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Abstract: The ultimate lateral resistance of free- and fixed-headed piles in cohesive soil is examined
in this paper using the three-dimensional finite element limit analysis with upper and lower bound
theorems. A special concern, and that is the novelty of this study, is devoted to the combined effect
of the three important dimensionless parameters; namely, the overburden stress factor (n), the pile
length-diameter ratio (L/D), and the ratio of eccentric length to diameter (e/D). Numerical results are
expressed by using Broms’s horizontal load factor, and comparisons are made with several published
solutions. In addition, the associated failure mechanisms are investigated with respect to the three
parametric effects. The adopted new technique has been successfully used to study a number of
different geo-stability problems. It is thus the aim of this paper to produce accurate and practical
results with design equations and charts that can be used by practitioners to predict the undrained
lateral capacity of fixed- and free-headed piles.

Keywords: finite element limit analysis; lateral resistance pile; lateral capacity; three-dimensional;
undrained capacity

1. Introduction

High-rise buildings, transmission towers, offshore platforms, bridges, or wind turbines
are generally supported by pile foundations [1–9]. Owing to several circumstances, such as
wind loadings, wave forces, or seismic forces from earthquake actions, piles are designed
to resist lateral force induced from those actions. To predict the lateral capacity of piles,
reliable design equations or charts are essential for practitioners in the preliminary design
stage of pile foundations.

Broms [10] was the first to investigate the lateral capacity of a pile in cohesive soil using
the limit equilibrium method, where equilibrium equations were established with simple
geometrical earth pressure distributions along pile length. The solution was presented in
the form of a normalized horizontal force that is a function of the length–diameter ratio and
eccentric-length ratio of a pile. Broms [10] also considered both fixed-headed (restrained)
and free-headed (unrestrained) piles in the work. This is widely known as Broms’s design
charts for evaluating the lateral capacity of a pile. Later, Meyerhof et al. [11] and Georgiadis
et al. [12] extended Broms’s work by using different earth pressure distributions of soil
reaction along the pile length in order to consider the cases of laterally loaded piles in
layered soils and sloping ground, respectively.

In addition to the limit equilibrium method, several studies were conducted using
the conventional displacement-based finite element method (FEM) [13–20], the limit anal-
ysis method [21–24], the finite element limit analysis (FELA) [25–27], and the p-y curve
method [28–32]. Further extension of the work may include the results of earth pressure
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distribution of 2D lateral soil resistance under the full flow around the mechanism for
circular-shaped piles [33–36], the study results of rectangular shaped piles [37,38], and the
results for I-shaped piles [39]. Other information regarding the historical development of
solutions for laterally loaded piles can also be found in Poulos and Davis [40], Reese and
Van Impe [41], and Ruigrok [42].

Most previous studies of laterally loaded piles in clays assumed clays to be weightless.
In view of this, in recent years, Yu et al. [23,24], Zhang et al. [43], Keawsawasvong and
Ukritchon [17], Izadi and Chenari [25,26], and Luo et al. [27] examined the influence of
soil weight on the lateral pile capacity. Details of each method are summarized in Table 1.
It was concluded that a change in the dimensionless unit weight parameter significantly
results in a change in the lateral pile capacity. In addition, there was no consideration of
the pile eccentric length and the condition of the pile head in the literature. Only the work
by Broms [10] considered the eccentric length of piles, as well as the conditions of both
fixed- (restrained) and free- (unrestrained), headed piles. Izadi and Chenari [25,26] also
stated that very few works consider the no-tension (separation) condition at the pile–soil
interface.

Table 1. Summary of the existing methods.

