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Abstract: To improve the utilization rate of energy, the consumption of fossil energy must be reduced.
In this study, a low-temperature radiant floor made of concrete is taken as the research object, and a
two-dimensional low-temperature hot water radiant heating system with different concrete filling
layers is numerically simulated using a computational fluid dynamics (CFD) software and finite
element method. In this numerical model, a concrete sensible heat storage (SHTES) is adopted, while
various types of concrete materials have been used to preliminarily analyze the influence of different
concrete types on floor heat storage. The simulation results were further analyzed to determine
the total heat storage during the heating period and the total heat storage and heat storage rate
during the stable operation stage. The results demonstrate that the thermal conductivity coefficient
of concrete floors had the most significant influence on the heat storage effect, with slag concrete
demonstrating the most prominent heat storage effect. The total heat storage capacity of slag concrete
after 7 h was 848.512 J. Overall, this study proposes a method to enhance the heat storage capacity of
low-temperature radiant floors, while providing a design method for future solar energy storages
and floor heat storages.

Keywords: concrete; low temperature radiant floor; sensible heat storage; simulation; computational
fluid dynamics

1. Introduction

Low-temperature radiant floor systems comprise the following components from
top to bottom: surface layer, filling layer, insulation layer, and floor. The insulation layer
prevents the transfer of heat downstairs, and the choice of surface material affects the
surface heat distribution of the floor [1]. This construction mode has been widely used in
buildings since it enables the floor to exhibit excellent thermal physical properties, while
providing the [2] advantages of a small indoor vertical temperature difference, stable indoor
thermal environment, and satisfying human thermal comfort. During the operation of the
floor heating system, the floor can store heat throughout the structure, thus leading to a
heat gain effect. However, the floor must be built using a material with heat storage ability,
such as concrete and cement. Different concrete materials have varying thermal hysteresis
characteristics; thus, the heat storage performance of the floor differs. Accordingly, [3,4] the
thermal physical properties of the internal materials of a floor have an important influence
on the heat storage ability of the floor. The change to a modern life style has increased [5] the
heating demands of households at night, with intermittent heating becoming an inevitable
trend [6,7]. According to the periodicity of sunshine, solar energy is used in the winter
for heating purposes and meets the heating demand of households while saving energy.
Therefore, it is necessary to study the floor heat storage performance to make full use of the
solar energy resources and meet the intermittent heating needs of households.

Previous studies have primarily been based on either the system operation control
strategy or the floor thermal performance. Nevertheless, the fundamental purpose of
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both these types of studies is to improve the low-temperature radiant floor system to
ensure indoor thermal comfort and reduce energy consumption. To study the control
strategy of systems influenced by factors such as site and environment, most studies
establish prediction models. Zhang [8] developed a simplified dynamic thermal network
model and a state space model based on various thermal physical parameters, and the
simulated values showed an error of less than 7% when compared to the measured values.
Wang [9] successfully used a state space model and genetic algorithm to estimate the
thermal physical parameters. However, due to a large thermal inertia of the concrete on
the floor, there is a lag in the response of indoor air temperatures. The traditional control
model rarely compensates for the thermal hysteresis of the concrete on the floor and does
not have the capability to produce a spatial thermal response in time [10]. Several studies
have applied model predictive control (MPC) schemes in building environments [11].
MPC integrates prediction, parameter optimization, and feedback control, while reducing
the energy demand during peak hours by compensating for the thermal mass of the
building [12]. In studies elucidating the floor thermal performance, materials with good
heat storage performance are often used for experiments and simulations (such as phase
change materials) to balance energy consumption and user demand. Meanwhile, new
materials obtained by combining phase change materials with traditional building materials
can greatly improve the heat storage capacity of buildings [13]. Guo et al. [14] considered
the thermal capacity of phase change materials under solar radiation and found that
solar radiation can increase the indoor temperature by more than 3 ◦C. Suna et al. [15]
constructed a phase change floor with a thermal storage layer and cold storage layer,
and they found that the thermal comfort time in the winter was twice that observed in
ordinary rooms. Although phase change materials can greatly improve the thermal inertia
of buildings [16], the high melting point of phase change materials is not suitable for use in
the room temperature environment of the building, and the stiffness of the support material
is high [17]. Besides, improper operations in the use process can easily fracture the support
material, resulting in the leakage of the phase change material. From the perspective of
studying the thermal properties of the floor, this study summarizes the problems of phase
change materials. Since materials with strong thermal stability and high thermal inertia
should be selected, this study utilizes concrete as the heat storage material of the floor
heating model. Previous research [18] has explored the variation in the indoor thermal
environment, floor heating, or the influence of solar radiation [19]. Furthermore, the heat
transfer efficiency of concrete comprising steel powders under the heat transfer condition
has also been discussed [20]. However, a low-temperature radiant floor has never been used
as a thermal energy storage system. Moreover, a systematic design of floor heat storages
made of concrete has not been developed; thus, quantitative research on the capacity of
floor heat storages is required, and the systematic design of concrete heat storage materials
needs to be further investigated.

