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Abstract: Carbon emission reduction is becoming a global issue. Methods of reducing carbon
emissions in developing countries have become a hot topic of discussion. Based on the obvious
structural transformation in developing countries, this paper discusses the logical mechanisms
among industrial structure upgrading, green total factor productivity improvements, and carbon
emission reduction. In addition, this paper empirically tests these relationships with provincial
data from 2000 to 2017 in China. The conclusions are as follows: (1) industrial structure upgrades
have a significant impact on carbon emissions. The industrial structure rationalization remains a
noteworthy inhibition on carbon emissions. The industrial structure’s advancement has obvious
features of development at the current stage, and its effect on carbon emissions shows an inverted “V”
trend, which is initially accelerating but then restraining. (2) Upgrades to industrial structures will
decrease carbon emissions by raising green total factor productivity. (3) The rise of green total factor
productivity in a certain region will have a relatively obvious inhibitory effect on carbon emissions,
but it will exhibit a negative spatial spillover effect on the adjacent areas.

Keywords: industrial structure upgrade; green total factor productivity; carbon emissions;
inverted “V” trend; negative spatial spillover effect

1. Introduction

In the modern era, as China’s economy has shifted from quantitative growth to quality
development, the transformation of the development mode has gradually become a macro
path, restricting the high-quality development of China’s economy. Green development
has become the key choice and inevitable trend of the high-quality development of China’s
economy. At the general debate of the 75th Session of the United Nations General Assembly
on 22 September 2020, President Xi Jinping announced that China would scale up its
Nationally Determined Contributions by adopting more vigorous policies and measures,
strive to peak CO2 emissions before 2030, and achieve carbon neutrality before 2060. China
is taking pragmatic actions towards these goals. At the macro level, carbon peaking and
carbon neutrality are the country’s strategic guidance; at the micro level, carbon peaking
and carbon neutrality are also closely related to individuals’ well-being. At the middle
level of industrial development, carbon peaking and carbon neutrality are inseparable
from supporting the upgrade of industrial structures. In consideration of that, it is of
theoretical and practical significance to connect the upgrading of industrial structure
with carbon emissions. Simultaneously, how green productivity, a pivotal indication of
green development, plays its role in the impact of industrial structure upgrades on carbon
emissions is also worth discussing. Hence, this paper’s focus is on the influence mechanism
of optimizing industrial structure’s acting on carbon emissions and the effect of green
total factor productivity within it. In other words, the logical relations among upgrading
industrial structures, green total factor productivity, and carbon emissions will be taken
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into account through a unified framework, and then the emerging market economy of
China will serve as the object of empirical research in order to provide enlightenment for
carbon emission reduction in developing countries.

2. Literature Review

From the existing literature concerning research on the influencing factors of carbon
emissions, Han et al. (2017) studied the influencing factors of carbon emissions in major
countries and found that the urbanization rate and the proportion of renewable energy
have an important impact on carbon emissions. For developing countries such as China,
economic growth has an important impact on carbon emissions. The impact of China’s per
capita carbon emissions cannot be ignored [1]. Xu et al. (2006) found that the contribution
rate of economic development to China’s per capita carbon emissions increased exponen-
tially [2]. Based on the EKC model, Hu et al. (2008) studied the influencing factors of carbon
emissions by using the decomposition method of evenly distributed margins and found a
positive scale effect of economic scale on carbon emissions and a negative structural effect
of industrial structure on carbon emissions. However, its absolute value is too small, which
means that it has a limited effect on suppressing carbon emissions [3]. Lin and Liu (2010)
found that per capita GDP, energy intensity, and the level of urbanization significantly
affect carbon emissions based on the cointegration equation model [4]. Lu et al. (2013) used
the LMDI-based “two-tier complete decomposition method” to decompose China’s carbon
emissions from 1994 to 2008. The total development output value and industrial struc-
ture were the first and second contributing factors to carbon emissions, respectively [5].
Xu et al. (2014) analyzed the impact of energy consumption on carbon emissions and
decomposed the carbon emissions of energy consumption into energy structure, energy
intensity, industrial structure, economic output, and population-scale effect. The results
showed that the main driving factor of carbon emissions is the economy: output effect,
followed by population-scale effect and energy structure effect [6]. Recently, Zhang et al.
(2019), using EKC and STIRPAT models, found that economic growth is the factor that
has the greatest impact on China’s carbon emissions, followed by fossil fuel use, urban
population, alternative energy and nuclear use, total population, service industries value-
added, and total import and export [7]. Based on the STIRPAT model, Huo et al. (2020)
systematically discussed the multiple impacts of urbanization on carbon emissions from the
two dimensions of quantity and structure and believed that urbanization is an important
factor leading to soaring carbon emissions [8]. Azeem et al. (2020) explored the impact
of Nigeria’s gross domestic income, trade integration, FDI, GDP, and capital on carbon
emissions, and the results showed that the increase in FDI, GDP, and capital reduced
Nigeria’s carbon emissions [9]. Yang and Wei (2019) investigated the impact of FDI and
R&D on carbon emission reduction through China’s inter-provincial panel data, however,
the results showed that FDI has a negative impact on China’s carbon emissions, and R&D
investment has significantly improved carbon emissions [10]. In summary, the existing
research on the influencing factors of carbon emissions has shown that carbon emissions
are mainly affected by factors such as economic growth, changes in energy structure, FDI,
urbanization, and industrial structure.