Existing Method Equations or Design Charts

Broms [10] H
su D2 = − 27

2 − 9L
D + 9

2

√
18 + 8L2

D2

Meyerhof et al. [11]
H

su LD = 2Fcsc, where FC = lateral resistance factor and sC = shape
factor (see Meyerhof et al., 1981)

Georgiadis et al. [12]

H
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(
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Murff and Hamilton [21] H

su LD = f
(

L
D

)
from a design chart

Yu et al. [23] H
su D2 = f

(
su

γD , L
D

)
from a design chart

Keawsawasvong and
Ukritchon [17]

H
su LD = a1 +

(
a2n+a3
a4n+1

)(
L
D

)
+
(

a5n+a6
a7n+1

)(
L
D

)0.5

where a1 = 4.3671, a2 = 3.8909 × 10−4, a3 = 6.5365 × 10−2,
a4 = 0.1056, a5 = 2.3647 × 10−2, a6 = −0.3956, a7 = 8.1367 × 10−2

and n = γL/su is the overburden stress factor.

Izadi and Chenari [25,26]
H

γLD2 = f
(

su
γD , L

D , α, λ
)

from a design chart
where α is adhesion factor and λ is strength gradient ratio

To bridge the current research gap, this project considers the combined effect of the
soil weight, the no-tension (separation) condition at the interface of piles, the eccentric
length of piles, and both the fixed- and free-headed piles on the lateral pile capacity of piles.
In this paper, three-dimensional finite element limit analysis (3D FELA) is employed to
numerically derive lower bound (LB) and upper bound (UB) solutions of laterally loaded
piles in clays. Numerical results are presented in a similar form to Broms’s design charts.
The derived failure mechanisms of the lateral pile problem are discussed and empirical
design equations for predicting the undrained lateral capacity of both fixed- and free-
headed piles are developed. The accurate results presented in this study can be used by
practitioners to predict the undrained lateral capacity of fixed- and free-headed piles under
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horizontal loading considering the effects of overburden stress factors, eccentric length
ratios, and pile length ratios.

2. Method of Analysis

To derive numerical solutions for the undrained lateral capacity of 3D rigid circular
piles, the commercial software OptumG3 (Copenhagen, Denmark) [44] is employed. The
historical development of 3D FELA can be found in Lyamin and Sloan [45,46], Kranbben-
hoft et al. [47], Sloan [48], Keawsawasvong and Ukritchon [49], Ukritchon and Keaw-
sawasvong [50], and Ukritchon et al. [51,52].

Figure 1 shows the problem statement of 3D rigid circular piles using 3D meshes
from OptumG3. A free-headed (unrestrained) pile is shown in Figure 1a, whilst Figure 1b
shows a fixed-headed (restrained) pile. The pile is subjected to a horizontal load (H). Since
the problem of a monotonically and laterally loaded pile is symmetrical, only half of the
model is used in all analyses. The rigid circular pile has a diameter (D) and a length (L).
To model the interface between piles and soils, zero-thickness interface elements are used.
The undrained shear strength at the interface is equal to that of the surrounding soil (i.e.,
sui = su) which means that the adhesion factor at the interface is equal to one (α = 1). In
addition, the tension cut-off condition at the soil–pile interface is adopted, which allows
the soil to separate from the back of the circular pile whenever “necessary” during the
solution process (see [17,53–55]). Additionally, the tension cut-off condition is implemented
at the soil–pile interface, allowing the soil to separate from the rectangular pile’s backside
since it was required throughout the solution procedure. By using OptumG3, the interface
elements are added at the soil–pile interface, where the properties of this interface are the
same as the surrounding clay, except the tension stresses are not allowed to take place at
the interface. The surrounding clay is defined as homogeneous and isotropic clays with an
elastic–perfectly plastic material obeying the Tresca failure criterion. The soil parameters
required for the model are the undrained shear strength (su) and the soil unit weight (γ).
Note the eccentric length (e) in a free-headed pile (see Figure 1a). On the other hand, in
Figure 1b, there is no eccentric length for a fixed-headed pile since the top of the pile is
restrained against vertical movement and thus pile rotation. Sloan [48] stated that the
stability analysis using the FELA based on the limit analysis theory requires only the
conventional strength parameters, such as undrained shear strength, but does not use the
deformation parameters, such as Poisson’s ratio and Young’s modulus, which is different
from the conventional displacement-based FEM. Thus, the Poisson’s ratio and Young’s
modulus are not considered in this study using FELA. Hence, the displacements of the pile
cannot be investigated by using FELA.
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In all numerical analyses of the paper, the model domains are built to be sufficiently
large so that collapsible areas are fully contained, and the failure zone would not reach
or intersect the far boundaries of the model. The boundary conditions shown in Figure 2
are described next. At the domain bottom, zero velocity is applied in x-y-z directions so
that there is no movement in the bottom plane in any direction. On all three side-planes,
only the velocity in normal directions is fixed so that the roller supports are applied along
all side planes. This condition is the same as the symmetrical plane where all nodes are
fixed in the normal direction. The other two tangential directions are free to move. On the
top plane of soils is a free surface, and the nodes are free to move in all directions. Note
that a special boundary condition is given to the fixed-headed pile, where movement in
the vertical direction is not permitted at the pile cap. In this way, no rotation can occur
to the pile. The sizes of boundaries are selected to be large enough to confirm the failure
zones are captured within the boundary domain so that it cannot cause an insignificant
effect on the computed FELA solutions. However, the extremely large size of the domain
can result in an increase in the number of elements directly reducing the computational
performance of numerical simulations (i.e., increasing calculation time). Based on several
trial-and-error checks, the optimal sizes of the model are 5D × 10D × 1.4 L for the width,
length, and depth of the domain (see Figure 2).
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Figure 2. FELA models, 3D meshes, and boundary conditions: (a) free-headed pile (b) fixed-headed pile.

