (5&C) and one bridge as well as
other standard track parts such as insulation joints and welds, etc.
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Figure 4. Lindometer mounted on a freight train.

The measured track in this study is depicted in Figure 5. A total of 3718 sleepers were
recorded where the ground truth was inspected for the final 187 sleepers of the section.
The ground truth included the position of insulation joints, welds, and missing clamps,
etc. In this part, clamps were also manually removed to induce a predefined pattern of
fastener anomalies. The section included 172 sleepers with no missing clamps (called
healthy fastening system), 6 instances with one missing clamp, and 2 instances where both
clamps were missing. The ground truth section also included 4 instances of weld joints and
3 instances of insulation joints.

Travel direction

> Y Ground truth 1}

— -/ /- ; -~

Lindometer 12 3 4 e 3529 3530 353113532 3533 3534 3535 .eeoeree 3715 3716 3717 3718 |

o T _’__/_ :) _____________________________ |
anoanoaonnoonooooonooooaonoooooononoooaoonnon

[
uuu{u I RE I JUsTUioiuo

3532 3333 o1 354300 rer 3548 e0res 3FRE crrerrans 3IH8 e aricane 3588 reerieen 3608 +veee 3626 3628 seesraens D632 3633 3634 +0 1003638 crrerrae 308 evruer i 3668 reveeree 36980 3718

B Weld joint

A 1 missing clamp
B Insulation joint
¢ 2 missing clamp

Figure 5. Measurement pattern.
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2.2. Signal Processing and Feature Extraction

Several signal processing methods were implemented before sufficient information
could be extracted from the raw signal, corresponding to the individual fastening system.
The EC signal had to be demodulated, resampled, filtered, and rotated to extract relevant
features pertaining to the fastening system [29]. The signal processing techniques employed
in this study is depicted in Figure 6 and a detailed explanation of the same can be found in
the previous study [6,29].

Rotation of
»  complex EC
signal

Demodulation Bandpass

Raw Signal > & Resampling Filtering

h 4

Figure 6. Signal processing techniques for extracting fastener signatures from the raw signal.

The coil impedance experiences a change when they come in the vicinity of fasteners.
The return field from the rail surface modulates the tone from the oscillator. A quadrature
amplitude demodulator was used to extract the signal caused by the impedance variation
and the raw sensor signal was multiplied by its carrier frequency (27 kHz) and low pass
filtered (2 kHz) to extract the baseband. The output from the demodulator is X-axis and
Y-axis signals which represent the real and imaginary parts of the impedance, respectively.
The signal was then resampled from 215.52 to 35.92 kHz.

After demodulating and resampling the sensor signal, a bandpass filter of lower
bound and upper bound of 29 and 34 Hz, respectively, was applied, as the periodicity of the
fastener was found to be in this range. The filtering was carried out to retrieve maximum
information pertaining to the fastener system and attenuate other frequency components
corresponding to noise and other ferromagnetic components.

After demodulation, resampling, and bandpass filtering, the fastener signatures in
the signal were found to be shifted from the in-phase direction. The complex EC signal
was rotated such that the fastener signatures were projected along the in-phase direction to
extract maximum information pertaining to the fastener and have better visualization. The
EC signal was rotated by degree 6 or @ radian, such that the peak amplitude of the fastener
signatures was maximized. The signal was rotated by an optimal angle (found from the
method employed in a previous study [29]) of 255° to align the fastener signature along the
in-phase direction.

The bandpass filter and the rotation of the EC signals suppress, to an extent, the
disturbances arising due to the presence of conductive and magnetic material in the sensor-
to-target gap. The bandpass filter was set to extract the fastener signatures and attenuate
other frequency components outside that range, which could alter the energy content
associated with the fastener signatures. The frequency band for the bandpass filter is de-
pendent on the speed of the train and must be adjusted accordingly. Different components
within the railway system have different geometrical shapes, different values of electrical
conductivity, and magnetic permeability. Hence, they will occur at a different angle from
one another from the in-phase direction compared to the fasteners. Since the study aims to
detect fastener signature, the rotation angle was set to align the fastener signatures along
the in-phase direction, thus suppressing, to an extent, information from other disturbances.