Furthermore, examining the existing literature on the impact of industrial structure
on carbon emissions, Zhang and Xue (2011) showed that the type of industrial structure
directly determines carbon emissions. Emissions are positively correlated, and the develop-
ment of the tertiary industry reduces carbon emissions [11]. Wang and Xiang (2014) built a
dynamic input–output model for industrial structure adjustment and found that industrial
structure adjustment can contribute up to about 60% to achieving China’s carbon intensity
target [12]. Mi et al. (2015) used the input–output model to assess the potential impact of
industrial structure on carbon dioxide emissions, and the results showed that industrial
structure adjustment has significant potential for energy conservation and emission reduc-
tion [13]. Yuan et al. (2016) studied the impact of industrial structure on regional carbon
emissions using data from multiple countries. The empirical results showed that, in the
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early stages of economic development, carbon emissions are mainly affected by secondary
industry with higher energy intensity. When the economy develops to a certain stage, the
service industry will gradually become the leading force influencing carbon emissions [14].
Wang et al. (2016) conducted an empirical study on the key factors affecting carbon in-
tensity at the national level and at eight economic regional levels, and the results also
showed that the proportion of secondary industry was significantly positively correlated
with carbon emission intensity [15]. Recently, Tian et al. (2019) asserted that changes in
the industrial structure will lead to significant differences in the industrialization stages
and carbon emission patterns of various regions. Taking Southwest China as an example,
regarding the impact of CO2 emissions, it was found that development and the diversi-
fication of competitive industries have different impacts on CO2 emissions trends [16].
Pang et al. (2020) used impulse response analysis and the forecast variance method to con-
duct empirical research on the relationship between carbon emissions, industrial structure,
and environmental regulations in the Yangtze River Economic Zone. The results show that
the industrial structure adjustment has a significant effect on carbon emission reduction,
but there is an obvious hysteresis effect [17]. Zheng et al. (2020) believe that the impact
of regional industrial structure differences on regional carbon emissions differences has
temporal heterogeneity [18]. Wu et al. (2021) believe that the energy-dependent industries’
structure is positively correlated with carbon emissions; however, industrial production
and industrial structure upgrades have a negative regulatory effect on the impact of the
energy-dependent industrial structures and indirectly reduce carbon emissions [19].

In summary, research on the impact of the existing industrial structure on carbon
emissions has shown that the industrial structure is a key factor affecting carbon emissions.
However, the existing results take the industrial structure as a whole into consideration.
There are relatively few studies on influencing carbon emissions from different dimensions
of the industrial structure, and there is a lack of intermediate mechanisms on the different
dimensions of the industrial structure influencing carbon emissions. Combining existing
relevant literature, this paper will attempt to achieve the following marginal contribution:
Firstly, after decomposing the contents of upgrading the industrial structure hierarchically,
the impact of industrial upgrading on carbon emissions will be analyzed from its two
dimensions, respectively. Secondly, specific mechanisms will be identified, that is, through
the core concept of green total factor productivity, further research will be conducted on
the intermediate mechanism of how the industrial structure’s optimization has an effect
on carbon emissions. The third is to distinguish the time frames and summarize the
basic trend of industrial development utilizing the industrial structures’ time sequence
characteristics, which is followed by the time node partition according to the overall trend.
Furthermore, we use a piecewise regression model to explore the stage differences during
which industrial structure upgrading affects the carbon emissions. Based on this, this article
builds a regression model to study the different effects of industrial structure advancement
and industrial structure rationalization on carbon emissions. On this basis, green total
factor productivity is introduced as an intermediary variable to measure the impact of
green total factor productivity on industrial structure upgrading and carbon emissions. The
mediation effect of green total factor productivity is investigated, and then an empirical
analysis of the spatial spillover effect of green total factor productivity on carbon emissions
is conducted.

3. Theoretical Hypothesis

This paper constructs a logical framework to discuss the mechanisms among industrial
structure upgrading, green total factor productivity, and carbon emissions.

3.1. Impact Mechanism of Industrial Structure Upgrading on Carbon Emissions

Industrial structure upgrading is mainly explained by two indexes—industrial struc-
ture advancement and industrial structure rationalization. The industrial structure advance-
ment refers to the process of transitioning from low-level to high-level industrial structure,
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that is, the process of gradual transformation of industrial structure from labor-intensive
and capital-intensive to knowledge-intensive industries. This process has obvious phase
characteristics. Therefore, the industrial structure upgrades concerning carbon emissions
should also have obvious temporal heterogeneity.

Aiming at the time series characteristics of the industrial structure, this article specifi-
cally analyzes the proportions of the three industries in China from 2000 to 2020, as shown
in Figure 1.

Figure 1. The composition of China’s three industries from 2000 to 2020.

The results show that there are obvious phase differences in the structure of the three
industries with 2012 as the time node. In 2012, the proportion of the tertiary industry
surpassed that of the secondary industry for the first time, and the different labor produc-
tivity and growth characteristics of the three industries exhibit obvious phase differences
in the level of industrial structure advancement, which will also have a phase effect on
carbon emissions. Looking at the trajectory of China’s economic development, it can be
found that China’s economy entered a new phase in 2012. Prior to this, China’s industrial
structure was dominated by labor-intensive and capital-intensive industries. During this
period, China’s economy achieved rapid growth while also placing tremendous pressure
on the environment. Therefore, at this stage, there is a positive relationship between in-
dustrial structure advancement and carbon emissions, achieving sustained GDP growth at
the cost of higher carbon emissions. Since entering this new phase, as China’s economic
development preference has gradually tilted towards quality development, the industrial
structure is beginning to be dominated by knowledge-intensive industries which have
environmentally-friendly industrial characteristics. At this stage, the industrial structure’s
advancement should have a restraining effect on carbon emissions. Industrial structure
rationalization refers to the quality of aggregation between industries, i.e., it can be used
as a measure of the degree of coupling between the input structure and output structure
of the factor, and to a certain extent reflects the level of effective use of resources in the
process of industrial development. The industrial structure rationalization can restrain
carbon emissions by promoting the efficiency of resource allocation. Compared with indus-
trial structure advancement, the impact of industrial structure rationalization on carbon
emissions will ensure time consistency and effectively reduce regional carbon emissions in
the long term.