One of OptumG3’s advanced features is the automatic adaptive mesh refinement
scheme, which is based on the previous development in Ciria et al. [56]. The numbers of
meshes in sensitive zones with very high shear power dissipation, which is the control
variable for error estimation in all analyses, are automatically increased through successive
iterations using the adaptive technique. The original and targeted number of elements used
in all numerical runs are 5000 and 10,000 elements with five adaptive iterations [57–62].
Utilizing the adaptive mesh techniques, meshes will automatically enlarge in sensitive
zones with considerable plastic shearing strain. All numerical simulations employ 5000 to
10,000 elements as the initial and goal number of elements, respectively, with five adaptive
iterations. Examples of the final mesh refinements for a free-headed pile and a fixed-headed
pile are shown in Figure 2a,b, respectively.

In the proposed study, six dimensional parameters of laterally loaded piles are consid-
ered; they are (H, n, D, L, Su, and γ). These six parameters can be further reduced to the
following dimensionless parameters as:

For fixed-headed piles:
H/(suLD) = f (L/D, n) (1)

For free-headed piles:
H/(suLD) = f (L/D, n, e/D) (2)
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where H/(suLD) is the normalized horizontal load factor and it is a function of (L/D, n,
and e/D), depending on whether it is a free- or a fixed-headed pile. (L/D) is the ratio of
pile length to diameter, (n = γL/su) is the overburden stress factor, and (e/D) is the ratio of
eccentric length to pile diameter.

The n parameter may be interpreted as the degree of the total overburden pressure of
soil at the pile tip as compared to its average undrained shear strength. Conversely, the
reciprocal of n may be interpreted as the ratio of the average undrained shear strength of
soil normalized by the total overburden pressure. The special condition of n = 0 corresponds
to the ideal case of weightless soil (i.e., γ = 0). The ranges of the overburden stress factor n
are chosen to be n = 0 to 80 in the study. The selected pile length–diameter ratios are L/D = 5
to 60 and the ratio of eccentric length to pile diameter are e/D = 0 to 16. These dimensionless
parameters can be simply used in practice as they were employed by Keawsawasvong
[Sauer] to investigate the undrained capacity of loaded circular piles under combined
horizontal load and moment. Furthermore, it may be used to validate the accuracy of the
current solutions to those suggested by Keawsawasvong [63], Izadi and Chenari [25], and
Brom [10]. For the range of e/D = 0–16, we follow the same length as proposed by Brom [10].

It is important to note that this study uses the rigorous LB and UB FELA to derive
rigorous solutions of laterally loaded piles by also considering the soil weight, whereas
the solutions in the original work by Broms [10] were obtained from the limit equilibrium
method with the assumptions of weightless soils.

