
Citation: Singh, J.; Singh, P.;

Amhoud, E.M.; Hedabou, M.

Energy-Efficient and Secure Load

Balancing Technique for

SDN-Enabled Fog Computing.

Sustainability 2022, 14, 12951.

https://doi.org/10.3390/

su141912951

Academic Editor: Enrique

Rosales-Asensio

Received: 19 August 2022

Accepted: 19 September 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Energy-Efficient and Secure Load Balancing Technique for
SDN-Enabled Fog Computing
Jagdeep Singh 1,2 , Parminder Singh 1,3,*, El Mehdi Amhoud 3 and Mustapha Hedabou 3

1 School of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India;
jagdeepmalhi@gndec.ac.in

2 Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana 141006, India
3 School of Computer Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco;

elmehdi.amhoud@um6p.ma (E.M.A.); mustapha.hedabou@um6p.ma (M.H.)
* Correspondence: parminder.16479@lpu.co.in

Abstract: The number of client applications on the fog computing layer is increasing due to ad-
vancements in the Internet of Things (IoT) paradigm. Fog computing plays a significant role in
reducing latency and enhancing resource usage for IoT users’ tasks. Along with its various benefits,
fog computing also faces several challenges, including challenges related to resource overloading,
security, node placement, scheduling, and energy consumption. In fog computing, load balancing is a
difficult challenge due to the increased number of IoT devices and requests, which requires an equal
load distribution throughout all available resources. In this study, we proposed a secure and energy-
aware fog computing architecture, and we implemented a load-balancing technique to improve the
complete utilization of resources with an SDN-enabled fog environment. A deep belief network
(DBN)-based intrusion detection method was also implemented as part of the proposed techniques
to reduce workload communication delays in the fog layer. The simulation findings showed that the
proposed technique provided an efficient method of load balancing in a fog environment, minimizing
the average response time, average energy consumption, and communication delay by 15%, 23%,
and 10%, respectively, as compared with other existing techniques.

Keywords: fog computing; load balancing; software defined network; resource management; intrusion
detection

1. Introduction

The past two decades have witnessed continuous growth in the demand for greater
network capacity. To cope with this growing demand, an enormous amount of research
has been conducted to enhance the performance of both optical-fiber-based and wireless
networks [1]. Moreover, in recent years, network traffic has been exponentially growing
at an unprecedented pace. This enormous increase is mainly due to massive amounts of
video streams and modern technologies such as cloud services, social networks, and the
traffic generated from the IoT. Fog computing was developed to provide IoT networks
with lower latency and higher-quality user services. Fog computing is a deconcentrated
computing framework in which storage, data, and applications are placed between the
data source and cloud. Fog is used in real-time situations, and information is required to be
processed quickly. Fog computing is a hypervisor technology that provides a real-time user
interference for IoT users. Fog computing provides the distribution of edge data centers,
the geographical arrangement of nodes, and location awareness. Moreover, fog computing
provides excellent privacy, security, bandwidth, and latency. Fog computing overcomes
several issues faced by IoT users. It also solves the reoccurring issues experienced by cloud
users. Nodes are spread in several formats in fog computing frameworks and can gather es-
sential data from different IoT sensors. Real-time users obtain information after processing
information in the fog-IoT framework [2]. Edge devices were developed near cloud servers

Sustainability 2022, 14, 12951. https://doi.org/10.3390/su141912951 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912951
https://doi.org/10.3390/su141912951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1935-8307
https://doi.org/10.3390/su141912951
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912951?type=check_update&version=1

Sustainability 2022, 14, 12951 2 of 22

after the implementation of fog computing. Unique nodes are used in fog computing to
transmit data between IoT devices and convey messages. This provides a framework for
cloud servers and forms a perfect foundation for networking between the real-time user
and the resource. The fog layer gives information to the cloud server, and automated
resource management is considered for all QoS variables. Resource provisioning, resource
scheduling, and load balancing come under the category of resource management [3,4].

Fog computing expands the ability of cloud servers to accept the challenges of conven-
tional cloud computing [5]. In fact, fog computing provides a method for developing an
architecture to receive information from various computer devices and deal with different
load balances. A proper scheme has been designed that involves the use of dynamic service
migration to balance the load in fog computing. The aim of this method is to ensure
load balancing in all fog nodes and cloud servers. The end-user layer is the first layer of
fog computing [6]. This layer comprises end-users that develop several requests. Sets of
workloads are transferred to underutilized nodes. Nano-data servers, databases, and train
routers are parts of this fog layer. The cloud layer catches data from the fog layer and stores
it for upcoming purposes [7]. In addition, fog computing is essential to curb cyber-attacks,
which are common in contemporary times. Security issues may affect the availability of
fog computing resources in the fog layer. The availability of fog resources increases with
the implementation of load balancing. With the upward trend of IoT in the current era of
technology, secure load balancing is mandatory in fog computing environments [8,9].

The motivation for this research was the fact that energy-efficiency and security are
two of the most important criteria for load balancing in fog computing [10,11]. Load
balancing is a vital part of fog frameworks. The primary function of load balancing is to
avoid a particular situation with overloaded or under-loaded fog nodes. Load balancing
techniques can enhance QoS parameters such as efficiency, performance, response time,
and energy utilization. Load balancing is essential to dividing a significant amount of
data across several servers. Data resources may be successfully utilized by implementing
the equitable division of work framework. The features of a load-balanced system are as
follows: equal workloads for nodes, the effective utilization of data, enhanced performance
of the server, low energy consumption, a low response time, and higher levels of user
satisfaction. Load balancing effectively forwards requests from users across several servers.
Flexibility is provided to the cloud servers with the help of load balancing. Any new server
can be aligned to the framework at any time. Nodes promptly process the requests of
end-users in such systems [12,13]. A load balancer keeps a regular record of the servers
within the framework. When it receives work from users, it examines resource availability
and then allocates the workload across all computer resources [14].

In recent years, the IoT has expanded, with a regular upward trend in real-time
applications [15,16]. Therefore, the need for a fair distribution of tasks has increased in the
fog environment. Load balancing guarantees that no resource is overused or overburdened.
Through the equal dispensation of the workload, the operational cost can be curbed and
end-user applications can be optimized. Accurate load balancing can extend the predicted
value of a system. Under half-failure conditions, a load balancing architecture can be
employed to enhance the workplace’s failure tolerance. The simplest load balancing
framework can be used to cut back the execution time of the workload [17].

This article is organized as follows. The related work based on load balancing within
fog computing is discussed in Section 2. The load balancing mechanism and architecture
of the proposed system are discussed in Section 3 based on load balancing in the fog-IoT
environment. Section 4 covers the implementation of these techniques in the simulation
setup based on the workload. The experimental setup and performance evaluation metrics
are also discussed in Section 4. The results are explained in Section 5. Section 6 concludes
the paper and sets forth our research perspectives.

Sustainability 2022, 14, 12951 3 of 22

2. Related Work

In this section, we discuss the load balancing methods, algorithms, and techniques
related to different aspects of fog computing. Table 1 summarizes the various proposed
techniques, features, evaluation tools used, and the drawbacks identified by authors related
to load balancing in the fog computing environment.

Table 1. Techniques for load balancing in fog computing proposed by various authors.