Hypothesis 1. Industrial structure upgrading will have a positive impact on carbon emissions.
Among them, the impact of industrial structure advancement on carbon emissions has phase
characteristics, and industrial structure rationalization’s impact on carbon emissions shows a
continuous inhibitory effect.
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3.2. Green Total Factor Productivity as an Intermediary Variable

Green total factor productivity is a measure of input–output efficiency incorporating
environmental factors on the basis of total factor productivity. In general, total factor
productivity can be used as a key indicator to measure resource utilization efficiency, and
green total factor productivity can be used as a green efficiency indicator for resource
utilization. With the upgrading of industrial structure, green total factor productivity
will improve, which will reduce carbon emissions. The reasons for this are: On the one
hand, from the perspective of industrial structure advancement, as the industrial structure
transforms from labor-intensive and capital-intensive to knowledge-intensive, the negative
externalities that affect the environment in the industrial development stage are gradually
reduced. The process of industrial structure upgrading is accompanied by the process of
green productivity improvement. Thus, industrial structure advancement has an inhibitory
effect on carbon emissions through green total factor productivity. On the other hand,
from the perspective of industrial structure rationalization, the rationalization of industrial
structure can promote resource allocation efficiency, which is directly reflected in the
improvement of green total factor productivity, and thus has a restraining effect on carbon
emissions. Therefore, industrial structure rationalization also has a negative effect on
carbon emissions through green totality factor productivity.

Hypothesis 2. Upgrading the industrial structure can inhibit carbon emissions through green
total factor productivity.

3.3. Spatial Spillover Effect of Green Total Factor Productivity on Carbon Emissions

Carbon emissions should have strong regional relevance considering their physical
characteristics. The carbon emissions of a certain region will not only be affected by
upgrading a region’s industrial structure and green total factor productivity, but also by
the spillover effects of neighboring regions. Firstly, the green total factor productivity of
a region should be obviously negatively correlated with the region’s carbon emissions.
That is, the higher the green total factor productivity in this region, the higher the green
efficiency of factor allocation in the production process, and the lower the carbon emission
intensity. Secondly, from a spatial perspective, green total factor productivity may exhibit
a negative spatial spillover effect, that is, the higher the green total factor productivity of
a certain region, the higher the carbon emission intensity of neighboring region. It has
been pointed out above that industrial structure upgrading has a positive impact on
the improvement of green total factor productivity. However, the process of upgrading a
certain region’s industrial structure often involves the transfer of industries to a neighboring
region, which will lead to spatial changes in the environment. In other words, carbon
emissions in this region are negatively affected by the improvement of green total factor
productivity in neighboring regions, leading to the negative spatial spillover effect of green
total factor productivity.

Hypothesis 3. From a spatial perspective, green total factor productivity should have a significant
spatial spillover effect on carbon emissions.

The relationship between industrial structural upgrading, green total productivity
improvement and carbon emission reduction is shown in Figure 2.



Sustainability 2022, 14, 1009 6 of 16

Figure 2. Logical analysis diagram of industrial structure upgrading, green total factor productivity,
and carbon.

4. Empirical Test

This article first selects the corresponding industrial structure upgrade, green total
factor productivity, and carbon emission indicators for calculation, and further builds an
econometric model based on the indicator calculation. The specific research is as follows.

4.1. Index Selection and Calculation

From the existing literature, it can be found that the selection of industrial struc-
ture upgrading indicators mainly considers the two dimensions of industrial structure
advancement and industrial structure rationalization.

Industrial structure advancement is the flow of production factors and resources in the
direction of high-productivity industries. There are two main contents for industrial struc-
ture advancement, namely, the increase in the proportion of high-productivity industries
and the increase in the productivity of traditional industries. Therefore, this article refers to
the indicators of industrial structure advancement constructed by Huang et al. (2013) [20],
as shown in Equation (1).

Hit =
J

∑
j=1

Sijt × Pijt (1)

In the above formula, i, j, t represent region, industry, and time, respectively, where i
is 1–30, representing 30 provinces in China; j is 1, 2, 3, representing the primary industry,
secondary industryand tertiary industry and t is 1–18, representing the years 2000–2017.
Due to missing data, the observation area does not include Tibet, Hong Kong, Macau,
and Taiwan. The same is true below. Sijt is the ratio of the added value of j industry in
region i to the total value added at time t, and Pijt is the productivity index of industry
j in region i at time t. According to the results of existing research, it can be found that
the labor productivity, capital productivity, and total factor productivity can all be used as
productivity indicators. We selected the labor productivity data as productivity indicators.
Labor productivity is the ratio of the value-added of industry j to the number of employees.
Hit is the sum of the product of the proportion of each industry and its labor productivity
in region i at time t, which is the index of the industrial structure’s advancement.

Regarding the industrial structure rationalization, this mainly reflects the coordination
between industries, that is, the difference between industries. The connotation of this index
and the Theil index shows strong consistency. Therefore, this article refers to the design of
the indicator of the industrial structure rationalization by Gan (2011) and uses the extended
application of the Theil index to measure the industrial structure rationalization [21]. That
is shown as Equation (2).