Thermal energy storage system (TES) represents the heat storage mode of concrete
materials. There are three types of TESs, namely: sensible heat storage (SHTES), latent
heat storage (LHTES), and chemical heat storage (TCS). When low-temperature radiant
floor pipes are heated, hot water can generate forced convections [21,22] under pressure
in the tube. Meanwhile, a heat transfer occurs between the hot water and pipe wall, and
the heat is further transferred via conduction and convection to a heat storage material.
This phenomenon is based on SHTES [23] and does not alter the phase state; however,
it changes the temperature. When concrete temperature rises, energy content increases.
After the heating stops, stored heat is released from the material and transferred to regions
with lower temperatures. Moreover, the stability of the indoor thermal environment is
maintained through the convection and radiation heat exchange with air. SHTESs can
balance the supply and demand of energy and have the potential to increase the energy
conversion efficiency of the equipment. The factors related to the SHTES materials include
thermal conductivity coefficient, thermal diffusion coefficient, specific heat capacity, heat
loss, and volume heat capacity. However, the SHTES capacity of a material depends more
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on its energy density (that is, the heat capacity per unit volume) [24]. As the heat storage
mode of the floor involves fluid heat transfer in the pipe, convection heat transfer between
the pipe and heat storage material, and heat conduction in the heat storage material, it
is not easy to select the appropriate SHTES material. Generally, the heat energy formula
associated with SHTES is [25]:

Q = cslo·ρslo·Vslo·∆T (1)

where Q is the heat in J, cslo is the specific heat capacity of SHTES in J/(kg·K), ρslo is the
density of SHTES in kg/m3, Vslo is the volume of SHTES, and ∆T si the material surface
temperature difference in ◦C.

To correctly design a heat storage system, the dynamic behavior of heat transfer over
time should be considered in the heat storage process. However, the above-mentioned
formula does not consider the change in time. Thus, Ferone et al. modified the formula, as
follows [26]:

Qeff = ρsol·Vsol·csol·∆Teff (2)

where Qeff represents the effective heat that can be stored by SHTES via dynamic circulation
heat storage, and ∆Teff is the temperature difference of the material surface over time in ◦C.

When a floor is used as a TES, the thermophysical phenomena of the floor are generally
studied using the finite element analysis method (FEM) [27–30]. This method can solve
complex problems by treating them as domain objects that are divided into finite element
interconnect subdomains, after which the approximate solution of each unit is simplified;
subsequently, the approximate solution of the domain is determined. FEM is applied
in practical engineering, since it is one of the most efficient numerical methods to solve
transient heat transfer problems. To elucidate the behavior characteristics of concrete
materials, the model established in this study ignores the non-uniform structure of concrete
components and transforms them into homogeneous materials.

Concrete materials are an important part of the floor heat storage system, which were
originally designed for architectural applications. Owing to their varying composition,
the thermal and mechanical properties of concrete materials demonstrate diversified per-
formance. They have also been widely used for industrial waste heat recovery in power
plants [31,32]. In addition [33], TESs have been used to store the industrial waste heat to
improve its utilization rate. Thus far, the research on concrete has increased its recyclability,
greenness, and durability. For example, the physical properties of plastic wastes have been
changed using chemical treatment or via their addition into concrete as aggregates. Some
studies have proved that the compressive strength of concrete produced by this method
reaches [34] MPa19. The choice of aggregate has evolved from natural ores to industrial
and agricultural wastes, [35] such as construction demolition waste and agricultural waste,
including coconut shells. Concrete with ground-granulated blast furnace slag exhibits more
reliable thermodynamic properties than traditional concrete; thus, it can be used for heat
storage. The study has revealed that adding straw fiber concrete to concrete with blast
furnace slag improves physical properties [36,37]. In addition, the heat storage performance
of concrete SHTESs is determined by studying the energy consumption of buildings [38].
An overview of the design method used for concrete SHTESs is shown in Figure 1.