Three features are extracted for the individual fasteners, namely arc length of the
complex signal, peak-to-peak, and RMS. The peak-to-peak and RMS feature is obtained
from the real part of the EC signal, whereas the arc length feature comprises information
from both the real and the imaginary part of the EC signal. A total of 3718 fastener
signatures are recorded from the training measurement and thus the feature matrix will
have a size of 3718 x 3.
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2.3. Anomaly Detection

Anomaly detection refers to the problem of identifying data points, events, and/or
observations that deviate from the expected behavior [32]. These non-conforming points
or events or observations are referred to as anomalies or outliers. The general goal of an
anomaly detection approach is to define a region representing the normal behavior and
identify other observations in the data set which do not belong to this normal region as
an anomaly. One of the main challenges for this approach is the availability of labeled
data for the training/validation of models. Based on the availability of the label, anomaly
detection is classified into three categories: supervised, semi-supervised, and unsupervised
anomaly detection. Models using the supervised anomaly detection technique assume
the availability of training data points with labels for both normal and anomalous classes.
The major challenge for this method is to obtain labeled data that are accurate and well
representative of all types of behavior. Labeling is usually performed manually by human
experts and thus requires substantial effort and is cost intensive. Semi-supervised tech-
niques assume that the labels are available only for the normal class during training. The
typical approach employed in semi-supervised anomaly detection is to build models for the
class corresponding to normal behavior and use the model to identify anomalies during the
test stage. Unsupervised anomaly detection techniques, on the other hand, do not require
training data and work on the assumption that normal instances are more frequent than
the anomalies in the data set. Unsupervised learning does not require human expertise to
label the entire length of the data set and are hence more cost-effective.

Two forms of unsupervised machine learning techniques are implemented to analyze
the fastener measurements. The first model was implemented to identify and segregate
the anomalous data points from the healthy or normal ones. The normal behavior in a
railway fastening system is when the fastening system has both the rail clamps intact. To
segregate the data points to normal and anomalous points, a combination of isolation forest
(IF) and connectivity-based outlier factor (COF) were used (briefly discussed below). The
two methods were combined to detect both global and local anomalies. The ground truth
points were used to evaluate the anomaly detection model based on accuracy, sensitivity,
and specificity.

The second method in the anomaly detection model aims to group the anomalous
points into meaningful clusters. The clustering was carried out using the DBSCAN algo-
rithm (briefly discussed below). To overcome the problem of identifying what each cluster
represents, the authors used a smaller set of data from the measurement where the labels
for the data points were known. The smaller set of data was used to identify some or all of
the found clusters in order to know what the clusters represented.

2.3.1. Isolation Forest (IF)

The isolation forest is an ensemble-based unsupervised anomaly detection method
that is an extension of decision trees. It works on the basis of isolation where iterative
partitioning of the input space is carried out to separate a new observation from the rest of
the data. The isolation step creates a tree where an observation is present at each leaf and
each internal node is associated with a split on one variable. The isolation step is repeated ¢
times creating different trees. An anomaly score is then generated for each data point by
traversing through each tree in the forest. A comprehensive description of the isolation
forest is given by ET. Liu et al. [33].

2.3.2. Connectivity-Based Outlier Factor (COF)

The connectivity-based outlier factor is an improved version of the local outlier factor
(LOF) [34] where a degree of outlier is assigned to each data point. This degree of outlier is
called the connectivity-based outlier factor. The main difference between LOF and COF
is the computation of neighborhood k. LOF computes the neighborhood using Euclidean
distance, whereas COF uses the short path method called the chain distance to calculate
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the nearest neighbors. Once the neighborhood is computed, an anomaly score is generated
for each data point. A comprehensive description of COF is given by Tang et al. [35].