TL =
J

∑
j=1

(Yj

Y

)
ln

(
Yj

Lj
/

Y
L

)
(2)
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where Y and L represent the output value and the number of employees, respectively,
j represents industry, and TL is an indicator of industrial structure rationalization. When
the industrial structure is in equilibrium, TL should approach 0; that is, the higher the level
of industrial rationalization, the closer the TL is to 0. In the application process of specific
indicators, to facilitate quantitative analysis, the absolute value of this indicator is often
taken first followed by the reciprocal. At this time, the larger the TL, the higher the level of
industrial rationalization in the region.

Therefore, the original data which are used for calculation of the industrial structure
advancement and the industrial structure rationalization come from several sources, in-
volving China Statistical Yearbook and the Statistical Yearbook and Statistical Bulletin of the
provinces and regions in China over the years.

For measuring the green total factor productivity, this paper uses the SBM directional
distance function, according to the Malmquist–Luenberger index (M–L index) [22], pro-
posed by Chambers et al. Based on the Malmquist index [23], we use the classic SBM-ML
index. Regarding GDP as the expected output, the undesired output is industrial wastew-
ater, industrial waste gas, general industrial solid waste, and carbon emissions, and the
input elements are fixed assets (perpetual inventory method) and the number of employees
at the end of the year. The specific calculation process is as follows.

Assume that there are n inputs X = {x1, x2, . . . . . . , xn}, Q expected outputs Y = {y1, y2,
. . . . . . , yn}, and L undesirable outputs B = {b1, b2, . . . . . . , bn} for each production decision
unit, namely, region I = (1 . . . I). Under the condition of alterable returns to scale, the
non-radical and non-angular SBM directional distance functions containing the expected
and undesirable outputs of i are:

Dt
V
(
xt

i , yt
i , bt

i
)
= ρ̂ = min

1 − [ 1
N ∑N

n=1
sx

n
xi

n
]

1 + [ 1
Q+L (∑

Q
q=1

sy
q

yi
q
+ ∑L

l=1
sb

l
bi

l
)

s.t.



I

∑
i=1

zt
i y

t
i,q − sy

q = yt
i,q, q = 1, 2, · · · , Q;

I

∑
i=1

zt
i x

t
i,n + sx

n = xt
i,n, n = 1, 2, · · · , N;

I

∑
i=1

zt
i b

t
i,l + sb

l = bt
i,l , l = 1, 2, · · · , L;

I

∑
i=1

zt
i = 1, zt

i > 0, sy
q > 0, sx

n > 0, sb
l > 0,

i = 1, 2, · · · , I

(3)

Moreover, from an intertemporal perspective, set up the SBM-ML index with the
adjacent reference (taking the production possibility sets of sequential year t and t + 1 as
reference) as follows:

(SBM − ML)t+1
t =

[
Dt

V
(
xt+1, yt+1, bt+1)

Dt
V(xt, yt, bt)

×
Dt+1

V
(

xt+1, yt+1, bt+1)
Dt+1

V (xt, yt, bt)

] 1
2

=
Dt+1

V
(

xt+1, yt+1, bt+1)
Dt

V(xt, yt, bt)
×
[

Dt
V
(

xt+1, yt+1, bt+1)
Dt+1

V (xt+1, yt+1, bt+1)
×

Dt
V
(

xt, yt, bt)
Dt+1

V (xt, yt, bt)

]1/2

(4)

According to the calculation mechanism of the ML index, it can be found that ML is a
dynamic indicator. When ML > 1, the green total factor productivity has increased; when
ML < 1, the green total factor productivity has decreased. Therefore, in the later calculation
process, the initial value of the green total factor productivity (GTFP) in 2000 is set to 1, and
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the cumulative method is used to calculate the GTFP of each region in the current period.
The original data in the GTFP indicators are from the China Energy Statistical Yearbook, Envi-
ronmental Statistical Yearbook, National Statistical Yearbook and Provincial Statistical Yearbook,
and the China Carbon Accounting Database (CEADs).

4.2. Model Construction and Variable Selection

Based on the theoretical hypotheses, we further built an empirical mode. This paper
focuses on the impact mechanism between industrial structure upgrading, green total
factor productivity, and carbon emissions, and proposes three core propositions from three
dimensions. They are the hypothesis of direct effects of industrial structure upgrading on
the carbon emissions, the hypothesis of indirect effects of industrial structure upgrading
through green total factor productivity on the carbon emissions, and the hypothesis of
spatial spillover effect of green total factor productivity on carbon emissions. Therefore, we
use the benchmark regression model, the intermediary regression model, and the spatial
econometric model to conduct empirical tests on the theoretical propositions. Considering
that the intermediary regression model includes benchmark regression testing, only the
intermediary regression model and the spatial measurement model are constructed, and
the regression result analysis will be divided into three theoretical propositions for testing.

Firstly, we built a model of the mediation effect wherein industrial structure upgrades
affect carbon emissions through green total factor productivity. Refer to the mediation effect
test model proposed by Wen (2004) [24], as in Equation (5). As shown, C is carbon dioxide
emissions, H is the industrial structure advancement index, TL is the industrial structure
rationalization index, GTFP is the green total factor productivity, and i and t represent
different regions and time, respectively. Using the traditional method of successively
testing regression coefficients [25], when the following two conditions are established, it is
believed that the industrial structure upgrading affects carbon emissions through green
total factor productivity: one is that industrial structure upgrading significantly affects
carbon emissions, and the other is that industrial structure upgrading significantly affects
the green total factor productivity, and green total factor productivity has a significant
impact on carbon emissions. If this process is a completely intermediary process, that is,
if green total factor productivity is added to the regression model of industrial structure
upgrading on carbon emissions, the regression coefficient of industrial structure upgrading
on carbon emissions is not significant. In the regression model of industrial structure
upgrading on carbon emissions after adding green total factor productivity, the regression
coefficient of industrial structure upgrading on carbon emissions is still significant, which
is part of the mediating effect. From analyzing the model regression in Equation (5), the
above conditions can be expressed as: 1© α1, α2 are significant; 2© β1, β2, γ are significant.
If both α3, α4 are not significant, it is a complete mediation effect, and if either α3 or α4 are
significant, it is a partial mediation effect.