Article Technique(s) Environment Features Drawback(s)

[18] Particle Swarm
optimization

Arduino,
Openssh

Maximum Resource
Utilization

Greater Complexity,
Lower Security

[19] Whale Optimization
Technique

NS2 Less delay, Energy
Consumption, High
Throughput

High Cost and
Response Time

[20] Hybrid Meta-Heuristic
for Energy-Aware

NS2 High Scalability, Low
Energy Consumption

More Complex

[21] Load Balancing
Scheme (LBS)

iFogSim Low Complexity,
Low latency,
High Scalability

Less Reliable, Less
Secure

[22] Trust-Aware
Offloading

Python Low Complexity,
Low Latency,
High Security

Less Scaleable

[23] Cluster-Enabled,
Capacity-Based LB
approach

NS2 Less Energy
Consumption,
Minimum Network
Delay

Less Security, More
Complexity

[24] NAT-Based LB
Method

Not Mention Improved Utilization
of Resources

Appropriate
Evaluation Method
not Used

[25] Service Scheduling
Approach

CloudSim Lower Failure Rate,
Reduced Bandwidth
Consumption, More
Privacy Issues

Less Scalability

[26] PSW Fog Clustering
LB Algorithm

iFogSim Minimized Resource
Wastage, Improved
Execution Time

Low Scalability,
and Reliability

[27] Hybrid
Priority-Assigned
Laxity

iFogSim Minimize Response
Time, Delay Time,
Processing Time

More Complex and
Less Scalable

[28] Fog-Cluster Based
LB Method

iFogSim Improve Execution
Time, Resource Usage

More Energy
Consumption,
Missing Optimization
Technique

[29] Greedy and
Coalitional Dame

NS3 Low Delay and Energy Less Scalable, More
Complexity

Kadhim et al. [30] worked on merging the IoT with a software-defined network (SDN)
and fog computing to assist fog-IoT nodes for parked vehicles. The proposed method
helped to decrease the number ofmigrated tasks and enhance the capacities of fog nodes.
In addition, the load balancing method, proposed on the basis of a proactive approach,
balanced the load globally and locally using SDN controllers and local fog managers.
The simulation results showed that these methods were more effective than IoT-Fog-Cloud
and VANET-Fog-Cloud.

Sustainability 2022, 14, 12951 4 of 22

Hameed et al. [23] proposed capacity-enabled and dynamic clustering load balancing
techniques for energy-aware vehicular fog computing networks for IoT user requests.
The authors divided a vehicular network into fog clusters to manage the fog resources and
used inter- and intra-clustering load balancing for IoT jobs. The authors considered three
scenarios—vehicles in an urban area, vehicles running on highways, and parked vehicles—
for investigation and evaluation. The results showed that urban areas and parked vehicles
had a high potential to use fog resources, whereas vehicles on the highway consumed
higher energy and exhibited lower throughput. The authors also employed learning-based
strategies to increase the network’s performance and energy usage.

Karthik et al. [19] studied the use of a microgrid-connected wireless sensor network
to optimize and assimilate a fog computing network. The developed FGWHO fog model
was applied to evaluate the power generation, demand, and grid distance within the fog
network. The grid-connected energy model was formed to assess the performance of girds.
The proposed model enhanced the network’s performance, including improvements in the
residual energy, packet delivery ratio, and throughput parameters.

Maswood et al. [31] studied the integration of a fog-cloud to reduce the cost of re-
sources and minimize delays in real-time applications and operations. The authors pro-
posed an optimization model to provide load balancing, reduce bandwidth cost, and eval-
uate the efficient use of networks and fog-server resources. The simulation results were
recorded in heterogeneous and homogeneous network resources as demand, generated by
means of cluster points (CPs). The performance of the proposed model was investigated in
terms of links and server utilization, bandwidth cost, and several machines used.

Beraldi et al. [32] first addressed the problem related to the distribution of loads in a
fog environment and proposed adaptive forwarding and sequential forwarding algorithms
that aimed to balance loads within the fog computing network. The authors considered
controlled, simplified, and realistic scenarios for the design of a smart city fog computing
infrastructure [33]. The performance evaluation of these algorithms was based on different
responsible factors, such as the response time and the drop rate. To overcome the problem
of the load distribution in fog nodes, Beraldi et al. [34] also suggested a probe-based load
balancing method. They were primarily concerned with picking fog nodes to distribute
incoming workloads. The suggested method was based on simulation and mathematical
models. The authors presented two load-sharing algorithms that aimed to offload work to
nearby nodes. The authors also tested the efficiency of the algorithm in a realistic scenario
based on a real-world smart city monitoring application.

Rehman et al. [35] proposed an energy-efficient resource-allocation-based dynamic
load balancing technique. The authors’ primary focus was on offering an energy-aware
load balancing solution for edge and fog devices. They evaluated simulation results using
CloudSim. To evaluate the proposed technique, the authors looked at energy efficiency
and cost characteristics and found that energy was decreased by 8.67%, and the cost was
lowered by 16.77% when compared to the DRAM approach.

Singh et al. [36,37] discussed different load balancing techniques, algorithms, and tax-
onomies by conducting a comparative investigation based on their research. The authors
concluded that the round robin load-balancing algorithm was the most simplistic method
to implement in a fog computing network. The IP Hash load balancing algorithm was used
in the fog computing network. S.P. Singh et al. [38] proposed a fuzzy-based load balancing
method. The authors created a fuzzy-based load-balancer with several levels of the fuzzy
control architecture. The data center layer, fog access layer, fog device layer, and core layer
were the four levels of the proposed load balancer. These athors were mainly concerned
with fog network traffic splitting.

Sangaiah et al. [39] deployed intrusion detection systems (IDSs) as a protective mea-
sure in critical situations. Several metrics were utilized to assess IDSs. The most effective
feature selection approach was used for identifying harmful and lawful activity. The au-
thors designed this study to find an efficient feature selection strategy to improve the
accuracy of the classifier in intrusion detection. The “Hybrid Ant-Bee Colony Optimization

Sustainability 2022, 14, 12951 5 of 22

(HABCO)” approach was developed and compared with different techniques to turn the
attribute selection issue into an optimization process. Sangaiah et al. [40] also proposed
a new protocol, “CLustering Multi-Layer Security Protocol (CL-MLSP),” with “Ad-hoc
On-Demand Distance Vector (AODV)”, to detect malicious nodes. The clustering approach
determined the shortest distance for every node, related to mobility, dispersion, and energy.
The efficiency of CL-MLSP was evaluated using NS2, and the parameters included the
network lifespan, packet loss, latency, and security.

Abbasi et al. [41] suggested a four-layer fog model with smart grid integration. Their
effective system’s primary goal was to manage the smart grid’s resources, with recom-
mended design and work dispersed around the globe, such as in six different continents.
The round-robin (RR), particle swarm optimization (PSO), active virtual machine (VM),
and throttled methods for load balancing were applied in this study, and their results were
evaluated based on their cost.

Problem and Motivations

The load balancing process in fog computing consists of three main stages: data
gathering, correct choice, and data movement. In the first step of the load balancing process,
the data have to be gathered for task allocation and the identification of the imbalanced
load. Then, the best feasible distribution of the data is determined in the second stage.
Subsequently, data are communicated from an overloaded node to an underloaded node
in the final stage. In fog computing, the paradigm of an optimization approach with load
balancing is applied to minimize the chances of unnecessary allocation [36].