3. Comparisons with Published Results

To verify the numerical results presented in the paper, Figure 3 compares the free-
headed results of the present study with those from the displacement finite element method
(FEM) by Keawsawasvong and Ukritchon [17] as well as the lower bound (LB) finite
element limit analysis (FELA) by Izadi and Chenari [25]. The presented results are the
average solutions of H/(suLD) from the UB and LB solutions, and they are for cases of
e/D = 0 and n = γL/su = (0, 5, and 10). In general, the present average solutions are in good
agreement with those published solutions. All solutions indicate that an increase in L/D
results in a nonlinear rise of H/(suLD). The larger the overburden stress factor n, the greater
the H/(suLD). For n = 0 (i.e., weightless soil), the LB solutions by Izadi and Chenari [25] are
over-conservative as they are lower than the present solutions by 15–20%.

For the verification of fixed-headed piles, Figure 4 shows a comparison between the
averaged LB and UB results with those from the displacement-based finite element method
(FEM) by Keawsawasvong [63] and the limit equilibrium method (LEM) from Brom [10].
Numerical results have shown that the averaged LB and UB solutions agree very well with
those solutions produced by Keawsawasvong [63]. Nevertheless, the LEM solutions by
Brom [10] are much lower than the present solutions. This is due to the assumption of the
failure mechanisms used in the LEM method by Brom [10] were not quite correct since the
wedge-shaped failure was used in his analysis. It is necessary to re-examine the failure
mechanisms assumed in their analytical UB and LEM studies. This has also highlighted
the advantages of using the current FELA technique, in which a prior assumption of the
failure mechanism is not needed [48].

A comprehensive comparison with the classic LEM solutions in Broms [10] is presented
in Figure 5 for both fixed-headed piles and free-headed piles with e/D = 0–16. Since the work
presented by the author did not consider the soil unit weight, therefore, the comparison is
for the case of n = 0. Numerical comparisons have shown that Broms’s LEM solutions are
conservative, as they are consistently lower than those in the present study for all cases of
both free- and fixed-headed piles.

The above three comparisons have improved the confidence in using the numerical
results produced in the paper. Consequently, a series of parametric studies are presented in
the next section.



Sustainability 2022, 14, 12940 6 of 19

Sustainability 2022, 14, 12940 6 of 20 
 

the average solutions of H/(suLD) from the UB and LB solutions, and they are for cases of 
e/D = 0 and n = γL/su = (0, 5, and 10). In general, the present average solutions are in good 
agreement with those published solutions. All solutions indicate that an increase in L/D 
results in a nonlinear rise of H/(suLD). The larger the overburden stress factor n, the greater 
the H/(suLD). For n = 0 (i.e., weightless soil), the LB solutions by Izadi and Chenari [25] are 
over-conservative as they are lower than the present solutions by 15–20%. 

 
Figure 3. Comparison of H/(suLD) of free-headed piles. 

For the verification of fixed-headed piles, Figure 4 shows a comparison between the 
averaged LB and UB results with those from the displacement-based finite element 
method (FEM) by Keawsawasvong [63] and the limit equilibrium method (LEM) from 
Brom [10]. Numerical results have shown that the averaged LB and UB solutions agree 
very well with those solutions produced by Keawsawasvong [63]. Nevertheless, the LEM 
solutions by Brom [10] are much lower than the present solutions. This is due to the 
assumption of the failure mechanisms used in the LEM method by Brom [10] were not 
quite correct since the wedge-shaped failure was used in his analysis. It is necessary to re-
examine the failure mechanisms assumed in their analytical UB and LEM studies. This 
has also highlighted the advantages of using the current FELA technique, in which a prior 
assumption of the failure mechanism is not needed [48]. 

0

1

2

3

4

5

6

0 5 10 15 20 25 30

H
/s u

LD

L/D

FEM, Keawsawasvong and Ukritchon (2020), n=10

FELA_LB, Izadi and Chenari (2021), n=10

FELA_Ave, Present Study, n=10

FEM, Keawsawasvong and Ukritchon (2020), n=0

FELA_LB, Izadi and Chenari (2021), n=0

FELA_Ave, Present Study, n=0

Figure 3. Comparison of H/(suLD) of free-headed piles.