Cit = α1Hit + α2TLit + e1

GTFPit = β1Hit + β2TLit + e2

Cit = α3Hit + α4TLit + γGTFPit + e3 (5)

Secondly, construct the spatial spillover effect model of green total factor productivity
on carbon emissions using the traditional binary adjacency space weight matrix W. A matrix
element of 1 means adjacent, and a matrix element of 0 means non-adjacent. Refer to the
classic spatial Dubin model (SDM) setting, as shown in Equation (6).

Cit = λ0WCit + λ1gt f pit + λ2Wgt f pit + λ3Zit + λ4WZit + υ (6)

Compared with the Spatial Lag Model (SLM) and the Spatial Error Model (SEM), the
Spatial Durbin Model (SDM) that includes exogenous interaction effects is, relatively, much
better. The related studies, such as Greene (2005) [26] and LeSage (2009) [27], recommend
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the setting of the SDM. As carbon emissions also have obvious environmental externalities,
so inter-regional interactions should have a strong spatial correlation, which means that
the SDM can be used to empirically test the spatial spillover effects between GTFP and
carbon emissions.

For the selection of control variable Z, based on the existing literature, the influenc-
ing factors of carbon emissions mainly include the following aspects: Guo (2011) [28]
believes that the most important factor leading to the increase in China’s carbon emissions
is economic growth, so the economic scale (GDP) is taken as the key control variable.
Kaya (1989) [29] defined the main driving forces of carbon emissions as the four factors of
population, per capita GDP, energy consumption per unit of GDP, and carbon emissions
per unit of energy consumption. Combined with China’s development phase, Lin and
Liu (2010) [4] make appropriate corrections to Kaya’s identities. Urbanization is intro-
duced, and the population structure variable (urbanization level) is used to replace the total
population variable. This article continues to use the previous thesis, selects the level of
urbanization (the number of permanent population in the urban area/the number of total
population) and people’s living standards (per capita GDP) as important control variables.
Furthermore, considering the correlation between the carbon emissions and energy use,
Wang et al. (2005) [30] believe that energy consumption structure has a significant inhibitory
effect on carbon emissions, so energy consumption structure (total coal consumption/total
energy consumption) can be used as an important control variable. In addition, the existing
literature also shows that international trade has a significant impact on carbon emissions.
Ning’s (2009) [31] research on the relationship between China’s carbon emissions and
commodity exports from 1988 to 2007 shows that there is a clear co-integration relationship
between international trade and carbon emissions. Therefore, this article also takes the
economic structure (total import and export/GDP) as the control variable of the model.

In summary, the economic scale (GDP), the level of urbanization, energy consumption
structure, economic structure, and people’s living standards are used as control variables
in the regression model. The descriptive statistics of the indicators are shown in Table 1.
The original data are from the Statistics Database of China Economic Information at https:
//db.cei.cn/ (accessed on 10 March 2021) and the China Energy Statistical Yearbook.

Table 1. Descriptive statistical results of basic indicators.

Variable Obs Mean Std. Dev. Min Max

Carbon emission 540 5.178 0.993 −0.211 7.347

Industrial structure advancement index 540 704.602 448.490 111.182 2476.768

Industrial structure rationalization index 540 0.069 0.078 0.011 0.560

Green total factor productivity 540 1.301 0.287 0.888 3.515

Economic scale 540 12,850.977 14,078.904 263.68 91,648.727

Economic structure 540 0.313 0.355 0.012 1.664

The level of urbanization 540 0.485 0.163 0.149 0.898

People’s living standards 540 29,304.129 23,250.022 2759 13,7596

Energy consumption structure 540 0.452 0.154 0.044 0.8023

4.3. Empirical Results and Analysis

Through model construction and variable selection, we further conducted quantitative
analysis on the panel data of various regions in China from 2000 to 2017, so as to obtain the
effect path of industrial structure upgrading on carbon emissions.

https://db.cei.cn/
https://db.cei.cn/
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4.3.1. Baseline Regression Analysis of the Impact of Industrial Structure Upgrading on
Carbon Emissions

In order to facilitate analysis, the logarithm of the explained variables–carbon emis-
sions was taken, then added to the baseline regression model. The regression results are
shown in Table 2. Baseline regression results show that, whether it is a pooled regression
model, a fixed-effects model, or a random-effects model, industrial structure advancement
and rationalization have a significant impact on carbon emissions at the 1% significance
level; however, the effect is in the opposite direction. Furthermore, it can be found, with
the addition of control variables added to these regression models, that the significance
and the direction of the coefficient are unchanged.

Table 2. Baseline regression results from 2000 to 2017.

