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Abstract: Guava fruit is readily concealed by branches, making it difficult for picking robots to rapidly
grip. For the robots to plan collision-free paths, it is crucial to segment branches and fruits. This study
investigates a fast and accurate obstacle segmentation network for guava-harvesting robots. At first,
to extract feature maps of different levels quickly, Mobilenetv2 is used as a backbone. Afterwards, a
feature enhancement module is proposed to fuse multi-level features and recalibrate their channels.
On the basis of this, a decoder module is developed, which strengthens the connection between each
position in the feature maps using a self-attention network, and outputs a dense segmentation map.
Experimental results show that in terms of the mean intersection over union, mean pixel accuracy,
and frequency weighted intersection over union, the developed network is 1.83%, 1.60% and 0.43%
higher than Mobilenetv2-deeplabv3+, and 3.77%, 2.43% and 1.70% higher than Mobilenetv2-PSPnet;
our network achieved an inference speed of 45 frames per second and 35.7 billion floating-point
operations per second. To sum up, this network can realize fast and accurate semantic segmentation of
obstacles, and provide strong technical and theoretical support for picking robots to avoid obstacles.

Keywords: picking robot; semantic segmentation; obstacle segmentation; Mobilenetv2

1. Introduction

Guava is a famous fruit of southern China, and there is a big growing area and a huge
labor force needed to harvest the fruit. The price of manual picking has increased due to the
factors of China’s aging population and the decline in rural youth. Therefore, the research
on the guava-picking robots [1] to replace manual work has attracted people’s attention.
Fruit trees grow randomly and widely in an unstructured setting, making it easy for the
branches to hurt the robot arms when picking. Based on the foregoing elements, it is crucial
to segment the obstacles, such as fruits and branches.

Numerous research on fruit and branch recognition has been conducted recently [2].
Traditional techniques detect them by analyzing their texture and color characteristics. For
example, Gongal et al. [3] used textural feature to detect apples; and Amatya et al. [4,5]
classified cherry canopy pixels using a color-based Bayes classifier and achieved an 89%
segmentation accuracy. However, these techniques are only effective when the pixel fea-
tures are apparent and the picking environment is simple. In recent years, many excellent
semantic segmentation models have been proposed, such as Encnet [6], SKnet [7], Uper-
net [8], CCnet [9], and so on. These models are frequently applied in the segmentation
of orchard obstacles. For example, Zhang et al. [10] used Deeplabv3 [11] to segment the
branches and trunks of apple trees. Yang et al. [12] used Mask R-CNN to detect fruits
and branches of citrus trees. Chen et al. [13] used Deeplabv3+, U-net [14] and pix2pix [15],
respectively, to segment the blocked branches. Chen et al. [16] proposed a lightweight
network Sandglass-MFN based on hourglass structure and multi-feature fusion to segment
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banana stem. Peng et al. [17] used Deeplabv3+ with Xception65 as the backbone to realize
semantic segmentation of litchi branches. Majed et al. [18] used Segnet to segment the
trunks and branches of apple trees.

Although being widely employed in the field of agricultural robotics to segment
obstacles, these semantic segmentation networks still have certain issues. For example,
PSPnet [19] missed a lot of detailed information in its encoder; Deeplabv3+ used a simple
up-sampling operation to output a dense segmentation map, which caused the prediction
result to be too coarse; ERFnet [20] made a compromise between the module’s running
speed and precision, though some of the model’s accuracy was still lost. Based on the above
problems, this research focuses on proposing a fast and accurate obstacle segmentation
network. Specifically, Mobilenetv2 [21] is used as the backbone to output different levels
of features. Afterwards, a feature enhancement module (FEM) is proposed to fuse and
recalibrate these features. At last, a decoder based on self-attention is used to strengthen
the connections between the positions in the features, and produce a compact segmentation
feature map.

The main contributions of this paper are as follows:

1. In order to exploit multi-level features, a feature enhancement network, termed FEM,
is proposed. FEM fuses different levels of feature maps, and uses a simple attention
mechanism to recalibrate the channels of the feature maps, thus outputting a feature
map with strong semantics and details.

2. In order to improve the segmentation accuracy, a novel decoder is proposed. It uses
a self-attention layer to capture long-range dependency for each pixel, and utilizes
a shortcut connection and element-wise addition to promote the gradient to flow in
the network.