Sustainability 2022, 14, 12940 7 of 20 
 

 
Figure 4. Comparison of H/(suLD) of fixed-headed piles. 

A comprehensive comparison with the classic LEM solutions in Broms [10] is 
presented in Figure 5 for both fixed-headed piles and free-headed piles with e/D = 0–16. 
Since the work presented by the author did not consider the soil unit weight, therefore, 
the comparison is for the case of n = 0. Numerical comparisons have shown that Broms’s 
LEM solutions are conservative, as they are consistently lower than those in the present 
study for all cases of both free- and fixed-headed piles. 

 
Figure 5. Comparison of H/(suLD) between the present study and the previous solutions from 
Broms’s original charts. 

2

4

6

8

10

12

14

0 5 10 15 20 25 30

H
/s u

LD

L/D

FEM, Keawsawasvong (2014)
FELA_Ave, Present Study
LEM, Brom (1964)

0

2

4

6

8

10

12

0 10 20 30 40 50 60

H
/s

uL
D

L/D

LEM (Brom1964), Fix-Headed Pile FELA_Ave, Present Study, Fix-Headed Pile
LEM (Brom1964), e/D=0 FELA_Ave, Present Study, e/D=0
LEM (Brom1964), e/D=1 FELA_Ave, Present Study, e/D=1
LEM (Brom1964), e/D=2 FELA_Ave, Present Study, e/D=2
LEM (Brom1964), e/D=4 FELA_Ave, Present Study, e/D=4
LEM (Brom1964), e/D=8 FELA_Ave, Present Study, e/D=8
LEM (Brom1964), e/D=16 FELA_Ave, Present Study, e/D=16

Figure 4. Comparison of H/(suLD) of fixed-headed piles.



Sustainability 2022, 14, 12940 7 of 19

Sustainability 2022, 14, 12940 7 of 20 
 

 
Figure 4. Comparison of H/(suLD) of fixed-headed piles. 

A comprehensive comparison with the classic LEM solutions in Broms [10] is 
presented in Figure 5 for both fixed-headed piles and free-headed piles with e/D = 0–16. 
Since the work presented by the author did not consider the soil unit weight, therefore, 
the comparison is for the case of n = 0. Numerical comparisons have shown that Broms’s 
LEM solutions are conservative, as they are consistently lower than those in the present 
study for all cases of both free- and fixed-headed piles. 

 
Figure 5. Comparison of H/(suLD) between the present study and the previous solutions from 
Broms’s original charts. 

2

4

6

8

10

12

14

0 5 10 15 20 25 30

H
/s u

LD

L/D

FEM, Keawsawasvong (2014)
FELA_Ave, Present Study
LEM, Brom (1964)

0

2

4

6

8

10

12

0 10 20 30 40 50 60

H
/s

uL
D

L/D

LEM (Brom1964), Fix-Headed Pile FELA_Ave, Present Study, Fix-Headed Pile
LEM (Brom1964), e/D=0 FELA_Ave, Present Study, e/D=0
LEM (Brom1964), e/D=1 FELA_Ave, Present Study, e/D=1
LEM (Brom1964), e/D=2 FELA_Ave, Present Study, e/D=2
LEM (Brom1964), e/D=4 FELA_Ave, Present Study, e/D=4
LEM (Brom1964), e/D=8 FELA_Ave, Present Study, e/D=8
LEM (Brom1964), e/D=16 FELA_Ave, Present Study, e/D=16

Figure 5. Comparison of H/(suLD) between the present study and the previous solutions from
Broms’s original charts.

4. Results and Discussion

This section presents parametric studies for the following three dimensionless param-
eters, namely, the overburden stress factor (n), the pile length-diameter ratio (L/D), and
the ratio of eccentric length to diameter (e/D). The effects of the individual parameter on
the undrained lateral capacity of piles are examined using the normalized horizontal load
factor H/(suLD).