Model Selection Pooled OLS Fixed Effect Random Effect Pooled OLS Fixed Effect Random Effect

Variables lnC lnC lnC lnC lnC lnC

H
0.001295 *** 0.001254 *** 0.001257 *** 0.001090 *** 0.000485 *** 0.000475 ***
(0.000104) (0.000060) (0.000060) (0.000163) (0.000140) (0.000147)

TL
−4.931448 *** −2.917503 *** −3.078133 *** −2.179669 *** −1.472259 *** −1.615485 ***

(0.599203) (0.609991) (0.591491) (0.654691) (0.556312) (0.581788)

GDP
0.000007 ** 0.000007 ** −0.000002
(0.000004) (0.000003) (0.000003)

Economic structure
0.125054 0.335442 ** 0.089471

(0.161135) (0.162774) (0.151561)

Urbanization
2.340224 *** 0.677264 * 0.251228
(0.337468) (0.365403) (0.352833)

GDP per capita 0.000011 ** 0.000015 *** 0.000016 ***
(0.000005) (0.000004) (0.000004)

Energy consumption
structure

2.119748 *** 2.190751 *** 2.091948 ***
(0.206608) (0.172419) (0.178735)

Constant
4.606597 *** 4.496339 *** 4.504772 *** 4.823710 *** 5.462517 *** 5.521365 ***
(0.070220) (0.046698) (0.150850) (0.209534) (0.188298) (0.210723)

Control variable No No No Yes Yes Yes
Observations 540 540 540 540 540 540
Number of id 30 30 30 30 30 30

Note: *, **, *** represent significance at the levels of 0.1, 0.05, 0.01, respectively, and the estimated robust standard
deviations are in parentheses.

From the impact of industrial structure advancement and industrial structure ratio-
nalization on carbon emissions, according to the regression results, it can be found that
the industrial structure advancement leads to an increase in regional carbon emissions,
while the industrial structure rationalization has a restraining effect on carbon emissions.
Considering the staged characteristics of the industrial structure advancement, according to
the Petty–Clark theorem, the early stage of industrial development is mainly the evolution
from the primary industry to the secondary industry. Since 2000, the industrial structure ad-
vancement of China has been mainly manifested as the upgrading of the primary industry
to the secondary industry. Generally, the secondary industry often has higher fuel demand
and energy consumption, resulting in relatively higher carbon emissions. Especially consid-
ering China’s traditional industrial development model, its characteristics of high energy
consumption and high emissions are obvious [32]. Therefore, the initial improvement of
the industrial structure advancement will significantly promote the carbon emission level.
With the further improvement of industry advancement, that is, upgrading the industrial
structure from secondary industry to tertiary industry, carbon emission will be reduced.
Therefore, this is consistent with research concluding that the change in industrial structure
is the key factor leading to the inverted “V” shaped change in carbon emissions [33].

In order to further analyze the carbon emissions influenced by different stages of
industrial structure advancement, we take the obvious time node of China’s industrial
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structure transformation in 2012 as the boundary and conduct regression respectively in
two different stages. The regression results are shown in Tables 3 and 4.

Table 3. Baseline regression results from 2000 to 2011.

Model Selection Pooled OLS Fixed Effect Random Effect

Variables lnC lnC lnC

H
0.002225 *** 0.001650 *** 0.001815 ***
(0.000404) (0.000291) (0.000311)

TL
−1.307804 −2.396176 *** −2.899614 ***
(1.378575) (0.767587) (0.830951)

Constant
4.061434 *** 4.998202 *** 5.272104 ***
(0.250518) (0.196270) (0.229208)

Control variable Yes Yes Yes
Observations 360 360 360
Number of id 30 30 30

Note: *** represent significance at the levels of 0.01, and the estimated robust standard deviations are in parentheses.

Table 4. Baseline regression results from 2012 to 2017.

Model Selection Pooled OLS Fixed Effect Random Effect

Variables lnC lnC lnC

H
−0.000501 *** −0.000623 *** −0.000619 ***

(0.000177) (0.000196) (0.000184)

TL
−0.993158 * −0.526402 −1.155656 **
(0.573237) (0.616634) (0.568300)

Constant
4.703085 *** 4.273137 *** 4.774951 ***
(0.361249) (0.500818) (0.412423)

Control variable Yes Yes Yes
Observations 180 180 180
Number of id 30 30 30

Note: *, **, *** represent significance at the levels of 0.1, 0.05, 0.01, respectively, and the estimated robust standard
deviations are in parentheses.

The results of Tables 3 and 4 show that the industrial structure advancement has
obvious phase characteristics, and the impact on carbon emissions has an inverted “V”
characteristic that first promotes and then inhibits, and the industrial structure rational-
ization always has a significant restraining effect on carbon emissions, which is to verify
the first hypothesis from an empirical point of view. By further explaining this conclusion,
we can find that since China’s industrial structure entered a new phase in 2012, the two
dimensions of industrial structure upgrading have significantly inhibited carbon emis-
sions. Although the regression coefficients of some models are not significant, from a
comprehensive perspective, the regression results of multiple models show that both the
improvement in industrial structure advancement and industrial structure rationaliza-
tion will have a significant negative impact on carbon emissions. From the regression
results of Tables 3 and 4, since the content of industrial structure advancement during
2000–2011 was the transformation from primary industry to secondary industry—that is,
the characteristics and development mode of secondary industry—industrial advancement
significantly promotes carbon emissions before 2012, while the direction of regression
coefficient changed significantly after 2012. All these prove the inverted “V”shaped impact
of industrial structure on carbon emissions.

4.3.2. The Regression of the Mediation Effect Model of the Impact Path of Industrial
Structure Upgrading on Carbon Emissions

The above baseline regression results meet the first condition that α1 and α2 are
significant in the intermediary model. Based on the mediation effect model, to test the
significance of β1, β2, and γ, we further build a regression model to test the impact of
industrial structure upgrading on GTFP, and both industrial structure upgrading and GTFP
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were used as explanatory variables for regression carbon emissions. Taking into account
the stage characteristics of China’s industrial economic development, in the mediation
effect model and the subsequent econometric model, the period from 2012 to 2017 is taken
as the observation period so that the panel data in this period are tested. The results of the
mediation effect model are shown in Table 5.

Table 5. Regression results of the mediation effect model from 2012 to 2017.