3. The method has a good segmentation performance. The mean intersection over
union (MIOU), mean pixel accuracy (MPA) and frequency weighted intersection
over union (FWIOU) are 76.30%, 84.63% and 89.04% respectively. The number of
parameters, floating-point operations per second (FLOPs) and frames per second (FPS)
are 3.9 million, 35.7 billion and 45, respectively.

2. Materials and Methods
2.1. Image Acquisition and Annotation

The images were collected on 24 September 2021 at Jiashuo Farm in Gull Island,
Guangzhou City, Guangdong Province, China. The weather was fine that day, and the
collection time was from 12 o’clock to 16 o’clock. An Intel RealSense D435i depth camera
was used to take guava pictures with a resolution of 480 × 640 pixels at 30 frames per
second. The distance between the guava tree and the camera was about 0.6 m. The row
spacing of guava trees in the farm was 3.1 m, and the plant spacing was 2.5 m. In order to
capture images from various perspectives, people with cameras went back and forth in the
middle of the aisle, and up and down along the tree heights during the capturing process.
In the end, about 40,000 images were obtained. Some images are shown in Figure 1.

A total of 891 images were randomly selected as the guava dataset. The train set,
validation set, and test set ratios for this guava dataset were 6:1:3. Each image in the dataset
was labeled pixel-by-pixel using an open-source software LabelMe 3.16.7. Every pixel in
the image was labeled as a fruit, branch or background object. An example is shown
in Figure 2.
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2.2. Data Augmentation 
Data augmentation is an important process that is useful in many different domains, 

including object identification, semantic segmentation, image classification and so on. In 
general, proper data augmentation can strengthen robustness of the model to attain higher 
accuracy. The common data augmentation techniques include panning, flipping, adjust-
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Figure 2. A captured image (a) and its corresponding annotation (b).

2.2. Data Augmentation

Data augmentation is an important process that is useful in many different domains,
including object identification, semantic segmentation, image classification and so on. In
general, proper data augmentation can strengthen robustness of the model to attain higher
accuracy. The common data augmentation techniques include panning, flipping, adjusting
image contrast and saturation, and so on. Random cropping and left-right mirroring are
employed in this work. More augmentation methods will be used in the future to broaden
the datasets. Figure 3 shows a visual example.
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2.3. Method

Figure 4 shows the network architecture of the developed segmentation model. The
model’s backbone, Mobilenetv2, uses depth-wise separable convolutional layers to extract
different levels of features in real time. In order to improve the semantic and detailed
information of the feature maps, FEM is proposed to fuse the information of multi-level
features. Then, a decoder module based on self-attention is developed to output a feature
map with good segmentation quality.
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2.3.1. Backbone

Mobilenetv2 is used as the backbone to generate different levels of feature maps. The
network structure of Mobilenetv2 is shown in Table 1, where c represents the number of
channels; n represents the total number of repeated operations; and s represents the stride.
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In Mobilenetv2, the bottleneck residual block is the basic component, which consists of a
1 × 1 ConvBnRelu (CBR) layer, a 3 × 3 depth-wise separable convolutional layer, a ReLu
activation function and a 1 × 1 convolutional layer. Here, CBR consists of three operations:
a convolution layer, a batch normalization layer, and a Relu activation function. In this
study, Fi(i ∈ (1 ∼ 11)) is defined as the output of the last bottleneck of each line in Table 1.

Table 1. Network architecture of Mobilenetv2.

Input Operator c n s

2242 × 3 Conv2d 32 1 2
1123 × 32 bottleneck 16 1 1
1122 × 16 bottleneck 24 2 2
562 × 24 bottleneck 32 3 2
282 × 32 bottleneck 64 4 2
142 × 64 bottleneck 96 3 1
142 × 96 bottleneck 160 3 2
72 × 160 bottleneck 320 1 1
72 × 320 bottleneck 1280 1 1

72 × 1280 Avgpool 7 × 7 − 1 −
1× 1× 1280 bottleneck k − −

In order to increase the accuracy of obstacle segmentation, the feature maps F2,F4
and F7 are used. The main reasons are: (1) F2 has a high resolution and thus is filled with
detailed information; (2) F7 has a low resolution but with sufficient information about the
global context; (3) F4 contains a certain number of semantics and details. It should be noted
that there are so many channels in the feature maps after F7, which would significantly
increase the FLOPs of the semantic segmentation network and decrease the inference
efficiency, so we do not use them.