IoT devices produce a massive quantity of data, which have to be analyzed quickly.
Fog nodes require energy, both when they are active and when they are idle. Based on
previous surveys, a few solutions need to be proposed to lower the energy usage of the
fog-IoT-based model. An effective technique is required to aid the appropriate usage of
the fog node. The end-users may experience issues when processing queries due to the
overcrowded requests from a large number of IoT devices, so the fog-IoT request needs to
have improved response and execution times.

The amount of electric power consumed by fog nodes is defined as the energy con-
sumption at the fog computing layer. In the fog environment, different types of devices,
such as servers, gateways, and routers, use energy when executing activities. Load balanc-
ing is primarily used to scale down the total energy consumption of the fog computing
system. Other factors also contribute to the cost of sustaining resources saved by load
balancing in the fog environment, including energy usage and maintenance costs. If some
resources are used more heavily, but others are underused, maintenance is required for
these resources. As a result, the maintenance cost will be high, and load balancing is
essential to lower the maintenance and implementation costs [42].

As per the above-discussed research, we can outline our objectives in relation to load
balancing in fog computing, with the overall aim of improving upon the performance of
existing techniques, as follows:

• To increase the performance of the fog-IoT computing architecture and develop a
technique for processing end-user queries in terms of energy consumption and cost-
effectiveness.

• To propose a load-balancing technique to improve resource utilization with SDN-
enabled fog computing in the fog layer and decrease task migration to the cloud layer.

• To implement the intrusion detection method with fog computing to reduce commu-
nication delays in the the fog layer and the workload of fog nodes.

3. Proposed Work
3.1. System Architecture

Figure 1 shows the proposed architecture of our energy-efficient, SDN-enabled load-
balancing technique for fog computing. The system consists of a three-tier architecture
model, i.e., the IoT device tier, the fog tier, and the cloud tier. In the IoT tier, different IoT de-

Sustainability 2022, 14, 12951 6 of 22

vices, such as health sensors, agriculture sensors, smartwatches, smart cars, and smart home
devices, interact with the fog gateway. In the fog tier, different fog nodes are connected
with a fog server within one region that belongs to one geographical area. The open-flow
protocols support the fog device. In each fog region, one local fog server manager is con-
nected to each fog node within that region. The fog server manages each node and stores
information related to each task and the available resources. The fog nodes are divided
into different regions depending on the node’s storage capacity, computing power, and net-
working strength. The fog region may contain the nodes with high storage capacity, which
are combined to make storage fog regions. Similarly, one fog server or cluster manager
manages nodes with high computing capacity to make computing fog regions. Mixed fog
resource regions with different fog nodes contain resources related to storage, computing,
and networking to handle the job requirements of these resources. The fog server manager
contains each connected node’s information regarding the devices’ capacity.

Figure 1. Proposed system architecture for load balancing in fog computing.

Sustainability 2022, 14, 12951 7 of 22

The different regions are connected by means of the SDN controller, enabling them
to communicate with each other. Moreover, each fog server is also connected to an SDN
controller to balance the loads of different fog regions. The SDN controller enables com-
plete information network communication within fog regions and the fog-cloud layer.
Furthermore, the fog regions are also connected with cloud services through the use of SDN
controllers to communicate with the cloud tier devices with high computing requirements.

In our work, we make the following assumptions. (a) The fog servers at the fog layer
are heterogeneous in nature. (b) The fog nodes support open-flow protocols. (c) The
SDN controller and fog servers have complete information about each fog device’s load,
computing capacities, and task resource requirements. The IoT devices send the users’
task requests for computing through the fog gateway to fog devices. The fog gateway
creates a new link between the IoT and fog devices. These fog devices send information
about the user’s task to the nearby fog server and update the information based on the
network connection within the fog region. Furthermore, they send a signal to the SDN
controller to enable information updates. The clustering of the fog devices for each fog
region is determined based on the Algorithm. At this point, fog servers manage the load at
the fog node according to the user’s task requests. The fog servers assist the fog nodes in
executing the task after balancing the load within the fog region. The information about
the task is updated to the SDN controller. If resources are unavailable within the fog region,
the task will be migrated to another fog region with the support of fog servers and the SDN
controller. The fog network’s complete load is balanced with the help of the fog servers
and the SDN controller [43].

3.2. Load-Balancing Mechanism

The IoT devices send the request through the fog gateway and connect to the upper
fog layer to send task requests to fog nodes. The load-balancing technique is implemented
on the fog layer with the help of a fog server or cluster head within the fog region or outer
regions. First IoT devices send the requests to the fog node through the fog gateway. At the
fog level, various heterogeneous resources, such as memory, CPU computation, networks,
and storage, are accessible in order to satisfy user resource requirements. According to the
proposed architecture, the fog server manager or cluster head is responsible for assigning
resources according to the demands of the user tasks within the fog region. To balance
the load of IoT requests, we first determine the resource requirements of each task, and
classification and machine learning techniques are applied as already implemented in
previous work [44]. After the identification of the task’s resource requirements, the load
balancer sends a request to the fog region regarding the demand. The fog region or cluster
head is selected based on the available free resources and the task’s resource demands.
The fog regions are divided into high-storage-capacity regions, high-computing-capacity
regions, and mixed-resource-capacity regions. For example, if the tasks require more
computation, then the tasks are sent to the nearby computation fog region to complete the
job. On the other hand, if the tasks require more storage, then the task is sent to the storage
fog region.

After selecting the fog region, the fog gateway node connects to fog servers based
on the calculated threshold value. The deadline of the task is considered the threshold
value. In the selected fog region, the fog server manager connects to other fog nodes within
the fog region to balance the loads of the tasks. The fog server manager keeps track of
all available free resources within the fog region and provides the updated information
required by the load balancer and the SDN controller [45]. The load balancer and SDN
check the available fog regions to schedule the tasks. According to the network conditions
and the number of nodes available, multiple fog regions are connected through the SDN
controller. The fog servers and the SDN controller have complete information about the
available resources and task requests, which plays an essential role in load balancing and
the energy conservation for the complete system. The fog server manager or cluster head
distributes the tasks to fog nodes within the region based on the capability of the fog nodes.

Sustainability 2022, 14, 12951 8 of 22

The task requests are further shifted from one fog region to another if the ideal load is
achieved at the fog cluster head region. SDN also manages all fog region communication
processes and connects to cloud services [46,47].

The prediction of the current-stage load was already achieved by Sharma et al. [48]
based on the use of an artificial neural network (ANN). The ANN method is a fundamental
and easy-to-implement machine-learning approach for predicting a fog node’s current stage.
This approach helps in distributing the workload to multiple fog nodes when one fog node
is in an idle state or overloaded. The back-propagation learning algorithm (BPLA) has also
been used to distribute the workloads on all fog nodes uniformly. This approach requires
the availability of an adequate training set in order to manage the fog nodes effectively. The
ANN can find out the present demands of different tasks and allocate resources accordingly.
Load-balancing plays an active role in improving the energy consumption and throughput
of the overall fog computing process. The input layer, hidden layer, and output layer are
the three layers that the proposed approach works upon. The input layer processes the
immediate load of ‘m’ fog nodes.

The computation of the instant load is expressed as in Equation (1):

Load(Fm) =
∑N

n=1 S(t)
t

(1)

Here, S(t) represents the size of the task, and “t” is the time of the simulation. N is the
number of tasks processed at the individual fog node Fm. The average load is computed as
per Equation (2):

ALoadi =
∑M

j=1 [RTj(N) + TET(N)]

M
(2)

In the above equation, RTj represents the remaining time of an instantly processed
execution at the node. M is the number of fog nodes currently used at the instant “i”.
TET(N) is the execution time of all tasks. According to the present workload, the weight
value is processed in the hidden layer of each fog node. The balanced workload for all M
fog nodes is predicted at the output layer.