The above-mentioned literature reveals that it is necessary to study floor heat storage
for the following reasons: First, although concrete SHTESs are common, most studies
only consider the heat storage of concrete from the perspective of thermal performance
of concrete modules, and do not put it into practical application. Therefore, concrete
SHTESs are combined with a low-temperature radiant floor; it is valuable to study the
actual operation of this process. In addition, the thermal physical properties of concrete
materials are used to study their thermal behavior from an intermediate perspective;
however, there is still scope to achieve a better understanding by studying the heat storage
behavior of concrete from an intermediate perspective. Finally, due to the complex thermal
behavior of concrete SHTESs, few studies have analyzed the dynamic heat storage rate and
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specific heat storage of concrete. By simplifying the complexity of simulation, the above
problems can be effectively solved. Therefore, this study considers the thermal physical
properties of concrete materials in the filled layer from an intermediate perspective, takes
concrete SHTES as the research object, and uses the finite element method to conduct the
numerical simulation of the transient behavior of heat storage in the floor by sorting out
the thermal characteristics of different types of common concrete materials in literature.
Furthermore, this study analyzes the dynamic thermal process of a low-temperature radiant
floor, elucidates the heat storage characteristics of different types of concrete floors and the
influence of material thermal physical properties on the heat storage of floors, determines
the correlation between the heat storage of concrete floor with its influencing factors,
and provides a reference for selecting internal structural materials that can be used in
low-temperature radiant floors.
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2. Materials and Methods
2.1. Governing Equation

The primary equation used in this study is based on the basic principle of Ansys
computational fluid dynamics (CFD) simulation. By considering the heat transfer of
concrete and situation of the floor, the energy equation of concrete in the heating process
can be written. The purpose of this equation is to express the energy conservation relation
in the computational domain and obtain the temperature field in this domain. To simplify
the calculation, radiation heat transfer has not been not considered. When the physical
property parameters of the material are constant, the following formula is adopted [39]:

∂T
∂t

+∇(UT) = α∇2T (3)

When the floor is being heated, the heat storage capacity and heat storage rate change
with time. When the temperature of the floor surface becomes stable, the heat storage at
each point inside the floor differs. Meanwhile, concrete SHTESs store heat by altering their
surface temperatures without changing their phase. Therefore, the filling layer material is
taken as the variable in heat storage research to analyze the total heat storage of the floor
and the instantaneous heat storage rate at different positions.

In the process of heat storage, the instantaneous heat storage rate at a particular time
and position is equal to the slope of the instantaneous heat storage; here, the instantaneous
heat storage is the difference between the heat dissipation on the contact surface of the coil
and the filling layer and the heat dissipation on the floor surface and the coil surface during
the heating period [40]:

qp =
∫

s
q2ds, qf =

∫ l

0
q1dx (4)
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qc = qp − qf =

[∫ l

0
q1dx−

∫
s

q2ds
]

(5)

where q1 is the heat flow distribution law of the floor surface (W/m2), q2 is the coil surface
at a certain time during heating period (W/m2), s represents the semi-arc length of the
radiant floor coil (m), qf is the instantaneous heat loss from the floor surface (W), and qc is
the instantaneous heat storage of the floor during heating (W). By fitting and analyzing the
instantaneous heat storage, the mathematical fitting expression is obtained and the total
heat storage of the floor is determined.