2.3.2. Feature Enhancement Module

As shown in Table 1, the backbone frequently decreases the feature map’s resolution, in
order to reduce the cost of computing. The resulting low-level feature maps contain detailed
information, while the high-level feature maps have strong semantics. Only using the high-
level feature maps may has some disadvantages; for instance, the vimineous branches are
easily lost in the high-level feature maps, decreasing the segmentation accuracy. To this
effect, FEM is proposed to fuse different levels of features to generate a feature map with
sufficient details and semantics. Figure 5 shows the architecture of FEM.
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Specifically, the input of FEM is the high-level feature F7 ∈ RC7×H7×W7 , the middle-
level feature F4 ∈ RC4×H4×W4 and the bottom-level feature F2 ∈ RC2×H2×W2 . Because
F2,F4 and F7 have different resolutions, F4 and F7 are scaled to the same feature map size
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as F2 by bilinear interpolation. Then, F2, F4 and F7 are combined to produce a feature
Fconcat ∈ R(C2+C4+C7)×H2×W2 . This process can be represented by the following formula

Fconcat = cat(F2,F4,F7) (1)

where cat refers to the concatenate operation along the channel direction. The quantity of
information included in each layer is unaffected by the cat operation here. Therefore, the
resulting feature Fconcat will contain different detailed and semantic information. Then,
this study performs the following two operations on Fconcat

Fbranch = cat(w1 ∗ Fconcat, w2 ∗ Fconcat) (2)

FFEM = sigmoid(AdaMaxPool(Fconcat))Fbranch (3)

where ∗ refers to the convolution operation; w1 is a CBR layer with 1 × 1 kernel; w2 is
a CBR layer with 3 × 3 dilated kernel and the dilation rate is 3; and AdaMaxPool refers
to the adaptive maximum pooling operation. Specifically, w1 is used to strengthen the
connection of each channel, so that the branch information can flow into other channels. The
function of w2 is to enlarge the receptive fields of Fconcat to obtain more global information.
The features of the aforementioned two branches are simply fused together by the cat
operation to complete the information complementation. The resulting output is denoted
as Fbranch ∈ R(C2+C4+C7)×H2×W2 . In order to recalibrate Fbranch to focus on informative
channels, AdaMaxPool is performed on Fconcat to obtain FAdaMaxPool ∈ R(C2+C4+C7)×1×1.
A sigmoid activation function is then applied to scale FAdaMaxPool to the range of [0, 1].
Subsequently, FAdaMaxPool and Fbranch are multiplied along their channel dimension. The
resulting feature is defined as FFEM ∈ R(C2+C4+C7)×H2×W2 .

Finally, a 3 × 3 CBR layer and a 1 × 1 CBR layer are performed on FFEM. The 3 × 3
CBR layer aims to reduce the number of channels from C2 + C4 + C7 to C(C = 256), and
increase the receptive field. The 1× 1 CBR layer endeavors to enhance channel connectivity,
which can further encourage the flow of information between channels.

FEM brings a total of 5(C2 + C4 + C7)
2 + 9C(C2 + C4 + C7) + C2 new parameters,

which equals 0.76 million—that is, FEM only adds a small amount of parameters to the
backbone. However, FEM increases the computational burden on the backbone to some
extent, as most of the computation takes place on the high-resolution feature maps, probably
lowering the inference speed.

2.3.3. Decoder Module

The decoder module is used to generate an output which is the same size of the
input image. This objective could be accomplished by up-sampling FFEM using de-
convolution [22] or bilinear interpolation, however, this might generate coarse results.
In order to address this problem, we utilize FFEM and F2 to design a novel decoder, as
shown in Figure 6. The decoder uses a self-attention layer [23] to strengthen the connection
between each position on the feature map FFEM, the output of which is merged with a low-
level feature F2 to improve details. Afterwards, a shortcut connection and element-wise
addition is performed to promote the gradient to flow in the network. The details of the
decoder are described as follows.
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Firstly, the non-local block [23] is used as a self-attention layer, as it can effectively
model the non-local relationship between each pixel to capture long-range dependency.
In order to reduce the computational cost, the non-local block is modified as shown in
Figure 6a: (1) the resolution of FFEM is first reduced by a 1 × 1 CBR with a stride of 2;
(2) the number of output channels of the three convolution layers in the non-local block
is simply halved; and (3) the outputs of the three convolution layers are down-sampled
by bilinear interpolation to further reduce the computation. The resulting feature map is

defined as Ynon−local ∈ RC× H2
2 ×

W2
2 .