Algorithm 1 shows the clustering mechanism and selection procedure for the fog
region or cluster head FCH in the fog layer. The initialization of fog nodes, the fog gateway,
fog node capacity type, and fog region or cluster head is presented in the first five lines
of the algorithm, and further steps show the selection procedure of FCH . The minimal
Euclidean distance between the fog gateway and the fog nodes is calculated. The selection
criteria of FCH are defined based on the following conditions: (a) if the fog node’s distance
D is inside the fog gateway’s range, (b) verifying time T through a comparison with the
threshold value. Furthermore, we check the capacity types of fog nodes in terms of storage,
computing, and mixed resources. Furthermore, the fog cluster head (FCH) is associated
with the neighbor fog nodes to build the new cluster or fog region. This process is necessary
to handle the dynamic nature of fog because the fog region/fog cluster head members may
change in the fog layer.

Sustainability 2022, 14, 12951 9 of 22

Algorithm 1: Clustering fog devices for fog region CFD.
Initialization: Number of fog nodes or devices −→ N
Fog gateway −→ Fg
Fog Region or cluster head −→ FCH
Distance −→ D
Fog Node capacity type −→ FNc
Procedure Cluster(CN):

for n to CN number of fog-nodes do
Euclidean distances: D (Fg, n)
Minimum(D)
if (Ttime ≤ threshold) & (D ≤ range) then

if (FNc == Storage) then
FCH(Storage)←− n

else if (FNc == Computing) then
FCH(Computing)←− n

else
FCH(MixedResources)←− n

end
end

end
for n to CN number of fog-nodes do

Euclidean distances: D (FCH , n)
if (D ≤ range) then

Neighbor (n)
end

end
return CFD

The fog gateway receives the task from the IoT layer after selecting the fog cluster
head and then transmits the request to the fog server manager to balance the loads of
IoT user tasks. Algorithm 2 shows the load-balancing technique in the fog layer. First,
we initialize the number of fog cluster regions as FCR, the head cluster region as Hcr, the
neighbors of fog regions as Ncr, the capacity of FCR as C, and distance as D. The procedure
of the algorithm starts with a cluster (FCR) up to a number of clusters from (n) to FCR).
If the capacity of the task is greater than C(Hcr), then it is necessary to find the neighboring
region having the minimum Euclidean distance (D). The task is assigned to the region
where the task capacity is less than that of the neighboring region cluster and which has
a minimum Euclidean distance. The proposed technique manages the state of the ideal
load and overloaded fog nodes to reduce the network congestion and resource/energy
consumption level. The algorithm exhibits the load-balancing process within the fog region.
Moreover, in the case in which the load is at the ideal level on the selected fog cluster/region
head, requests are migrated to the nearest neighboring fog region as per the information
available at the SDN controller. Table 2 represents the list of notations used in Algorithms.

Sustainability 2022, 14, 12951 10 of 22

Algorithm 2: Energy-efficient load balancing (LB).
Initialization: Number of fog cluster Regions −→ FCR
Head Cluster Region −→ Hcr
Neighbour of fog Regions −→ Ncr
Capacity of FCR −→ C
Distance −→ D
Procedure Cluster(FCR):

for number of cluster from n to FCR do
if (C(Hcr) ≤ capacity(tasks)) then

for Neighbour Nj of Ncr do
if C(Nj) ≤ capacity(tasks) then

Nj ←− tasks
else

Hcr ←− tasks
end

end
else

Euclidean distance - D(ni1, nj1)
Minimum(D)
if ((D ≤ range) and (Ttime ≤ threshold)) then

if (C(nj1) ≤ capacity(tasks)) then
for Neighbour Nj of Ncr do

if C(Nj) ≤ capacity(tasks) then
Nj ←− tasks

else
Hcr ←− tasks

end
end

end
end

end
end

return LB

Table 2. List of notations.

Symbol Definition

TI Time interval at tth instance

FCH
Fog cluster head or fog region
server manager

AIt Active task(s) at TI

Fg Fog gateway

Dt Departing tasks at the end of TI

RN Networking resources

SDN Software-defined network

Se Simulation Execution at interval t

The workflow of the load-balancing process in the fog layer is shown in Figure 2. It
explains the steps from deploying the IoT and fog nodes to completing the task execution
process in the fog layer. The primary process of the fog nodes starts with deploying IoT
devices and fog nodes to handle user requests. The IoT devices send the user task requests
through a fog gateway. Then, a DBN-based intrusion detection method is implemented

Sustainability 2022, 14, 12951 11 of 22

to reduce the workload and delay. The fog gateway also connects the nearby fog region
through the use of the SDN. The fog cluster heads are selected within the fog region,
and clustering is proposed based on the clustering technique. After this, the fog region’s
capacity is checked, and the load distribution is implemented per the task request within
one or more fog regions. In the fog region, cluster heads or fog servers are already in place
to handle task requests. The load-balancing technique can check the capacity of a fog region
to handle requests; if it does not have sufficient capacity, the request is transferred to a
nearby fog region. The execution of the task is completed in that region, and the response
is sent back to the user.

Figure 2. Workflow of load distribution in the fog layer.

In the fog layer, the resources are dynamic, and devices can move from one location
to another. In fact, sometimes problems occur when the task request is sent to a node that
is moving from one fog region to another fog region. In that situation, there is always a
need to complete the task without any failure. To handle these problems, troubleshooting is
required in order to regularly check and update the information at the fog server manager
and the load balancer. The load balancer and SDN controller immediately shift the task to
other available fog nodes or regions in that situation. Our proposed technique also handles
the abovementioned troubleshooting problem and helps to balance the load within the
fog layer.

3.3. Intrusion Detection

In the system architecture proposed above, intrusion detection is performed between
the IoT and the fog layer after receiving the user requests. The data are exchanged among

Sustainability 2022, 14, 12951 12 of 22

several detection nodes to complete the detection operation. Algorithm 3 describes the basic
steps involved in the intrusion detection method. In the first step, the data requests are
received through the IoT-fog gateway and the deep belief network (DBN) and revamped
DBN model are implemented to detect an intrusion in the IoT-fog computing environ-
ment [49]. The primary goal of the DBN is to find the DBN structure that provides the best
rate of precision in the system. In the next step, the gateway sends the standard flag to the
DBN and analyzes the data request. The control system manages the DBN outcomes and
assesses the data to make a decision. In the next step, the gateway receives the results from
the system to remove the false-flag data and takes the accurate flagged output of the data.
Finally, it sends the actual flagged data to the load balancer and the fog server manager. We
divided this categorization process into three parts to obtain the necessary level of accuracy.
The training and testing datasets are created in the first stage by capturing incoming user
requests. In the second stage, the incursion features are extracted. Finally, the DBN is used
to classify the results. RBM is a crucial component of a deep belief network and this helps
with pattern detection, data reconstruction, and data categorization. An undirected graph
model’s hidden and visible layers are used in RBM. The layers are not linked at the same
level but are linked with separate layers.