2.2. Design and Simulation Method Used for the SHTES Floor

The floor model has been designed to calculate the energy transfer and absorption of
concrete over time. Thus, a plate length of one meter in parallel tube direction and a plate
width of two tubes in vertical tube direction is a calculation unit. The cell can be regarded
as a symmetric repeating unit that can form the entire floor, with its characteristic pipe line
spacing (lh) and plate thickness. Figure 2 shows a schematic of the floor unit.
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To ensure that the solution lies within the surface and boundary conditions and to
reduce the number of computer calculations, a structured grid has been adopted (Figure 3).
The standard grid independence test, which is the standard procedure for numerical
simulations, shows that increasing the number of grid cells after reaching a certain level
has no effect on the calculation result [41]. The models have a size of 200 mm × 67 mm.
The shortest edge is selected as the basis of grid division, while four different kinds of
grids with varying densities are chosen. The number of cells in grids named A–D is 77,592,
1,218,978, 2,035,352, and 3,386,304, respectively. Furthermore, grids exhibit good quality,
which indicates that the grid division is reasonable. Figure 4 shows that the variations in
floor surface temperatures in the four grids gradually decrease after the number of grid
cells reaches 2,035,352; thus, grid C is selected to save costs.
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The thermal analysis of the internal floor unit can be summarized as the study of the
heat transfer phenomenon of the filling layer in the floor, which is used as the unit for storing
heat. This method of dividing units has been adopted in many studies [42]. The advantage
of this approach is that the minimum differential of the storage unit can be described, and
that the grid computing domain can be divided easily via numerical simulation. Since floor
heat storage changes with time, an unsteady heat transfer mathematical model has been
adopted in this study. In the numerical simulation of unsteady heat transfer [43,44], the
complexity of model simulation can be reduced through various published methods. In
this study, the two-dimensional floor model has been adopted as the physical model.

The control accuracy of the model solution is at most 20 iterations in each step, the
time step is 5 s, and the number of time steps is 360. The residual monitor was set to obtain
the curves for floor surface temperature and heat flow change over time in a transient
simulation environment, and the dynamic monitoring windows were set for the heat flow
densities of different floor sections. The results were required to output heat flow density
curves and other data acquired at the monitoring points inside the floor (Figure 5). The
boundary conditions of this unsteady model are complex and difficult to solve. Therefore,
the model has been further simplified based on the literature [8,9,12]:

1. The coil material used here is high-temperature resistant polyethylene (PE-RT) with
good thermal conductivity; it can ignore the heat transfer effect of the coil on the
filling layer. Accordingly, the temperature of the contact surface between the filling
layer and the tube wall can be similar to the temperature of the outer surface of the
tube wall;

2. The material of each layer is uniform and isotropic;
3. The water flow rate in the coils is high, and the temperature drop along the flow

direction of the pipeline can be ignored. Since it is a two-dimensional heat conduction
model, the heat is transferred along the thickness of the floor in a direction between
the adjacent coils.

4. When designing a floor structure, the interlayer formed between the coil and insu-
lation layer is generally set using a reflection film; this leads to excellent prevention
of heat loss because the bottom of the coil and floor surface function as the adiabatic
boundary and heat dissipation boundary, respectively.

The heat storage process of the SHTES module can be expressed using a thermal
conductivity differential equation in which the thermal conductivity coefficient is regarded
as a constant [45]:

∂t
∂τ

= α

(
∂2t
∂x2 +

∂2t
∂y2

)
(6)

Boundary and initial conditions determine the storage period and upper limit of the
SHTES module. The fixed solution conditions are as follows: since the temperature field of
each unit of floor has symmetry, the bottom surface parallel to x axis and the two sections
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parallel to y axis of the model are set as the adiabatic boundary, namely: x = L /2, x = −L /2,
and Y = 0:

∂t
∂x

∣∣∣∣x=l/2,x=−l/2 = 0 (7)

∂t
∂y

∣∣∣∣y=0 = 0 (8)

For floor radiant heating, the surface heat transfer coefficient (Hz) and indoor ambient
temperature (t0) are defined as known conditions; thus, a third type of boundary conditions
is adopted [46]:

λ
∂t
∂y

= hz(t− t0) (9)

where α represents the thermal diffusivity (m2/s), L is the coil spacing (mm); X and Y are
the horizontal and vertical coordinates of the floor structure, respectively; hz denotes the
comprehensive heat transfer coefficient of the floor surface (W/(m2·◦C)); t and t0 are the
floor surface temperature and indoor environmental temperature, respectively (◦C); and
Tau represents time.
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The initial conditions of the floor surface are t = 15 ◦C and τ = 0, and the width of
the floor is 1 m. Under the initial condition, the indoor temperature is 15 ◦C, and the heat
exchange between the floor and the environment includes convection heat transfer and
radiation heat transfer. Therefore, the comprehensive heat transfer coefficient of the floor
surface considering convection and radiation is set at hz = 10.5 W (/m2·◦C), as shown in
Table 1. After a temperature load is applied, to minimize computer operations, the heat
storage process within half an hour from the initial state of the floor is determined, and the
temperature field within half an hour after heat storage is obtained.

Table 1. Initial conditions of floor operation.

Coil Heating
Temperature ◦C

Coil
Spacing

mm

Initial
Temperature

◦C

Comprehensive Heat
Transfer Coefficient

W(/m2·◦C)

42 200 15 10.5

2.3. Screening Concrete SHTES Materials

Concrete is a filling material with significantly large volume heat capacity; this
study [47–49] selected literature and books related to several kinds of commonly used
concrete materials. Consequently, a few concrete groups, which comprise clay ceramic
(aggregate) and an admixture (fly ash and blast furnace slag powder), are suitable for
a low-temperature radiant floor. The specific thermal parameters are shown in Table 2,
where FAC represents concrete with pulverized coal ash, SC represents slag concrete, and
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CAC represents concrete with clay ceramic. The water content at the initial stage affects
the specific heat capacity of concrete, which in turn plays a key role in the heat storage
capacity of concrete [50]. However, this study only elucidates the influence of thermal and
physical parameters on heat storage. Nevertheless, to reduce the influence of specific heat
capacity on the concrete storage and simplify the simulation, the specific heat capacity is
kept constant.

Table 2. Thermal physical performance of concrete.

Name Thermal
Conductivity W(m·K)

Specific Heat
Capacity
J/(kg·K)

Density
kg/m3

Thermal
Diffusivity

m2/s

Volumetric Heat
CapacitykJ/(m3·K)

FAC1 0.95 1050 1700 5.32 × 10−7 1785
FAC2 0.7 1050 1500 4.44 × 10−7 1575

SC 1 1050 1700 5.6 × 10−7 1785
CAC1 0.7 1050 1400 4.76 × 10−7 1470
CAC2 0.84 1050 1600 5 × 10−7 1680

The concrete types mentioned above are first selected based on specific heat capacity
and volume heat capacity [51]. Because high-volume heat capacity directly determines the
degree of the heat storage per unit concrete, the specific heat capacity reflects its thermal
inertia. Meanwhile, the types of aggregate and cement used are key factors affecting
the thermal characteristics. The higher the water-cement ratio of cement, the greater the
number of voids in concrete; these voids reduce the thermal conductivity and specific
heat capacity of concrete. Different aggregates exhibit distinct thermal conductivity, and
the proportions of coarse and fine aggregates have an important influence on the thermal
characteristics of concrete. Moreover, considering the low-carbon green effect, utilizing
slag concrete can effectively inhibit the hydration heat of cement and reduce the generation
of CO2 by maintaining the high strength of concrete. As for the current research progress
of materials selected in this study, [52] most of them are either mixed with admixtures to
improve the thermal physical properties of concrete or with phase change materials (PCM)
to improve the heat storage capacity of concrete; this improves the applicability of various
materials used in construction [53,54].

The thermophysical performance indexes of concrete SHTES capacity include the
specific heat capacity, volume heat capacity, and thermal diffusion coefficient; here, the
heat capacity refers to the heat storage capacity per unit volume. Meanwhile, the specific
heat capacity refers to the heat storage capacity per unit mass of the material; that is, the
quantity of heat absorbed per unit mass of the material when its temperature increases by
1 ◦C. It is calculated using the following formula: Cρ. C refers to the relationship between
the heat energy and temperature performance of the material per unit volume. The thermal
diffusivity α (calculated using k/Cρ) represents the rate of the diffusion of heat through
the material. According to the above-mentioned material selection and literature research,
some conclusions can be drawn:

1. Heat transfer within a concrete material mainly occurs via heat conduction, and
the factors affecting thermal conductivity are aggregate type, water-cement ratio,
and moisture content. In addition, the influence of thermal conductivity on thermal
performance is also related to temperature. When the concrete temperature rises, its
thermal conductivity is significantly reduced; however, this effect is only observed
when the temperature exceeds 500 ◦C [55].