The influences of L/D on H/(suLD) are presented in Figure 6 for the various values
of (e/D = 0–16) and (n = 0–80). In Figure 6a, where n = 0, an increase in L/D results in a
nonlinear increase in H/(suLD). The larger the e/D, the smaller the H/(suLD). Numerical
results have shown that the fixed-headed piles yield greater values of H/(suLD) than those of
the free-headed piles. Interestingly, the difference between the two piles is not small which
is about three times larger than the free-headed pile with e/D = 0. The same observation
applies to other values of n, which are also presented in Figure 6b–f. The maximum and
minimum values of each case (different n and e/D) can be found in Table 2.

Table 2. Minimum and maximum values of 3D piles.

Piles e/D H/suLD n = 0 n = 5 n = 10 n = 30 n = 50 n = 80

0 Min 2.884 3.372 3.690 4.454 4.894 5.023
0 Max 4.795 5.032 5.223 5.601 5.725 5.753
1 Min 2.283 2.642 2.862 3.452 4.238 4.537
1 Max 4.688 4.908 5.045 5.294 5.401 5.499
2 Min 1.874 2.174 2.343 2.825 3.610 4.005

Free 2 Max 4.581 4.789 4.922 5.155 5.274 5.363
Headed 4 Min 1.382 1.597 1.712 2.185 2.751 3.124

4 Max 4.388 4.579 4.722 4.968 5.051 5.133
8 Min 0.899 1.039 1.109 1.568 1.908 2.289
8 Max 4.043 4.205 4.330 4.529 4.636 4.693
16 Min 0.524 0.610 0.649 0.822 0.979 1.136
16 Max 3.462 3.612 3.716 3.894 3.978 4.033

Fixed - Min 7.985 10.483 11.653 12.706 12.931 13.193
Headed - Max 12.438 13.066 13.399 13.924 14.546 14.767
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Figure 7 shows the effects of e/D on H/(suLD) for free-headed piles. Presented in
Figure 7a is for L/D = 5. Numerical results have shown that increasing the value of e/D can
significantly decrease H/(suLD). Note that the relationship between H/(suLD) and e/D is
nonlinear in Figure 7a since the length of the pile is small, so the impact of the eccentricity
on the lateral force is still significant. On the other hand, for large L/D, such as the one
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shown in Figure 7b with L/D = 60, a reduction of H/(suLD) as e/D increases is reported,
where the function is almost linear when e/D is approximately larger than 4. One possible
reason for this could be due to the better and more uniform stress distribution for piles
with large L/D so that the impact of the eccentricity on the lateral force becomes less.
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Figure 7. Influence of e/D on H/(suLD)—free-headed piles. (a) L/D = 5; (b) L/D = 60.

Figure 8 presents the influences of n on H/(suLD) for the various values of L/D. In
Figure 8a (e/D = 0), numerical results have shown a nonlinear increase with the increasing
n values. It is to be noted that the individual nonlinear curve reaches a constant value
of H/(suLD) at approximately n = 50. On the other hand, as for e/D = 16 (see Figure 8b),
the nonlinear curves are much flatter. The gradients are significantly lower than those in
Figure 8a (e/D = 0).
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Figure 8. Influence of n on H/(suLD)—free-headed piles. (a) e/D = 0; (b) e/D = 16.