Algorithm 3: IoT-fog-tier interaction for intrusion detection.
Start
1. IoT-fog gateway (FG) received the user data requests
2. Implementation of DBN-based Intrusion Detection Method
3. FG sends the Standard Flag to DBN
4. DBN analyzed data requests
5. Control System (CS) managed and received DBN-based outcomes
6. CS assessed data and made a decision
7. FG received the system’s results and reduced the False flag data
8. True flag data is the final output
9. Send the True flag data to the fog server manager or Load balancer
end

4. Implementation and Evaluation

The implementation and evaluation of the proposed work were carried out based on
the two scenarios discussed below. In Scenario I, the main focus was on implementing
load-balancing techniques to evaluate the results. In Scenario II, the implementation of
the proposed intrusion detection was carried out on the UNSW-NB15 dataset to reduce
the workload.

4.1. Scenario I

We used the COSCO [50] simulator to set up a fog environment to implement the
proposed work. This is a coupled simulation and container orchestration framework
that works for integrated fog-cloud computing environments. It is a straightforward
Python-based software solution that allows researchers to create, test, simulate, and deploy
scheduling policies to balance the load. The proposed technique is Implemented with the
seamless integration of load balancing and simulated back-ends for improved decision
creating. Using a custom Stats logger, the simulation support system monitors metrics
in real-time, logs them, and generates consolidated graphs. To implement the proposed
technique, the object-oriented programming model is used in Python. A complete overview
of different classes used in the implementation process is provided in Figure 3, and these
work together to complete the simulation cycle. The Simulator class defines Balancer,
Stats, host list, and taskList objects, which are further connected to the Task, Host, Stats,
and Balancer classes. The different functions related to setting up the simulation, allocating
tasks, migrating tasks, destroying tasks, and task placement are defined in the simulator
class. The datacenter class is used to simulate the hosts that give the host’s object list to the

Sustainability 2022, 14, 12951 13 of 22

simulator. The workload class is used to generate the workload with the support of static
application trace data. The user has control over the number of jobs created during each
pause. To complete the simulation, RAM, IPS, Bandwidth, and Disk classes are required to
provide the Simulator class resources. The Host class is used to create virtual host objects
with capacity and utilization metrics for RAM, IPS, Bandwidth, and Disk space. The Host
class is further connected to the PowerModel class to measure the power consumption.
Furthermore, the Load Balancer class provides for task selection and placement functions
that help make effective load balancing decisions in the simulation process. The Simulator
class is the central access point for running the simulation, which simulates fog jobs using
a pre-implemented balancer, datacenter setups, workload model, and resource modules.
The simulator class also allocates new workloads, determines if allocation or migration is
required, runs event-driven simulations, and destroys finished workloads. The Stats class
is used to monitor and obtain the log data from hosts, workloads, and containers during
the complete execution of the simulation process.

Figure 3. Workflow of the simulation environment.

4.1.1. Workload

The results are obtained using Bitbrain traces to generate the workload for the train-
ing and testing of the proposed technique in comparison baseline techniques [51]. This
workload was considered due to its non-stationarity, its extremely fluctuating workload,
and its resemblance to several real-world applications. The dataset contains realistic traces
of resource utilization statistics from 1750 virtual machines (VMs) working on BitBrain’s
distributed data center. The workload applications operating on each of these systems
come from a wide range of industries, such as computational statistical programs used by
banks, insurers, and credit operators, which are utilized for evaluating fog-cloud modeling
techniques. The dataset contains workload parameters for every timestamp, separated
by five minutes, including CPU cores on-demand, CPU used in million instructions per
second (MIPS), and RAM on demand with networking and read/write disc bandwidth
features. These various types of workload traces are used to produce the trained data

Sustainability 2022, 14, 12951 14 of 22

and run the simulation process. The files of Bitbrain traces are organized by traces: Rnd
and fast storage. The first trace, fast storage, is made up of 1250 VMs, which are linked
to high-speed storage area network (SAN) devices. The second trace, Rnd, is made up
of 500 VMs linked to rapid SAN equipment or slower network attached storage devices.
Because of the increased performance of the storage connected to the fast storage devices,
the fast storage traces contain a greater proportion of compute nodes than the Rnd traces.
In contrast, the Rnd traces show a higher proportion of management machines that only
involve space, with reduced performance and far less frequent availability.

4.1.2. Experimental Setup

The simulation setup was carried out using the following hardware and software, in
order to conduct the experiments. The results used in this paper were obtained based on
the following setup.

• Software details: Operating System: Ubuntu 22.04.3 LTS 64 bit. Run-time program-
ming environment: Python 3.8.10. Infrastructure Management software: Influxdb,
Ansible 2.0, Grafana, and PIP Packages based on Python libraries and Vagrant.

• Hardware details: Processor: IntelCore i5-4200M CPU @ 2.50 GHz × 4, RAM Memory:
16 GB 3200 MHz, Disk: PCI Gen6 SSD and GPU: Intel HD-Graphics 4600 (HSW GT2
Manufacturer: Intel Corporation, Santa Clara, CA, USA).

In the simulation environment, the experiments were run based on 50 host machines,
which represented a scaled-up version of ten machines. On a considerably larger scale,
the fog computing environment was scrutinized as per a previous study [52], in which
each category had five times the number of instances, resulting in a total of fifty machines.
Because we could not install simulated nodes in far-flung places, we represented their
networking features and latency as shown in Table 3, which was used in the simulator.
The experiments were conducted for a total of 100 scheduled intervals, each of which was
300 s long.

Table 3. Host features in the fog environment.

Server Name Quantity Core Count RAM MIPS Network
Bandwidth Ping Time Disk

Bandwidth

Fog Layer

S1 2 4 16 GB 8102 1024 MB/s 2 ms 10 MB/s
S2 4 2 4 GB 4029 1024 MB/s 3 ms 13 MB/s

Cloud Layer

C1 2 8 64 GB 2100 2500 MB/s 70 ms 13 MB/s
C2 2 6 16 GB 8102 1000 MB/s 7 ms 11 MB/s

4.2. Scenario II

The main focus in implementing the proposed intrusion detection mechanism was
reducing the workload and communication delays. The UNSW-NB15 [53] dataset contains
assaults that are both routine activities and synthetic contemporary assaults. The Tcpdump
instruments were used to create a bundle of the dataset’s rudimentary system, which
included 49 characteristics. Twelve algorithms, including Bro-IDS and Argus, were used
to generate the class marks. There were 25,400,443 records in total. Various leveling
approaches were used to partition the whole dataset into training and test sets. There
were 175,341 entries in the preparation dataset. The testing dataset contained 82,332
entries. The allocated information collection had 43 features, with six highlights from
the whole dataset, and was divided into 10 categories. Among the nine attacks were
worms, secondary passages, shellcode, DoS, inspection, observation, abuse, nonexclusive,
and fuzzes. The new training records for balancing the UNSWNB15 dataset are shown in
Figure 4.

Sustainability 2022, 14, 12951 15 of 22

Due to unbalancing difficulties in the training instances, oversampling was necessary
for the UNSW-NB15 data. An oversampling strategy was used to balance the training
data. To balance the training data, new entries were created. Figure 4 depicts the balanced
training data achieved via an oversampling method. To assess the effectiveness of the
planned and current approach, a total of 20 snort nodes were placed in the network. Snort-
ing alerts may be used to extract a set of eight characteristics (destination and source port
no., destination and source Internet Protocol (IP) address, priority, categorization, descrip-
tion, and packet type). Wang et al. [54] (ML-EdgeIDS) conducted similar experiments to
investigate differences in delay and workload.

Figure 4. Balancing the UNSW-NB15 dataset with new training records.