2. Volumetric heat capacity is an important factor affecting the temperature distribution
inside concrete. It decreases rapidly with a decrease in water content at the initial
stage. Therefore, compared with the ideal situation of a constant volumetric heat
capacity, the volumetric heat capacity is altered with environmental changes [56].
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3. The selection of concrete as a heat storage material should be based on the selection
of materials with high thermal performance. It should be ensured that the SHTES
module maximizes heat storage benefits.

4. The thermal diffusion coefficient should be appropriately increased, since the concrete
mix design can significantly affect the thermal characteristics [57].

The above discussion proves that the concrete material selected in this paper has a
high thermal diffusion coefficient and volume heat capacity. Therefore, the data in Table 2
can be used as a reference for simulation. To ensure that the variables remain consistent,
the other materials of floor construction use the same standard.

3. Results
3.1. Changes in Floor Temperature and Heat Flux

After simulating the working conditions of the five concrete filling layers, the floor
surface temperature diagram after 30 min loading was obtained (Figure 6). In 200 s, the
temperature shows a linear drop as the floor surface heat diffuses to the indoor environ-
ment. After 200 s, the temperature change curve becomes exponential. After 30 min of
heating, the surface temperature of each concrete material differed according to its ther-
mal performance. The floor surface temperatures are 16.9921◦C, 15.7441◦C, 18.0665◦C,
15.8532◦C, and 16.6585◦C. In the case of constant coil temperature, the curve of the floor
surface temperature with time indicates the heat gain capacity of concrete material inside
the floor, and a steeper curve indicates that the material is sensitive to temperature change.
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Figure 7 shows the distribution density of the internal floor temperatures for the five
concrete materials, which was determined using a simulation based on the physical model
and measuring points shown in Figure 5. The results at different measuring points were
simulated to form a dataset by using distribution density plots of time and temperature that
represent various types of concrete materials. Density plots show that the peak location of
the temperature distribution within the time period is the most concentrated. When the
coil temperature becomes constant, the heat stored in concrete per unit volume increases
by one degree and the temperature inside the floor rises faster. The figure shows that
the temperature mostly fluctuates between 14 ◦C and 16 ◦C. This is because the initial
temperature of the floor is 15 ◦C and the concrete material has the characteristics of a
temperature wave attenuation at the initial heating stage, resulting in a slow temperature
rise rate. The temperature distribution of SC and FAC1 is uniform, with temperature
ranging from 15 ◦C to 18 ◦C; this indicates that the amount of heat absorbed increases and
the temperature changes quickly under these two working conditions.
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Figure 7. Temperature distribution of the internal floor unit.

To reduce the influence of uneven temperature, the heat storage capacity of concrete
materials has been evaluated by utilizing the average temperature values in addition to the
distribution density analysis. Figure 8 shows the boxplots of the internal floor temperatures
for the five kinds of concrete materials. The beard line in the figure represents the standard
deviation, the line in the box plot represents the average value, and the curve on the right
is the normal distribution curve of discrete points. It can be found from the discrete data
points that the data dispersion is large between 25 ◦C and 30 ◦C, and that the reason for
the formation of both ends of temperature is closely related to the heating time. Therefore,
the average values were used to reduce the inhomogeneity of temperature distribution.
The average values of each group were between 20 ◦C and 22 ◦C, and the highest values of
FAC1 and SC groups were 21.02 ◦C and 21.52 ◦C, respectively. However, the large standard
deviation indicates that the data points are significantly different from the average value at
this time; thus, the further analysis of concrete heat storage is needed.
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Figure 8. Box diagram representing the temperature of the internal floor unit.