Isolation forests are sensitive to global anomalies and may often find it difficult to
detect local anomaly points. COF is sensitive to local anomalies and may have difficulties
in detecting global anomalies. An effective anomaly detection algorithm should be able to
detect both global and local anomalies. In most cases, if the chosen algorithm is effective in
finding global anomalies, then they fail to determine local anomalies and vice versa [36].
To overcome the problems associated with this problem, an integrated approach using
both isolation forest and connectivity-based outlier factor is used in this study. A point
is considered as an anomaly only when the point is detected as an anomaly by both
algorithms.

As per the guidelines laid down by the Swedish transport administration (Trafikver-
ket), no more than 4 clamps can be missing within a distance of 20 sleepers (20 sleep-
ers X 4 clamps/sleeper = 80 clamps). This accounts for 5% of tolerance in missing clamps
over 20 sleepers. This information is used to set the threshold value for the anomaly scoring
for both the above algorithms.

2.3.3. DBSCAN

Density-based spatial clustering of application with noise (DBSCAN) is an unsuper-
vised density-based clustering algorithm. DBSCAN works well with arbitrary shaped and
sized clusters and does not require to pre-specify the number of required clusters. DBSCAN
requires two main parameters, epsilon (¢) and the minimum number of points, to form
clusters of the dense region. Epsilon represents the maximum radius of the neighborhood
and minimum points specify the minimum number of data points within the radius of the
neighborhood. The closely packed points group together and form a cluster and the points
that are in low-density regions are marked as noise. A comprehensive description of the
DBSCAN algorithm is given by Ester et al. [37].

3. Results and Discussion

The results for this case study were processed in three steps. First, the signal processing
and feature extraction techniques were carried out on the raw signal obtained from the
training measurement. Second, the extracted features were used as an input to detect
anomalies from the measurement sequence. Third, clustering was carried out to identify
different groups within the measurement points. A set of data points (ground truth) whose
labels were known was used to identify what each cluster represented. The ground truth
was also used to evaluate the anomaly detection method.

3.1. Signal Processing and Feature Extraction

Figure 7 depicts the time signal plot after demodulation, resampling, filtering, and
rotating the raw signal, obtained from the measurement carried out on the track section
having 3718 sleepers. A small window of the time signal is expanded in Figure 7 to depict
fastener signatures. The 1Q plot (depicted in Figure 8) shows that the majority of the
fastener signatures (representing healthy behavior) are aligned in parallel with respect
to the in-phase direction. Several signatures are found to be shifted at various angles
with respect to the in-phase direction or the real axis. This is due to the presence of other
magnetic components, such as the weld joints, insulation joints, etc., that have different
magnetic permeability, conductivity, or geometric form. The presence of such components
near a fastening system can affect the induced voltage in the eddy current sensor, thus
causing a deviation in the corresponding signature, and are considered as an anomalous
behavior for this study.
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Figure 7. Time signal after demodulation, filtering, and rotating the raw signal.
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Figure 8. IQ plot after demodulating the signal.

The zero-crossing in the signal (refer to Figure 7) from the positive to the negative
induction represents the center positioning of the fastening system. The zero-crossing
was used as a way to segregate individual fastening systems and features were extracted



Sustainability 2022, 14, 1035

12 of 20

for the same. The standardized feature values of individual fastener signatures for the
3718 measured sleepers are depicted in Figure 9. The feature matrix used in this case study
for the anomaly detection purpose will make use of these three features and will have a
dimension of 3718 x 3 (3718 samples and 3 features).

Peak to peak

0 500 1000 1500 2000 2500 3000 3500
Sleeper number

(a)

0 500 1000 1500, 2000 2500 3000 3500
Sleeper number

(b)

30 T T T T T T T

Arc length

0 500 1000

500 2000 2500 3000 3500
Sleeper number

(c)
Figure 9. Standardized features for individual fastener signature with respect to the sleeper number:
(a) peak-to-peak, (b) RMS, (c) arc length of the complex signal.