4.3. Performance Evaluation Metrics

The experimentation was carried out using the COSCO simulation platform to com-
pare the performance of the proposed technique with the baseline methods. To evaluate
the performance of the proposed technique, we focused on the response time and energy
consumption within the fog computing environment.

4.3.1. Average Energy Consumption (AEC)

The average energy consumption was formalized as the energy consumption of dif-
ferent fog and IoT devices at any interval of time T that is normalized by the maximum
power of the nodes. Equation (3) is defined as follows at the instant T :

AECT =
∑di ε D

∫ Se(TI+1)
t=Se(TI)

Powerdi
(T)dt

|AIt|∑di ε D Powermax
di X (Ti+1 − Ti)

(3)

Here, Powerdi
(T) denotes the power function of device host(s) di at period interval T,

and Powermax
di

denotes the maximum potential power of host di and D is the set of host(s)
in the resource layer.

Sustainability 2022, 14, 12951 16 of 22

4.3.2. Average Response Time (ART)

The average response time for all departing tasks (Dt), normalized by the maximal
response time up to the present interval, was defined as the average response time for an
interval TI . Equation (4) was defined as follows:

ARTT =
∑dj

t ε Dt
ResponseTime(dj

t)

|Dt|maxSe≤t maxdSe
j ε DSe

ResponseTime(dSe
j)

(4)

4.3.3. Cost per Container on Average

The performance was also evaluated based on the average cost per container in the
simulation setup. Equation (5) defines the average cost per container on different tasks:

ACT =
∑T ∑di ε D

∫ Ti+1
T=Ti

Cdi
(T)dt

∑T |Dt|
(5)

Cdi
(T) denotes the cost function of the device host di at time interval T.

5. Results and Discussions

In this section, we examined the outcomes of the proposed technique using simula-
tions. Figure 5 illustrates the average energy consumption with 50 hosts, demonstrating the
differences between balanced and imbalanced loads. The energy consumption increased in
both balanced and imbalanced loads when the number of SIM intervals increased. Overall,
it was seen that both imbalanced loads consumed more energy compared to balanced
loads in the entire chart as the number of SIM interval values increased. The average
energy consumption of the balanced load technique was lower compared to the imbalanced
technique.

Figure 6 illustrates the average execution time with the simulation of 50 hosts. The fig-
ure represents the different results obtained when the balanced and imbalanced load
techniques were implemented in the simulation. In summary, when the number of SIM
interval values increased, balanced and imbalanced load techniques showed an increasing
trend across the entire chart. Compared to unbalanced load techniques, balanced load
techniques took less time to execute. Figure 7 illustrates the average response time with a
50-host simulation setup, desmonstrating the results of the balanced and imbalanced load
techniques. The balanced load technique took a shorter response time to complete the task
than the imbalanced load technique. The graph also shows that the response time increased
up when the number of SIM intervals increased for the balanced and imbalanced loads.
In summary, balanced load approaches were more time-efficient compared to imbalanced
load approaches, as shown by the increased SIM values required to complete the tasks.

Figure 8 illustrates the average cost per container on the simulator with 50 hosts.
The bar chart indicates the differences between the balanced and imbalanced load balancing
techniques. It can be seen that both balanced and imbalanced loads showed an upward
trend in the entire chart when the simulation intervals were increased. The average cost
of the balanced approach was slightly higher at 10 SIM intervals, but it decreased when
the SIM intervals were increased. Overall, the imbalanced load techniques had a higher
average cost as compared to the balanced techniques.

Sustainability 2022, 14, 12951 17 of 22

Figure 5. Average energy consumption with 50 hosts.

Figure 6. Average execution time with 50 hosts.

Figure 7. Average response time with 50 hosts.

Sustainability 2022, 14, 12951 18 of 22

Figure 8. Average cost per container on a simulator with 50 hosts.

Figure 9 shows a comparison of the average response time obtained with the baselines
techniques A3C, LR-MMT GA, GOBI, MAD-MC, POND, and DQLCM on the simulator
with 50 hosts, which were already discussed by the authors in [50]. The POND tech-
niques exhibited the highest average response time compared with the other techniques.
The A3C and GA techniques took a similar time to complete the task with a simulation
setup of 50 hosts. The proposed technique exhibited a lower average response time as
compared with the others. Similarly, Figure 10 shows a comparison of the average energy
consumption of other baselines techniques in the simulation with 50 hosts. The LR-MMT
technique consumed much more energy than other techniques as per the experimental
setup. The MAD-MC technique consumed the second highest amount of energy. The GOBI,
A3C, and DQLCM techniques consumed almost the same amount of energy, with only
minor differences between them. The proposed technique consumed less energy, compared
with the other techniques.

We compared the proposed intrusion detection method to the most closely related
research to assess the performance. Wang et al. [54] improved on this research by incor-
porating machine learning into the edge-fog computing environment. Figure 11 presents
a comparison between the workload reduction and communication delay improvement
based on network interactions and the available data. In comparison to ML-EdgeIDS [54],
the proposed method was able to reduce the workload by up to 7% and improve delays by
up to 5% with an equal processing capacity. The reason for this enhancement is resource
stability, as fog-IoT computing devices connect to the network on an ad hoc basis. Another
major challenge with fog computing is network capacity. The experimental assessment
revealed that the suggested method was capable of improving the false alert rate with DBN,
as well as reducing delays and workload reductions in the fog-IoT environment.

Figure 9. Comparison of the average response time of the proposed technique and that of other
baseline techniques in the simulation with 50 hosts.

Sustainability 2022, 14, 12951 19 of 22

Figure 10. Comparison of average energy consumption of the proposed technique and that of other
baseline techniques in the simulation with 50 hosts.

Figure 11. Comparison of workload and communication delays in ML-EdgeIDS and the pro-
posed technique.

6. Conclusions

In this paper, we have proposed the energy-efficient and secure load balancing technique
in an SDN-enabled fog computing environment. Due to the massive increase in IoT devices and
user applications, balancing the load in the fog layer is essential. We proposed the energy-aware
fog-IoT-based computing architecture and load-balancing technique to improve resource utiliza-
tion by means of SDN-enabled fog computing at the fog layer and to reduce task migration at
the cloud layer. Moreover, we implemented an intrusion detection method to reduce the work-
load and communication delays in the fog layer. Experiments were conducted in a simulation
environment, and the method’s performance was assessed considering the energy consumption,
average cost, workload reduction, and average response time as metrics. The results were
compared with the imbalanced and balanced load balancing techniques. The balanced tech-
nique showed improvements in terms of the energy consumption, cost, and average response
time. The results of the proposed technique were also compared with those of other baselines
methods implemented by other authors. The simulation experiments showed improvements in
the average response time, average energy consumption, and communication delays of 15%,
23%, and 10%, respectively. In future works, we propose to extend this work with more security
and performance parameters. To address the limitations of the proposed technique, this can be
implemented with a real test-bed environment and optimization techniques. In addition, there
is a need to improve the integration of IoT, edge, dew, fog, and cloud environments to reduce
the workload and delays of the overall network.

Author Contributions: Conceptualization, J.S.; data curation, E.M.A.; formal analysis, J.S. and
P.S.; funding acquisition, E.M.A. and M.H.; investigation, J.S.; methodology, J.S. and P.S.; project
administration, E.M.A. and M.H.; resources, E.M.A.; supervision, P.S. and M.H.; validation, P.S. and
M.H.; writing—original draft, J.S.; writing—review & editing, E.M.A. All authors have read and
agreed to the published version of the manuscript.