Variables
Pooled

Regression Fixed Effect Random Effect Pooled
Regression Fixed Effect Random Effect

GTFP GTFP GTFP InC InC InC

GTFP
−0.521645 *** −0.455850 *** −0.487843 ***

(0.149472) (0.164572) (0.153880)

H
0.000250 *** 0.000294 *** 0.000284 *** −0.000352 ** −0.000489 ** −0.000461 **
(0.000087) (0.000099) (0.000090) (0.000177) (0.000198) (0.000186)

TL
1.549598 *** 1.190544 *** 1.629196 *** −0.225431 0.016307 −0.380442
(0.288749) (0.311514) (0.284416) (0.600927) (0.633317) (0.608749)

GDP
−0.000004 ** −0.000001 −0.000004 ** 0.000009 *** 0.000004 0.000009 ***

(0.000002) (0.000002) (0.000002) (0.000003) (0.000004) (0.000003)

Economic structure
0.100952 0.256096 ** 0.150982 0.297863 0.126038 0.284935

(0.088976) (0.125644) (0.106841) (0.183908) (0.246536) (0.219325)

Urbanization
−1.903117 *** −3.747518 *** −2.097404 *** 0.071405 0.749455 −0.022065

(0.307743) (0.458260) (0.360376) (0.673809) (1.079477) (0.828470)

GDP per capita 0.000010 *** 0.000007 *** 0.000010 *** 0.000009 ** 0.000011 *** 0.000008 **
(0.000002) (0.000002) (0.000002) (0.000004) (0.000004) (0.000004)

Energy consumption
structure

−0.531910 *** −0.606607 *** −0.614957 *** 0.610827 ** 0.389439 0.766847 **
(0.149589) (0.152433) (0.150809) (0.299850) (0.311147) (0.309779)

Constant
1.928274 *** 2.962087 *** 2.014086 *** 5.794403 *** 5.623405 *** 5.862116 ***
(0.175258) (0.253006) (0.191429) (0.469936) (0.690569) (0.526667)

Observations 180 180 180 180 180 180
Number of id 30 30 30 30 30 30

Note: **, and *** represent significance at the levels of 0.05, and 0.01, respectively, and the estimated robust
standard deviations are in parentheses.

From the results of Table 5, β1, β2, and γ coefficients are all significant at the 1%
significance level; that is to say, industrial structure upgrading has an important impact on
carbon emissions through the mediation effect of green total factor productivity, and thus
Hypothesis 2 is verified. From the specific regression results, since 2012, both the industrial
structure advancement and the industrial structure rationalization are significantly positive
in the improvement of GTFP. Then, when the GTFP and industrial structure upgrading
are combined into the regression model affecting carbon emissions, industrial structure
upgrading can reduce carbon emissions through driving the increase in GTFP. Based on
the regression results of the two dimensions of industrial structure upgrading, it can be
found that α3 is still significant. Industrial structure advancement has an inhibitory effect
on carbon emissions through the partial mediation effect of GTFP. Since α4 is not significant,
the industrial structure rationalization can restrain carbon emissions through the complete
mediation effect of GTFP.

4.3.3. Analysis of the Spatial Spillover Effect of Green Total Factor Productivity on
Carbon Emissions

Based on the mediation model test, the spatial spillover effect of GTFP on carbon
emissions is further considered. Firstly, the global Moran index is used to test the correlation
of carbon emissions in various regions over different years. From Table 6, there is a
significant spatial correlation in carbon emissions, and there is a strong positive correlation
at the significance level of 5%. Secondly, the spatial Dubin model (SDM) is used to analyze
the spatial spillover effects of GTFP on carbon emissions. We chose the SDM with fixed
effects for testing and analysis.
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Table 6. Global Moran index.

Years I E (I) Sd (I) z p-Value

2000 0.203 −0.034 0.108 2.205 0.027

2001 0.233 −0.034 0.108 2.473 0.013

2002 0.245 −0.034 0.108 2.591 0.01

2003 0.241 −0.034 0.108 2.558 0.011

2004 0.245 −0.034 0.107 2.619 0.009

2005 0.261 −0.034 0.104 2.847 0.004

2006 0.225 −0.034 0.102 2.544 0.011

2007 0.208 −0.034 0.103 2.366 0.018

2008 0.221 −0.034 0.105 2.441 0.015

2009 0.246 −0.034 0.105 2.662 0.008

2010 0.274 −0.034 0.107 2.881 0.004

2011 0.288 −0.034 0.108 2.977 0.003

2012 0.273 −0.034 0.108 2.858 0.004

2013 0.28 −0.034 0.1 3.156 0.002

2014 0.251 −0.034 0.099 2.89 0.004

2015 0.243 −0.034 0.101 2.75 0.006

2016 0.226 −0.034 0.102 2.558 0.011

2017 0.215 −0.034 0.101 2.482 0.013

Further, we decomposed the direct effect, indirect effect, and total effect of GTFP on
carbon emissions. The direct effect refers to the influence of GTFP in each region on local
carbon emissions, as well as the feedback effect including the influence of other regions
which in turn affects the local region. For example, assuming there are two regions A and
B, the direct effect of GTFP on carbon emissions includes both the impact of GTFP in region
A on carbon emissions in region A and the feedback effect of GTFP in region A on carbon
emissions in region A by influencing carbon emissions in region B. Indirect effects represent
spatial spillover effects which are used to measure the impact of GTFP in neighboring
regions on a certain region’s carbon emissions. The total effect is the sum of the direct effect
and the indirect effect. The regression results are shown in Table 7.