3.2. Anomaly Detection

The feature matrix obtained from above was used as an input to both anomaly de-
tection algorithms. For isolation forest (IF), the number of trees was set as 1000 and a
subsampling size of 128 was used. The contamination parameter for IF was not specified
as this study makes use of unsupervised anomaly detection and no information regard-
ing the percentage of outlier points was known for the entire data set. Figure 10 depicts
the anomaly scores obtained for the measurement points (3718 samples) for both algo-
rithms. The threshold value for both algorithms was calculated using the 95% quantile
of the distribution of anomaly scores. A measurement point with a score lower than the
threshold value was considered as normal or healthy behavior. A measurement point
with an anomaly score greater than the threshold value was considered as an anomaly.
The red marker in Figure 10 corresponds to the identified anomaly and the green marker
represented measurement points that were normal or healthy. Out of 3718 instances, IF
detected 186 anomalies and COF detected 136 anomalies.
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Figure 10. Anomaly scores for all measurement points: (a) isolation forest scores, (b) connectivity-
based outlier factor.

The scatter plot of both the algorithms is depicted in Figure 11. The scatter plot (2-D)
aids in understanding the location of anomalies with respect to the healthy or normal
cluster. For both of the algorithms, most of the anomaly points detected were wide from
the cluster of normal points. IF detected around 76 anomalous points that were close to the
border of the normal clusters. COF, on the other hand, had around 25 points detected as
anomalies that were within or very close to the normal class.

Scatter plot of IF anomalies

Scatter Plot of COF anomalies
W= _—— T T T T T 30 T T T T T T T
r I [m——————————= 1
: . | 1ot o ' :
B .| 1 sy gl
: * | . | o :
| I -
20t v s e 1
.\ *
o 15| i L [
> 5 .\ ‘é’ 15 |
% | i \
& 10 |“ & 10F ‘\\
\ L
5t | . 50 ‘-\
dlE Lok
0 :- g T ¢ Normal 1 ol ::; et s Normal
| —=a
o __1 - Anomalous - Anomalous
-5 ; . . . . . . . . s . . . , . .
15 10 -5 0 5 10 15 20 25 30 35 5 40 -5 0 5 0 15 20 25 30 35
Feature 2 Feature 2
(@) (b)

Figure 11. Scatter plot depicting normal and anomalous points with respect to two features: (a) isola-
tion forest, (b) connectivity-based outlier factor. The normal instances are marked with green markers
and anomalous points detected are marked with red markers.

Figure 12 depicts the scatter plot when both IF and COF algorithms were combined.
When both the algorithms were combined, a total of 121 measurement points were detected
as anomalies. Out of the 121 anomalous points, only 10 points were close to or within the
normal cluster, thus indicating that combining the two algorithms was much more efficient
in separating the anomalous points from the normal cluster.
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Figure 12. Scatter plot depicting normal and anomalous points with respect to two features for IF
and COF combined.

The ground truth points were utilized for evaluating the performance of the anomaly
detection algorithms. The ground truth had 187 measurement points whose labels were
available. A total of 172 of the 187 points were healthy or exhibited normal behavior and
15 instances were anomalous in the ground truth points. The anomalous instances included
the presence of missing clamps (both one and two missing clamps within a fastening
system), presence of weld joint, and presence of insulation joint as depicted in Figure 5.
Figure 13 depicts the confusion matrix for the three methods obtained for the ground
truth points. Both IF and COF were able to detect all the anomalous points precisely. The
false negative (where the actual label is positive but incorrectly predicted as negative)

was significantly high for IF and COF. When the two algorithms were combined, the false
negative dropped significantly.

IF COF
redicted redicted
Normal Anomalous Normal Anomalous
Actual Actual
Normal 151 21 Normal 155 17
Anomalous 0 15 Anomalous 0 15
(a) (b)
IF & COF
redicted
Normal Anomalous
Actual
Normal 166 6
Anomalous 0 15

(c}

Figure 13. Confusion matrix for the ground truth points: (a) isolation forest, (b) connectivity-based
outlier factor, (c) IF and COF combined.
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Table 1 depicts the evaluation parameters calculated from the confusion matrix. Accu-
racy, sensitivity, and specificity are used to evaluate the performance of the three methods.
Sensitivity, in this study, indicates the proportion of normal instances that were predicted
correctly. Specificity, on the other hand, is the proportion of anomalous cases that were
predicted correctly. The specificity of all three methods was found to be 100% as it was able
to predict all anomalous points precisely. The accuracy and sensitivity were high when IF
and COF algorithms were combined for the detection purpose, rather than when they were
used individually.