Sustainability 2022, 14, 12951 20 of 22

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amhoud, E.M.; Chafii, M.; Nimr, A.; Fettweis, G. OFDM with Index Modulation in Orbital Angular Momentum Multiplexed

Free Space Optical Links. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki,
Finland, 25–28 April 2021; pp. 1–5.

2. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart
Factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. https://doi.org/10.1109/TII.2018.2818932.

3. Li, C.; Zhuang, H.; Wang, Q.; Zhou, X. SSLB: Self-Similarity-Based Load Balancing for Large-Scale Fog Computing. Arab. J. Sci.
Eng. 2018, 43, 7487–7498. https://doi.org/10.1007/s13369-018-3169-3.

4. Fan, Q.; Ansari, N. Towards Workload Balancing in Fog Computing Empowered IoT. IEEE Trans. Netw. Sci. Eng. 2018, 7, 253–262.
https://doi.org/10.1109/TNSE.2018.2852762.

5. Hedabou, M. Cryptography for Addressing Cloud Computing Security, Privacy, and Trust Issues. In Computer and Cyber Security;
Auerbach Publications: New York, NY, USA, 2018; pp. 281–304.

6. Singh, J.; Singh, P.; Gill, S.S. Fog Computing: A Taxonomy, Systematic Review, Current Trends and Research Challenges. J.
Parallel Distrib. Comput. 2021, 157, 56–85. https://doi.org/10.1016/j.jpdc.2021.06.005.

7. Sharma, S.; Saini, H. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustain.
Comput. Inform. Syst. 2019, 24, 100355. https://doi.org/10.1016/j.suscom.2019.100355.

8. Zahid, M.; Javaid, N.; Ansar, K.; Hassan, K.; KaleemUllah Khan, M.; Waqas, M. Hill Climbing Load Balancing Algorithm on
Fog Computing. In Lecture Notes on Data Engineering and Communications Technologies; Springer International Publishing: Cham,
Switzerland, 2019; Volume 24, pp. 238–251. https://doi.org/10.1007/978-3-030-02607-3_22.

9. Téllez, N.; Jimeno, M.; Salazar, A.; Nino-Ruiz, E.D. A Tabu search method for load balancing in fog computing. Int. J. Artif. Intell.
2018, 16, 106–135.

10. Lin, Z.; Lin, M.; Wang, J.B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial
Integrated Networks With Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670.
https://doi.org/10.1109/JSTSP.2019.2899731.

11. Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based Secure Energy Efficient Beamforming in
Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–4. https://doi.org/10.1109/TAES.2022.3190238.

12. Talaat, F.M.; Ali, S.H.; Saleh, A.I.; Ali, H.A. Effective Load Balancing Strategy (ELBS) for Real-Time Fog Computing Environment
Using Fuzzy and Probabilistic Neural Networks. J. Netw. Syst. Manag. 2019, 27, 883–929. https://doi.org/10.1007/s10922-019-
09490-3.

13. Manju, A. Efficient Load Balancing Algorithm for Task Preprocessing in Fog Computing Environment. Smart Intell. Comput. Appl.
2019, 2, 291–298. https://doi.org/10.1007/978-981-13-1927-3.

14. Kashani, M.H.; Ahmadzadeh, A.; Mahdipour, E. Load balancing mechanisms in fog computing: A systematic review. arXiv 2020,
1–19. arXiv:2011.14706.

15. Lin, Z.; Lin, M.; De Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with rate-splitting multiple access in satellite and
aerial-integrated networks. IEEE Internet Things J. 2021, 8, 11123–11134.

16. Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS aided hybrid satellite-terrestrial relay networks:
Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724.

17. Kaur, M.; Aron, R. A systematic Study of Load Balancing Approaches in the Fog Computing Environment; Springer: New York, NY,
USA, 2021; Volume 77, pp. 9202–9247. https://doi.org/10.1007/s11227-020-03600-8.

18. Baburao, D.; Pavankumar, T.; Prabhu, C. Load balancing in the fog nodes using particle swarm optimization-based enhanced
dynamic resource allocation method. Appl. Nanosci. 2021. https://doi.org/10.1007/s13204-021-01970-w.

19. Karthik, S.S.; Kavithamani, A. Fog computing-based deep learning model for optimization of microgrid-connected WSN with
load balancing. Wirel. Netw. 2021, 27, 2719–2727. https://doi.org/10.1007/s11276-021-02613-2.

20. Qun, R.; Arefzadeh, S.M. A new energy-aware method for load balance managing in the fog-based vehicular ad hoc networks
(VANET) using a hybrid optimization algorithm. IET Commun. 2021, 15, 1665–1676.

21. Asghar, A.; Abbas, A.; Khattak, H.A.; Khan, S.U. Fog Based Architecture and Load Balancing Methodology for Health Monitoring
Systems. IEEE Access 2021, 9, 96189–96200. https://doi.org/10.1109/ACCESS.2021.3094033.

22. Mazumdar, N.; Nag, A.; Singh, J.P. Trust-based load-offloading protocol to reduce service delays in fog-computing-empowered
IoT. Comput. Electr. Eng. 2021, 93, 107223.

23. Hameed, A.R.; ul Islam, S.; Ahmad, I.; Munir, K. Energy- and performance-aware load-balancing in vehicular fog computing.
Sustain. Comput. Inform. Syst. 2021, 30, 100454. https://doi.org/10.1016/j.suscom.2020.100454.

Sustainability 2022, 14, 12951 21 of 22

24. Lai, C.F.; Weng, H.Y.; Chou, H.Y.; Huang, Y.M. A novel NAT-based approach for resource load balancing in fog computing
architecture. J. Internet Technol. 2021, 22, 513–520. https://doi.org/10.3966/160792642021052203002.

25. Alqahtani, F.; Amoon, M.; Nasr, A.A. Reliable scheduling and load balancing for requests in cloud-fog computing. Peer-to-Peer
Netw. Appl. 2021, 14, 1905–1916. https://doi.org/10.1007/s12083-021-01125-2.

26. Kaur, M.; Aron, R. An Energy-Efficient Load Balancing Approach for Scientific Workflows in Fog Computing. Wirel. Pers.
Commun. 2022, 125, 3549–3573. https://doi.org/10.1007/s11277-022-09724-9.

27. Singh, S.P.; Kumar, R.; Sharma, A.; Abawajy, J.H.; Kaur, R. Energy efficient load balancing hybrid priority assigned laxity
algorithm in fog computing. Clust. Comput. 2022, 0123456789. https://doi.org/10.1007/s10586-022-03554-x.

28. Singh, P.; Kaur, R.; Rashid, J.; Juneja, S.; Dhiman, G.; Kim, J.; Ouaissa, M. A Fog-Cluster Based Load-Balancing Technique.
Sustainability 2022, 14, 7961. https://doi.org/10.3390/su14137961.

29. Yan, J.; Wu, J.; Wu, Y.; Chen, L.; Liu, S. Task Offloading Algorithms for Novel Load Balancing in Homogeneous Fog Network. In
Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD),
Dalian, China, 5–7 May 2021; pp. 79–84. https://doi.org/10.1109/CSCWD49262.2021.9437748.

30. Kadhim, A.J.; Naser, J.I. Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV-SDN. China
Commun. 2021, 18, 271–289. https://doi.org/10.23919/JCC.2021.02.019.