As for fixed-headed piles, Figure 9 presents the effects of L/D on H/(suLD) for the
various values of n. Similar to the free-head piles, H/(suLD) increases nonlinearly with the
increasing L/D. It is interesting to see that the gradient of the nonlinear curve decreases
(the curve becomes flattered) as the value of n increases. Note that the smallest H/(suLD)
corresponds to the cases of n = 0. Moreover, see the case of n = 80 with a near linear
line. This is mostly due to the effect of the large overburden stress factor n = γL/su. It can
therefore be concluded that the effect of n on H/(suLD) cannot be neglected in the design of
piles subject to lateral loading. A similar observation can be made with respect to Figure 10,
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where the relationship between n and H/(suLD) is shown for the various values of L/D. A
nonlinear increase is depicted as n increases. The larger the L/D, the greater the H/(suLD).
The rate of increase (gradient) is the smallest when L/D is the largest.
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It is common to use the contour plots of shear dissipation to depict possible failure
mechanisms of a soil structure, as it provides a good indicator of the intensity of non-zero
plastic strains. Technically speaking, the actual values of the contour are not important in
such a perfectly plastic material model, and therefore the contour bars for these plots are not
normally shown in technical documents. Figure 11 shows the failure mechanisms of a free-
headed pile with six different overburden stress factors (n = γL/su). The chosen free-headed
pile is for (e/D = 0, L/D = 20). As n increases (i.e., the overburden stress increases), the size
of the passive failure zone (see the area near the ground surface) decreases. Accompanying
this is an increase in the size in the active failure zone (see the area near the pile tip,
especially for n = 50 and 80).

In Figure 12, the effects of the ratio of eccentric length to pile diameter e/D on the
failure mechanisms of a free-headed pile are presented. The chosen free-headed pile is
for (n = 10, L/D = 30). As e/D increases (i.e., the pile length above the ground surface
increases), the size of the passive failure zone (see the colored area near the ground surface)
decreases. Nevertheless, unlike in Figure 11, the developed active zone near the pile tip
is not pronounced. One of the possible reasons for this could be attributed to a location
change of the inflection point of the pile as e/D increases.
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(c) e/D = 2; (d) e/D = 4; (e) e/D = 8; (f) e/D = 16.

For the chosen fixed-headed pile study (e/D = 0, L/D = 30), Figure 13 shows the failure
mechanisms of six different overburden stress factors (n = γL/su). By fixing the vertical
movement of a fixed-headed pile, only horizontal translations are allowed. This is similar to
the classical passive earth pressure problem. We can therefore expect that, for the weightless
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case with n = 0, a full passive failure zone can be developed. This is seen in Figure 13a.
As n increases, the overburden stress increases, and the overall size of the passive zone
reduces, resulting in partially mobilized passive zones. It can therefore be concluded that
the overburden stress factor n plays an important role in the determination of piles subject
to lateral loading.
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where (a1 to a3), (b1 to b3), and (c1 to c3) are constant coefficients and they are presented in 
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Figure 13. Effect of n on failure mechanisms (fixed-headed, e/D = 0, L/D = 30). (a) n = 0; (b) n = 5;
(c) n = 10; (d) n = 30; (e) n = 50; (f) n = 80.
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5. Empirical Design Equations

For research to be practical and used by engineers, it is literally important to develop
accurate design equations. By employing a nonlinear regression analysis to the computed
solutions, a mathematical expression of H/(suLD) is proposed using the combined relation-
ship between power functions of L/D and n. This is shown in Equation (3) as follows:

H
suLD

= a1 + a2n + a3n0.5 +
(

b1 + b2n + b3n0.5
)( L

D

)
+
(

c1 + c2n + c3n0.5
)( L

D

)0.5
(3)

where (a1 to a3), (b1 to b3), and (c1 to c3) are constant coefficients and they are presented in
Table 3 for practical uses. The least-square method proposed by Sauer [64] was employed to
determine the optimal values of these coefficients. Even though both sides of Equation (3)
have the parameters L and D, they are in fact dimensionless parameters. To use the design
Equation (3), the values of e, L and D should be defined first. Then, the values of n, e/D,
and L/D are computed based on the soil investigation results (e.g., γ and su). Substituting
n and L/D into Equation (3), the value of H/(suLD) is then obtained. By multiplying the
value of H/(suLD) with su, L, and D, the result of H can be acquired which can be used as a
maximum lateral force that a pile can resist.

Table 3. Design coefficients for the proposed equations.