Secondly, because the vimineous branches are easy to be ignored, Ynon−local and F2 are
fused together to increase the detail information. The fusing process is defined as follows:

Ycat = cat(F2, Ynon−local) (4)

Note that a bilinear interpolation-based up-sampling is performed on Ynon−local before cat.
Thirdly, Ycat ∈ R(C+C2)×H2×W2 passes through two CBR layers, each with a kernel

size of 1 × 1. The first layer is mainly to reduce the dimension by changing the number of
channels from C + C2 to C. The second layer concentrates on improving the connections
between different channels and promoting cross-channel information interaction. The
resulting feature map is defined as FFEM2. Both FFEM2 and FFEM are further processed
by a 1 × 1 convolution layer and merged together by element-wise addition, which can
be regarded as a residual block that can promote the gradient to flow in the network. The
merged feature map is up-sampled by bilinear interpolation to output the final prediction.

2.3.4. Loss Function

In the guava dataset, the background dominates the images—that is, the data is
extremely unbalanced. To avoid the network to focus on the background, it is vital to
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choose an appropriate loss function. In this study, we combine Focal loss [24] and Dice
loss [25] as the final loss function:

loss = LossFL + LossDe (5)

Focal loss has an excellent performance for dealing with extremely foreground-
background class imbalance, which is defined as follows

LossFL = −αγ(1− p)γ·log(p)− (1− α)(1− y)pγ · log(1− p) (6)

when α is a constant and γ represents the focusing parameter. Dice loss calculates the
intersection ratio between the predicted value and the ground truth, which is defined as
follows

LossDe = 1− 2|X ∩Y|
|X|+ |Y| (7)

where X represents the ground truth and Y represents the prediction.

2.3.5. Implementation Details

We utilize two Titan RTX cards with 24 GB RAM, an Intel Gold 5218 processor and an
Ubuntu system to train and test the network. The version of CUDA is 11.2. The network is
implemented in PyCharm with PyTorch. In the training phase, a pre-trained Mobilenetv2
on ImageNet is used as the backbone. The backbone’s initial learning rate is set at 1 × 10−4,
while that of the other modules is 1 × 10−3. A cosine annealing strategy with a period of
200 is adopted to adjust the learning rates. The batch size is set to 16. An Adam optimizer
with weight decay of 5 × 10−4 is used.

2.4. Evaluating Indicators

In this paper, MIOU, MPA and FWIOU are used as the precision evaluation indexes.
FLOPs, FPS and the number of parameters are used as the speed evaluation indexes. MIOU,
MPA and FWIOU are defined as follows

MIOU =
1

N + 1

N

∑
i=1

pij

∑N
j=0 pij + ∑N

j=0 pij − pii
(8)

MPA =
1

N + 1

N

∑
i=1

pij

∑N
j=0 pij

(9)

FWIOU =
1

∑N
i=0 ∑N

j=0 pij

N

∑
i=0

∑N
j=0 pij pii

∑N
j=0 pij + ∑N

j=0 pij − pii
(10)

where N represents the number of classification classes; and pij is the probability that i will
turn out to be j. pii represents the probability that i is predicted to be accurate.

3. Results
3.1. Ablation for FEM

The purpose of this experiment was to explore the effect of fusion between different
layers, and to verify the performance under various combinations. SinceF2 andF7 contains
sufficient details and semantic information, respectively, we designed six experiments based
on F2 +F7. The experimental results on the test set were shown in Table 2.
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Table 2. Accuracy and real-time performance of different FEMs. M is million, and B is billion.