Table 1. Performance of the algorithms on the ground truth points (all scores are in percentile).

Algorithm Accuracy Sensitivity Specificity
IF 88.77 87.79 100
COF 90.90 90.11 100
IF and COF 96.79 96.51 100

3.3. Clsutering Using DBSCAN Algorithm

The two main parameters required for the DBSCAN clustering algorithm, to form
clusters of the dense region, are epsilon (¢) and the minimum number of points. The basic
criterion for choosing minimum number points is to use a value greater than or equal to
the dimension of the data set. The minimum number of points chosen for this study was
four (the lowest value that is accepted for a data set of dimension three). The choice was
based on the fact that a given section will not usually have many fastening systems with
both the clamps missing. The epsilon value is computed from the input data using a ‘k’
nearest neighbor (k-NN) search with the given minimum points (refer Figure 14). ‘k’ is the
number of neighbors of a point, which is one less than the minimum number of points in
the neighborhood. The epsilon value obtained was 0.106.

Estimated Epsilon
25 T T T T T T

Epsilon(e)

—e— Estimated Epsilon
5 = = = Time-Averaged Epsilon —

J

0 4
1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000
Index

Figure 14. Epsilon value estimation for DBSCAN.

The clusters obtained using the DBSCAN algorithm are depicted in Figure 15a. For
epsilon values of 0.106 and 4 minimum points, the proposed algorithm detected 4 clusters
of dense regions with distinct boundaries, and other points were recorded as noise. The
major dilemma with an unsupervised clustering method is in making knowledgeable
interpretations regarding the clusters obtained. From the previous results obtained during
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anomaly detection and system knowledge, the cluster with the maximum number of
points can be inferred as a healthy class. However, the remaining clusters representing the
anomalous point were difficult to interpret.

Scatter plot with DBSCAN clusters Scatter plot of DBSCAN clustering with ground truth points
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Figure 15. Scatter plot for clusters formed with DBSCAN: (a) clusters without ground truth, (b) clus-
ters with ground truth labels.

Silhouette score was utilized to estimate the quality of the clusters formed by the
DBSCAN algorithm. Silhouette score determines how well each sample lies within its
respected cluster. Normally, the value of the silhouette coefficient is given between [—1, 1].
A score of one represents that the clusters are very dense and nicely separated. A score
of zero depicts that the clusters are overlapping. A score of less than zero means that
data belonging to a cluster may be wrong/incorrect. The proposed clustering model had
an average Silhouette score of 0.8993, representing a good quality of clustering by the
algorithm on the entire data set. Of the samples, 98.78% had an individual score above
zero, representing that the samples were well belonging to their respected clusters. Only
45 samples (1.21%) had a score below zero. All the 45 samples that exhibited a score below
zero were found to be marked as noise by the algorithm.

The ground truth points were utilized to understand and interpret what each cluster
represented. The ground truth measurement points contained 2 instances of a fastening
system with both clamps missing, 6 instances of a fastening system with one clamp missing,
5 instances of weld joints, 3 instances with the presence of insulation joint (refer Figure 5),
and the remaining 172 points represented healthy fastening systems with both clamps
intact. The position of the ground truth points was plotted along with the scatter plot
of the clusters formed and the same is depicted in Figure 15b. All the healthy points
from the ground truth (marked with green circles in Figure 15b) were found along the
region of cluster 1, which had the maximum number of observations within the cluster
(3605 samples). The position of all fastening systems with one clamp missing from the
ground truth measurement (marked with blue triangles in Figure 15b) was found to be
within cluster 2. Similarly, the position of all fastening systems with both clamps missing
(marked with diamonds in magenta) and all weld joints (marked with black squares) was
found within cluster 4 and cluster 3, respectively. However, the position of the insulation

joint (marked in red squares) did not fall into any clusters and was aligned along with
the noise.