Constant
Coefficients

Free-Headed Pile, e/D Fix-Headed
Pile0 1 2 4 8 16

a1 1.39653 0.28330 −0.26390 −0.96210 −1.26159 −1.07657 3.87701
a2 0.01149 0.04216 0.06592 0.04993 0.04658 0.02330 −0.16683
a3 0.29648 0.07840 −0.14140 −0.11097 −0.14845 −0.11162 2.41066
b1 −0.04021 −0.05908 −0.06416 −0.06593 −0.04957 −0.02122 −0.14081
b2 0.00086 0.00185 0.00235 0.00189 0.00160 0.00059 −0.00251
b3 −0.00215 −0.00902 −0.01359 −0.01128 −0.00993 −0.00514 0.03772
c1 0.74257 1.02044 1.11642 1.19523 1.06596 0.75075 2.18053
c2 −0.00879 −0.02003 −0.02688 −0.02136 −0.01871 −0.00815 0.03992
c3 −0.00028 0.07480 0.13768 0.11631 0.10937 0.06751 −0.56016
R2 98.83% 99.28% 99.59% 99.75% 99.87% 99.73% 99.44%

A comparison of the H/(suLD) values between the FELA solutions (Avg) and the
proposed design equation is shown in Figure 14 for the purpose of verifying the equation
uses for the fixed-headed piles. For the free-headed piles, the comparisons are shown
in Figure 15a–d, respectively, for the four different values of e/D. The comparisons have
shown that the coefficients of determination (R2) are all greater than 99.44%. The proposed
Equation (3) is considered as highly accurate with the coefficients provided in Table 3,
and it can be used with confidence in practice to estimate the lateral capacity of a pile in
cohesive soil.
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6. Design Charts Limitations

The undrained lateral resistance of circular piles is investigated using the UB and LB
limit analysis methodologies. Note that the following are some limitations that need to be
investigated further:

1. All computed design charts are based on the assumption of undrained clay and
homogenous soil profile characteristics, and hence cannot be used under heterogeneity
and drained soil circumstances. Furthermore, the current solutions are inapplicable to
non-homogeneous or multi-layered soils.

2. The solutions for circular piles in homogeneous clays are presented in this paper.
Since the pile shapes differ, such as a rectangular pile, the current solutions are simply
for comparison. Additional pile forms must be properly simulated.

3. If there are two adjacent piles, the effects of their separation must be explored further
using a three-dimensional FELA technique.

7. Conclusions

The problem of lateral resistance of free- and fixed-headed piles in cohesive soils
has been re-visited in this paper using advanced three-dimensional finite element limit
analysis with upper and lower bound solutions. Three major considerations were given
to study the effects of the ratio of pile length to diameter, the ratio of eccentric length to
pile diameter and the overburden stress factor. Numerical solutions were defined by a
normalized horizontal load factor that is similar in form to Broms’s original design charts.
The analyses allowed for no-tension (separation) conditions at the interface of piles with
zero-thickness interface elements. Several failure mechanisms from the parametric studies
were discussed. The following conclusions are drawn based on the study.

For fixed-headed piles, the normalized horizontal load factor H/(suLD) increases
nonlinearly with the increasing pile length to diameter ratio L/D and the overburden stress
factor n. The increase is less pronounced as the value of the overburden stress factor n
increases. In regard to the failure mechanism, the overall size of the passive zone reduces
as the overburden stress factor n increases. The fixed-headed piles predict greater values of
H/(suLD) than those from free-headed piles. The difference between the two piles is about
three times larger than the free-headed piles.

For free-headed piles, same as in the fixed-headed piles, an increase in L/D and
n would result in a nonlinear increase in H/(suLD). Numerical results have shown that
increasing the value of e/D can significantly decrease H/(suLD). As n increases (i.e., the
overburden stress increases), the size of the passive failure zone decreases. This has turned
out to be an increase in the size of the active failure zone near the pile tip when the value n is
large. In addition, as e/D increases (i.e., the pile length above the ground surface increases),
the size of the passive failure zone decreases.

An accurate empirical design equation for predicting the undrained lateral capacity
of both fixed- and free-headed piles was developed with design constants provided in a
table. The provided equation and design charts can be used by practitioners with great
confidence in the evaluation of lateral resistance of free- and fixed-headed piles.
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