Combination MIOU MPA FWIOU Params (M) FLOPs (B) FPS

F2 +F7 75.55 83.71 88.87 3.6 29.3 47.4
F2 +F7 +F3 75.68 85.03 88.92 3.7 32.4 46.6
F2 +F7 +F4 76.30 84.63 89.04 3.9 35.7 45.9
F2 +F7 +F5 75.63 85.09 88.77 4.2 39.1 45.5
F2 +F7 +F6 75.22 83.97 88.88 4.6 46.5 44.1

F2 +F3 +F4 +F5 +F6 +F7 75.78 84.59 88.96 6.2 72.0 37.6

The table shows that F2 + F7 was the fastest but a bit less accurate; F2 + F7 + F4
performed the best in MIOU and FWIOU, while being quite fast in terms of Params, FLOPS
and FPS; F2 +F7 +F5 only outperformed the others in MPA, and had a lower speed than
F2 + F7 + F4. Furthermore, the results of F2 + F3 + F4 + F5 + F6 + F7 revealed that
with the fusion of more feature maps, the accuracy of the network was declining, and
the inference time was increasing. As F2 + F7 + F4 has a high accuracy and reasonable
inference time, F2 +F7 +F4 was used by FEM in the following experiments.

3.2. Ablation for Loss Function

The convergence and effectiveness of the model were significantly impacted by the
loss function selection. CE loss, Focal loss, Dice loss, and Focal loss + Dice loss were used
as the loss functions for experiments, where CE loss was defined as

LossCE = −
N

∑
i=1

pi log(qi) (11)

where N represents the number of classes; pi is the probability value of the real output; and
qi is the probability value of the predicted output.

Table 3 shows the experimental results on the test set. CE loss performed best in terms
of MPA and FWIOU, while Focal loss + Dice loss performed best in terms of MIOU, and
has a similar performance as CE loss in MPA. The performance of Focal loss and Dice loss
was the worst.

Table 3. Effects of different loss functions.

Loss Function MIOU MPA FWIOU

CE Loss 76.22 84.65 89.68
Focal Loss 74.46 83.90 89.17
Dice Loss 75.53 84.25 89.19

Focal Loss + Dice Loss 76.30 84.63 89.04

3.3. Comparison with Other Methods

PSPnet and Deeplabv3+ were utilized as the baselines for comparisons. Fairness was
ensured by using Mobilenetv2 as the backbone for PSPnet and Deeplabv3+, and employing
the training approach described in Section 2.3.5. Table 4 displays the experimental results
on the test set. Some visual examples are depicted in Figure 7.

Table 4. Comparison with state-of-the-art methods.

Method MIOU MPA FWIOU Param (M) Flops (B) FPS

PSPnet 72.53 82.20 87.34 2.3 2.9 70.6
Deeplabv3+ 74.47 83.03 88.61 5.8 26.5 53.4
Our model 76.30 84.63 89.04 3.9 35.7 45.0
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As can be seen from Table 4, our network was more accurate than Deeplabv3+ and
PSPnet in terms of MIOU, MPA and FWIOU. However, our network was a bit slower than
Deeplabv3+ and PSPnet in terms of FLOPs and FPS. In summary, our network strode a
trade-off between accuracy and speed.

Figure 7 shows that all the networks could segment the fruits accurately, and our
network outperformed the comparison networks in segmenting the branches, especially
the vimineous branches.

4. Discussion
4.1. Ablation for FEM

As shown in Table 2, the model’s segmentation accuracy could be increased by in-
corporating additional intermediate layers, as the intermediate layer contained sufficient
semantic and detailed information. It was obvious that different intermediate layers have
different effects on network performance. That is, the semantic information of F5 or F6
was more than their detailed information, causing the semantic to be over enhanced and
the detailed to be under enhanced; the detailed information of F3 was more than their se-
mantic information, causing the detailed to be over enhanced and the semantic to be under
enhanced. Experiment results show that F4 balanced the semantic and detail information
of FEM, and the best combination was F2 +F7 +F4.

Additionally, increasing the number of intermediate layers in FEM decreased the
accuracy unexpectedly. A possible reason was that with more intermediate layers merged,
FEM needed wider convolution kernels to fuse and recalibrate the merged feature map,
which made the network hard to train. Therefore, when there were too many intermediate
layers in FEM, the network accuracy would decrease. Moreover, since FEM put most of
its computation on the high-resolution feature map, using too many intermediate layers
would significantly lower the inference speed.
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4.2. Ablation for Loss Function

The combination of Focal loss + Dice loss worked best in terms of MIOU, and was
almost as well as CE loss in MPA, but performed poorly in FWIOU. The performance of
Focal loss + Dice loss on FWIOU was normal. FWIOU estimates the weight of each category
by calculating the occurrence frequency of the categories. So, a category would have a
large weight if it occurs more frequently. Because our dataset contained a large number of
backgrounds that dominate the images, the fruit and obstacle categories had a relatively
small weight, making the FWIOU a little biased. Future work should consider using a more
reasonable evaluation indicator.