Figure 16 depicts the final model obtained by combining the clusters obtained using
DBSCAN with the information obtained from ground truth points. The DBSCAN was
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able to detect and cluster healthy fastening systems, fastening systems with one clamp
missing, fastening systems with both clamps missing, and weld joints separately. Out of the
total 3718 samples, the healthy cluster contained 3605 samples and 31 samples belonged
to weld joints. A total of 14 fastening systems had one clamp missing and 4 fastening
systems had both clamps missing. A total of 64 samples were marked as noise by the
algorithm and the insulation joint from the ground truth points were found along with the
noise. The noise in this study includes various other rail components that have different
magnetic permeability or electrical conductivity or have different geometrical shapes (such
as switches and crossings, insulation joints, bridges, etc.), which will be analyzed further in
future studies by incorporating features specific for such components.

20 Scatter plot of DBSCAN with identified clusters
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Figure 16. Final model where clusters are merged based on the collected ground truth points.

4. Conclusions and Future Work

In previous studies [6,29], the authors proposed an alternate approach using a train-
based differential eddy current sensor for fastener inspection that can overcome major
challenges associated with automated visual inspection systems. This paper presents an
automated train-based measurement system with the aid of unsupervised machine learning
approaches to facilitate reliable and effective monitoring of railway fasteners by reducing
human biases and error for detection of the state of railway fastening systems. The data
set used for this study was obtained from an actual train measurement along a heavy haul
line in the north of Sweden, where the measurement system was installed on a freight
train and where the fastener condition and other likelihood of disturbances were unknown.
Unsupervised machine learning models were adopted in this study for detecting and
analyzing the underlying patterns and relationships in the data collected.

An anomaly detection model combining isolation forest and connectivity-based outlier
factor was proposed to detect anomalies from the data set and to segregate them from
the normal or healthy class. The performance of the proposed detection algorithm was
evaluated on the ground truth data points, whose label pertaining to their specific condi-
tion was known. The proposed method had higher accuracy, sensitivity, and produced
significantly fewer false negatives than when IF and COF were utilized individually. The
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proposed combined IF and COF method was also able to detect all the anomalous points
precisely. To segregate the anomalies, a clustering method using the DBSCAN algorithm
was also implemented on the data set. DBSCAN yielded four clusters including the healthy
or normal cluster. The normal cluster was identified by combining system knowledge
and the results or information received from the previous anomaly detection model. To
interpret the remaining clusters, the ground truth points were utilized, and the results
show that the model was able to segregate a healthy fastening system from other anomalies.
Furthermore, the model was able to efficiently detect missing clamps (both one and two
missing clamps within a fastening system) and weld joints and segregate them with distinct
boundaries. Around 1.72% (64 samples) of the total samples were marked as noise during
the clustering method. The noise in the measurement can correspond to various other track
components (such as insulation joints, switches, and crossings, etc.) that exhibit different
magnetic properties compared to those of fasteners. Future research will make use of
features relevant to such components and, by considering the angle of rotation pertaining
to such components, further segregate these noises into meaningful clusters.

The current study incorporates only one type of fastener, namely the Pandrol fast-
clip. Future studies will also focus on detecting different types of fasteners that can be
categorized by the rotation angle, as different fasteners have different geometrical shapes.
Future research will also include high-speed measurements, detection of other magnetic
track components, detection and quantification of rail defects, and development of efficient
condition monitoring techniques with the use of artificial intelligence to detect and predict
degradation and faults from big data. The features utilized for this study are subjected to
change when the distance between the sensor and the target object varies (i.e., liftoff effect).
Liftoff for this application can occur due to wheel wear of the train. However, this is a slow
occurring process that can be handled by continuous automatic calibration of the system
where the clusters formed by the healthy signatures are used as a reference. This study will
be carried out in future work.
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