From Table 7, the influence coefficient of GTFP on carbon emissions is significantly
negative at the level of 1%. Every unit increase in GTFP reduces regional carbon emissions
by 1.08%. Furthermore, there are negative spatial spillover effects; that is, if the GTFP
increases by one unit in the neighboring region, the carbon emission will rise by 0.78%
in the local region. Thus, Hypothesis 3 is verified empirically. The main reasons for this
negative spatial spillover effect are as follows: according to the reality of upgrading China’s
industrial structure, it is not difficult to find that some regions undertake international and
domestic industrial transfer as an important path to realize the transformation of industrial
structure [34], and the migration of some energy-intensive industries leads to the increase
in carbon emissions in receiving areas. In other words, some regions have realized the
improvement of green total factor productivity through the transfer of high input and
high energy-consuming industries to neighboring regions, while neighboring regions have
experienced the sharp increase in carbon emissions in the process of undertaking industrial
transfer. This conclusion is supported by relevant studies. Cheng and Wei (2013) analyzed
the characteristics of regional industrial transfer and carbon emission intensity in China
and found that the energy intensity of the net transfer out of the region is decreasing,
while the carbon emission intensity of the net transfer in the region is increasing [35].
The empirical research of Xiao et al. (2014) has shown that there are obvious problems of
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“carbon emission transfer” and “carbon leakage” in China’s regional industrial transfer [36].
Thus, in the process of industrial structure upgrading, industrial transfer will cause obvious
environmental problems in the regions of industrial inflow and has a significant reduction
effect on the carbon emission intensity in the regions of industrial outflow. This is exactly
consistent with the negative spatial spillover effect of GTFP on carbon emissions. Some
regions have promoted the level of their industrial structure through industrial transfer,
thus improving green total factor productivity and reducing carbon emissions, while
exacerbating the carbon emission problem of neighboring regions. In space, it presents a
significant feature of beggar-thy-neighbor.

Table 7. Decomposition table of influence effect of SDM.

lnC Coef. Std. Err. z p-Value > |z| 95% Conf. Interval

Direct effect

GTFP −1.082217 0.120840 −8.96 0.000 −1.319060 −0.845375
GDP −0.000009 0.000003 −2.91 0.004 −0.000015 −0.000003

Economic structure −0.180312 0.141615 −1.27 0.203 −0.457871 0.097248
Urbanization −0.171537 0.328087 −0.52 0.601 −0.814574 0.471501

GDP per capita 0.000008 0.000003 2.57 0.010 0.000002 0.000014
Energy consumption structure −2.275137 0.170545 −13.34 0.000 −2.609399 −1.940874

Indirect effect

GTFP 0.778716 0.264184 2.95 0.003 0.260926 1.296507
GDP 0.000011 0.000006 1.77 0.077 −0.000001 0.000023

Economic structure 0.496113 0.294857 1.68 0.092 −0.081796 1.074022
Urbanization −1.459168 0.564340 −2.59 0.010 −2.565254 −0.353082

GDP per capita −0.000011 0.000006 −1.68 0.094 −0.000024 0.000002
Energy consumption structure 0.750820 0.452568 1.66 0.097 −0.136196 1.637837

Total effect

GTFP −0.303501 0.296076 −1.03 0.305 −0.883799 0.276798
GDP 0.000002 0.000006 0.35 0.723 −0.000010 0.000014

Economic structure 0.315801 0.353881 0.89 0.372 −0.377792 1.009395
Urbanization −1.630705 0.670859 −2.43 0.015 −2.945564 −0.315845

GDP per capita −0.000003 0.000008 −0.42 0.674 −0.000018 0.000012
Energy consumption structure −1.524316 0.549036 −2.78 0.005 −2.600407 −0.448225

5. Conclusions

When carbon emission reduction becomes a global consensus, all countries will regard
the facilitation of carbon emission reduction as their emphasis for future development. This
paper focuses on the issue of carbon emission reduction, which starts from the view of
industrial structure upgrading and discusses the logic of industrial structure upgrading
improving carbon emission reduction through the promotion of green total factor pro-
ductivity. Taking the data from China, the largest developing country, as an example,
we empirically verify the aforesaid theoretical proposition. As a result, the following
conclusions are drawn: (1) industrial structure upgrading will have a significant impact
on carbon emissions. The industrial structure rationalization will maintain a noteworthy
inhibition on carbon emissions. The industrial structure advancement has obvious features
of development at the current stage, and its effect on carbon emission shows an inverted
“V” trend, that is, firstly accelerating but then restraining. This is the reason why indus-
trial structure advancement generally accompanies the transformation among the three
industries. When the industrial structure is changing from primary to secondary industry,
carbon emissions will increase, whereas after that carbon emissions will be apparently
suppressed while secondary industry is transforming to the tertiary. (2) The upgrading of
industrial structure will decrease carbon emissions by raising green total factor productiv-
ity. (3) The rise of green total factor productivity in a certain region will have a relatively
obvious inhibitory effect on carbon emissions, but it will show a negative spatial spillover
effect on the adjacent areas. Therefore, with respect to developing countries, we can take
multiple measures utilizing various policies to boost the optimizing of domestic industrial
structure so that the goal of carbon emission reduction will be achieved. After promoting
green productivity through the structural upgrading effect, the engineering of the “green
gene” must be realized in the productive process to cut down on carbon emissions with
green production.



Sustainability 2022, 14, 1009 15 of 16

Admittedly, there are still some limitations in this research. Although the paper dis-
cusses the logical relationship among industrial structure upgrading, green total factor
productivity, and carbon emissions, yet more factors should be taken into considera-
tion. Meanwhile, more meaningful comparative research between developing countries
should be scrutinized in order that the relevant theoretical conclusions will be verified
more conclusively.
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