4.3. Comparison with Other Methods

As seen in Table 4, in terms of the accuracy metrics like MIOU, MPA and FWIOU,
our network performed best followed by Deeplabv3+ and PSPnet. The reason why PSPnet
performed worst was that PSPnet did not utilize multi-level features, and instead immedi-
ately up-sampled the coarsest feature map to output a low-accuracy segmentation map.
The performance of Deeplabv3+ ranked second, as Deeplabv3+ increased the detailed
information of the coarse feature map by fusing low-level features. Overall, the results
validated the effectiveness of the developed FEM and decoder. Unfortunately, Figure 7
shows that some vimineous branches were hard to segment by our network, likely because
Mobilenetv2 was too lightweight to provide enough detailed and semantic information.

In terms of the speed metrics like FLOPs and FPS, our network was a bit more time-
consuming than Deeplabv3+ and PSPnet, probably because FEM and the decoder put most
of their computation on the high-resolution feature maps, which significantly increased
the computation. A fast inference speed allows the model to be deployed on a low-cost
edge computer that probably only requires a small amount of power, and thus increases
the operation time of the robot. Therefore, in order to further improve the inference speed,
future work should focus on how to optimize FEM and the decoder.

5. Conclusions

The study investigates a fast and accurate obstacle segmentation network for guava-
harvesting robots. The results of the experiments demonstrate that the network was capable
of precisely and quickly segmenting the branches and fruits in challenging situations. The
following findings were drawn from this research:

1. A feature merging and enhancement module was proposed to generate a feature map
with strong semantics and details. Experiment results reveal that fusing as many
features as possible would decrease the segmentation accuracy and slow down the
inference speed; the best combination was F2 +F7 +F4.

2. A decoder module was developed by using a self-attention layer to capture a long-
range dependency for every pixel in the feature map, and utilizing a shortcut connec-
tion and element-wise addition to promote the gradient to flow in the network, thus
improving the segmentation accuracy.

3. Our network’s MIOU, MPA and FWIOU were 76.30%, 84.63% and 89.04%, respectively,
which were 1.83%, 1.60% and 0.43% higher than deeplabv3+, and 3.77%, 2.43% and
1.70% higher than PSPnet. In addition, our network achieved an inference speed
of 45 FPS. The results revealed that the model can accurately and quickly segment
obstacles for the guava picking robots.

Future work will explore the following problems: (1) how to improve the segmentation
accuracy for vimineous branches; and (2) how to reduce the computational burden in FEM
and the decoder.

Author Contributions: Conceptualization, J.Y. and Q.Y.; methodology, J.Y.; software, G.D., T.W. and
D.Z.; validation, J.Y., G.D. and T.W.; formal analysis, Q.Y.; investigation, G.L.; resources, P.H.; data
curation, G.D. and T.W.; writing—original draft preparation, J.Y.; writing—review and editing, G.L.



Sustainability 2022, 14, 12899 12 of 13

and L.Z.; visualization, G.L.; supervision, L.Z.; project administration, L.Z.; and funding acquisition,
G.L., P.H. and L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Laboratory of Lingnan Modern Agriculture Project (Grant
No. NZ2021038), the National Natural Science Foundation of China (Grant No. 32101632), the Basic
and Applied Basic Research Project of Guangzhou Basic Research Plan (Grant No. 202201011310;
202201011691) and the Science and Technology Program of Meizhou, China (Grant No. 2021A0304004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data recorded in the current study are available in all tables and figures
of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, G.; Tang, Y.; Zou, X.; Wang, C. Three-dimensional reconstruction of guava fruits and branches using instance segmentation

and geometry analysis. Comput. Electron. Agric. 2021, 184, 106107. [CrossRef]
2. Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking

Robots: A Review. Front Plant Sci. 2020, 11, 510. [CrossRef]
3. Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review.