31. Maswood, M.M.S.; Rahman, M.R.; Alharbi, A.G.; Medhi, D. A Novel Strategy to Achieve Bandwidth Cost Reduction and
Load Balancing in a Cooperative Three-Layer Fog-Cloud Computing Environment. IEEE Access 2020, 8, 113737–113750.
https://doi.org/10.1109/ACCESS.2020.3003263.

32. Beraldi, R.; Canali, C.; Lancellotti, R.; Mattia, G.P. Distributed load balancing for heterogeneous fog computing infrastructures in
smart cities. Pervasive Mob. Comput. 2020, 67, 101221. https://doi.org/10.1016/j.pmcj.2020.101221.

33. Bentajer, A.; Hedabou, M.; Abouelmehdi, K.; Igarramen, Z.; El Fezazi, S. An IBE-based design for assured deletion in cloud
storage. Cryptologia 2019, 43, 254–265.

34. Angfeng, J.D.; UiLi, H.; Aodong, X.X.; ngjun Shi, M.; HuiW, J.; AnyiZhou, X.; Ongdi an an, R.H. A Random Walk based Load
Balancing Algorithm for Fog Computing. In Proceedings of the Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23
April 2020; pp. 46–53. https://doi.org/10.1109/FMEC49853.2020.9144962.

35. Rehman, A.U.; Ahmad, Z.; Jehangiri, A.I.; Ala’Anzy, M.A.; Othman, M.; Umar, A.I.; Ahmad, J. Dynamic Energy
Efficient Resource Allocation Strategy for Load Balancing in Fog Environment. IEEE Access 2020, 8, 199829–199839.
https://doi.org/10.1109/ACCESS.2020.3035181.

36. Singh, S.P.; Kumar, R.; Sharma, A.; Nayyar, A. Leveraging energy-efficient load balancing algorithms in fog computing. Concurr.
Comput. 2022 , 34, e5913. https://doi.org/10.1002/cpe.5913.

37. Singh, J.; Warraich, J.; Singh, P. A Survey on Load Balancing Techniques in Fog Computing. In Proceedings of
the 2021 International Conference on Computing Sciences (ICCS), Phagwara, India, 4–5 December 2021; pp. 47–52.
https://doi.org/10.1109/ICCS54944.2021.00018.

38. Singh, S.P.; Sharma, A.; Kumar, R. Design and exploration of load balancers for fog computing using fuzzy logic. Simul. Model.
Pract. Theory 2020, 101, 102017. https://doi.org/10.1016/j.simpat.2019.102017.

39. Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Pinto, P.; Zhang, W.; Balasubramanian, S. A hybrid heuristics artificial intelligence
feature selection for intrusion detection classifiers in cloud of things. Clust. Comput. 2022, 1–14. https://doi.org/10.1007/s10586-
022-03629-9.

40. Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Pinto, P.; Ahmadi, H.; Zhang, W. CL-MLSP: The design of a detection mechanism for
sinkhole attacks in smart cities. Microprocess. Microsyst. 2022, 90, 104504. https://doi.org/10.1016/j.micpro.2022.104504.

41. Abbasi, S.H.; Javaid, N.; Ashraf, M.H.; Mehmood, M.; Naeem, M.; Rehman, M. Load Stabilizing in Fog Computing Envi-
ronment Using Load Balancing Algorithm. In Proceedings of the International Conference on Broadband and Wireless Comput-
ing, Communication and Applications; Springer International Publishing: Cham, Switzerland, 2019; Volume 25, pp. 737–750.
https://doi.org/10.1007/978-3-030-02613-4.

42. Aleisa, M.A.; Abuhussein, A.; Alsubaei, F.S.; Sheldon, F.T. Examining the Performance of Fog-Aided, Cloud-Centered IoT in a
Real-World Environment. Sensors 2021, 21, 6950. https://doi.org/10.3390/s21216950.

43. Adnan, M.; Iqbal, J.; Waheed, A.; Amin, N.U.; Zareei, M.; Umer, A.; Mohamed, E.M. Towards the Design of Efficient and Secure
Architecture for Software-Defined Vehicular Networks. Sensors 2021, 21, 3902. https://doi.org/10.3390/s21113902.

44. Singh, J.; Bagga, S.; Kaur, R. Software-based Prediction of Liver Disease with Feature Selection and Classification Techniques.
Procedia Comput. Sci. 2020, 167, 1970–1980. https://doi.org/10.1016/j.procs.2020.03.226.

45. Fröhlich, P.; Gelenbe, E.; Fiołka, J.; Chęciński, J.; Nowak, M.; Filus, Z. Smart SDN Management of Fog Services to Optimize QoS
and Energy. Sensors 2021, 21, 3105. https://doi.org/10.3390/s21093105.

46. Llorens-Carrodeguas, A.; Leyva-Pupo, I.; Cervelló-Pastor, C.; Piñeiro, L.; Siddiqui, S. An SDN-Based Solution for Horizontal
Auto-Scaling and Load Balancing of Transparent VNF Clusters. Sensors 2021, 21, 8283. https://doi.org/10.3390/s21248283.

47. Albowarab, M.H.; Zakaria, N.A.; Zainal Abidin, Z. Directionally-Enhanced Binary Multi-Objective Particle Swarm Optimisation
for Load Balancing in Software Defined Networks. Sensors 2021, 21, 3356. https://doi.org/10.3390/s21103356.

48. Sharma, S.; Saini, H. Efficient solution for load balancing in fog computing utilizing artificial bee colony. Int. J. Ambient Comput.
Intell. 2019, 10, 60–77. https://doi.org/10.4018/IJACI.2019100104.

Sustainability 2022, 14, 12951 22 of 22

49. Singh, P.; Kaur, A.; Aujla, G.S.; Batth, R.S.; Kanhere, S. DaaS: Dew Computing as a Service for Intelligent Intrusion Detection in
Edge-of-Things Ecosystem. IEEE Internet Things J. 2021, 8, 12569–12577. https://doi.org/10.1109/JIOT.2020.3029248.

50. Tuli, S.; Poojara, S.R.; Srirama, S.N.; Casale, G.; Jennings, N.R. COSCO: Container Orchestration Using Co-Simulation
and Gradient Based Optimization for Fog Computing Environments. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 101–116.
https://doi.org/10.1109/TPDS.2021.3087349.

51. Shen, S.; Van Beek, V.; Iosup, A. Statistical Characterization of Business-Critical Workloads Hosted in Cloud Datacenters. In
Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7
May 2015; pp. 465–474. https://doi.org/10.1109/CCGrid.2015.60.

52. Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An ensemble deep learning based
Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future
Gener. Comput. Syst. 2020, 104, 187–200. https://doi.org/10.1016/j.future.2019.10.043.

53. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 military communications and information systems conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6.

54. Wang, Y.; Meng, W.; Li, W.; Liu, Z.; Liu, Y.; Xue, H. Adaptive machine learning-based alarm reduction via edge computing for
distributed intrusion detection systems. Concurr. Comput. Pract. Exp. 2019, 31, e5101.

	Introduction
	Related Work
	Proposed Work
	System Architecture
	Load-Balancing Mechanism
	 Intrusion Detection

	Implementation and Evaluation
	Scenario I
	Workload
	Experimental Setup

	Scenario II
	Performance Evaluation Metrics
	 Average Energy Consumption (AEC)
	 Average Response Time (ART)
	Cost per Container on Average

	Results and Discussions
	Conclusions
	References