Comput. Electron. Agric. 2015, 116, 8–19. [CrossRef]
4. Amatya, S.; Karkee, M.; Gongal, A.; Zhang, Q.; Whiting, M.D. Detection of cherry tree branches with full foliage in planar

architecture for automated sweet-cherry harvesting. Biosyst. Eng. 2016, 146, 3–15. [CrossRef]
5. Amatya, S.; Karkee, M.; Zhang, Q.; Whiting, M.D. Automated Detection of Branch Shaking Locations for Robotic Cherry

Harvesting Using Machine Vision. Robotics 2017, 6, 31. [CrossRef]
6. Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context Encoding for Semantic Segmentation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, Salt Lake City, UT, USA, 18–22
June 2018; pp. 7151–7160.

7. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 510–519.

8. Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding; Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 432–448.

9. Huang, Z.; Wang, X.; Huang, L.; Shi, H.; Liu, W.; Huang, T. CCNet: Criss-Cross Attention for Semantic Segmentation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, Seoul, South Korea, 27–28 October 2019;
pp. 603–612.

10. Zhang, X.; Karkee, M.; Zhang, Q.; Whiting, M.D. Computer vision-based tree trunk and branch identification and shaking points
detection in Dense-Foliage canopy for automated harvesting of apples. J. Field Robot. 2021, 38, 476–493. [CrossRef]

11. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 833–851.

12. Yang, C.H.; Xiong, L.Y.; Wang, Z.; Wang, Y.; Shi, G.; Kuremot, T.; Zhao, W.H.; Yang, Y. Integrated detection of citrus fruits and
branches using a convolutional neural network. Comput. Electron. Agric. 2020, 174, 105469. [CrossRef]

13. Chen, Z.; Ting, D.; Newbury, R.; Chen, C. Semantic segmentation for partially occluded apple trees based on deep learning.
Comput. Electron. Agric. 2021, 181, 105952. [CrossRef]

14. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241.

15. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, Honolulu, HI, USA, 21–26 July 2017;
pp. 5967–5976.

16. Chen, T.; Zhang, R.; Zhu, L.; Zhang, S.; Li, X. A Method of Fast Segmentation for Banana Stalk Exploited Lightweight Multi-Feature
Fusion Deep Neural Network. Machines 2021, 9, 66. [CrossRef]

17. Peng, H.; Xue, C.; Shao, Y.; Chen, K.; Xiong, J.; Xie, Z.; Zhang, L. Semantic Segmentation of Litchi Branches Using DeepLabV3+
Model. IEEE Access 2020, 8, 164546–164555. [CrossRef]

18. Majeed, Y.; Zhang, J.; Zhang, X.; Fu, L.; Karkee, M.; Zhang, Q.; Whiting, M.D. Apple Tree Trunk and Branch Segmentation
for Automatic Trellis Training Using Convolutional Neural Network Based Semantic Segmentation. IFAC-PapersOnLine 2018,
51, 75–80. [CrossRef]

19. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239.

http://doi.org/10.1016/j.compag.2021.106107
http://doi.org/10.3389/fpls.2020.00510
http://doi.org/10.1016/j.compag.2015.05.021
http://doi.org/10.1016/j.biosystemseng.2015.10.003
http://doi.org/10.3390/robotics6040031
http://doi.org/10.1002/rob.21998
http://doi.org/10.1016/j.compag.2020.105469
http://doi.org/10.1016/j.compag.2020.105952
http://doi.org/10.3390/machines9030066
http://doi.org/10.1109/ACCESS.2020.3021739
http://doi.org/10.1016/j.ifacol.2018.08.064


Sustainability 2022, 14, 12899 13 of 13

20. Romera, E.; Alvarez, J.E.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for real-time semantic
segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]

21. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA,
18–23 June 2018; pp. 4510–4520.

22. Long, J.; Evan, S.; Trevor, D. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

23. Wang, X.; Ross, G.; Abhinav, G.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

24. Lin, T.S.; Priya, G.; Ross, G.; He, K.; Piotr, D. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

25. Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-imbalanced NLP Tasks. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, online, 5–10 July 2020.

http://doi.org/10.1109/TITS.2017.2750080

	Introduction 
	Materials and Methods 
	Image Acquisition and Annotation 
	Data Augmentation 
	Method 
	Backbone 
	Feature Enhancement Module 
	Decoder Module 
	Loss Function 
	Implementation Details 

	Evaluating Indicators 

	Results 
	Ablation for FEM 
	Ablation for Loss Function 
	Comparison with Other Methods 

	Discussion 
	Ablation for FEM 
	Ablation for Loss Function 
	Comparison with Other Methods 

	Conclusions 
	References