Figure 9 shows the internal temperature map of the floor after heating for 30 min,
which highlights the static temperature field inside the floor. The scale on the left represents
the accuracy of the temperature with the help of various colors. As the temperature inside
the floor (shown in the picture) is in the early stage of heating, the temperature mostly lies
in the blue part of the scale (15.3 ◦C to 18 ◦C). The uneven temperature distribution can
reduce the heat storage efficiency of concrete materials. The temperatures associated with
FAC2 and CAC1 generally lie in the dark blue part of the scale, while those associated with
SC rarely lie in the dark blue part. In this stage, the SC floor exhibits a high heat transfer
efficiency and rapid temperature change.
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In the heating process of the floor, the change rule of heat flux in each layer is closely
related to the distance between the coils and positions on the floor. The heat flux in each
section of the floor at the initial heating stage is shown in Figure 10. The closer the section
is to the coil, the faster the heat flow density changes per unit time. Therefore, the heat
flow density curve in Figure 10a is steep within 200 s; however, the change rate of heat
flow density slows down after 200 s, and the heat from the coil is transferred to Section 1.
Figure 10b shows that heat flow density changes greatly within 400 s. At this time, the heat
inflow rate in Section 2 is high, and a relatively stable curve appears after 400 s. The curves
in Figure 10c,d exhibit similar changes, indicating that the heat transfer rate to the floor
surface is slow at the initial heating stage. Therefore, the thermal physical properties of
different concrete filling layers have a great influence on the heating of sections at different
positions between the floor and the coil at the initial heating stage.
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3.2. Influence of Concrete Thermal Properties on Heat Storage Process

Analysis of the simulation results of temperature and heat flux reveals that the thermal
physical properties of concrete have a significant influence on the heat storage process
of the floor. According to Table 2, concrete materials with a larger volume heat capacity
exhibit higher thermal conductivity, indicating that an increase in thermal conductivity
can enhance the heat storage capacity per unit volume. When two groups of materials
exhibit the same thermal conductivity and specific heat capacity, the volume heat capacity
is affected by density. The higher the density, the higher the volume heat capacity, and the
stronger the heat storage capacity. In addition, when the volume heat capacity and density
are the same, the influence of the thermal conductivity of concrete material on the heat
storage capacity needs to be analyzed in detail.

To study the influence of thermal conductivity on heat storage capacity, a dataset
with different thermal conductivities and other variables has been selected for analysis;
FAC1 and SC are used to analyze the floor surface temperature and floor surface heat flow
(Figure 11). After the floor system started its operation, the heat flow and temperature of the
floor surface exhibit an opposite trend, indicating that the direction of heat flow is opposite
to the direction of temperature gradient for isotropic materials. The figure defines heat
inflow as negative and heat outflow as positive. SC exhibits a high thermal conductivity,
and the temperature and heat flow of the floor surface change quickly. However, the heat
outflow from the floor surface of FAC1 reached its peak before 500 s, indicating that the heat
transfer rate of the FAC1 floor interior was lower compared to that of the SC floor interior
in the same period of time; therefore, heat did not transfer to the floor surface. At this time,
the temperature of the FAC1 floor surface dropped rapidly. After 500 s, the temperature of
the FAC1 floor surface rises gradually and the heat flow into the floor surface increases,
indicating that the internal heat is transferred to the floor surface only after more heat
is absorbed inside the floor. Because this coefficient of thermal conductivity is smaller,
the quantity of the heat that passes inside the unit time is less; thus, the quantity of heat
transferred to the floor surface is minimal.
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The above analysis demonstrates that a lower thermal conductivity renders heat
storage more unfavorable. However, the thermal diffusion coefficient of concrete also
affects the actual heat storage of the floor. According to the thermal diffusivity of the
concrete calculated in Table 2, the thermal diffusivity exhibits the following decreasing
order: SC, FAC1, CAC2, CAC1, and FAC2. From the theoretical perspective of heat storage,
the smaller the thermal diffusion coefficient, the lower the rate of heat diffusion through the
material itself; that is, the heat is maintained for a certain period of time without external
diffusion, which is not conducive to the absorption of heat in concrete materials. From a
practical point of view, floor heating is closely related to the indoor thermal environment
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and human comfort. A larger thermal diffusivity increases the absorption of heat inside the
floor and facilitates the escape of heat to the outdoor environment, which affects the indoor
temperature response. Therefore, the influence of thermal diffusivity on the indoor thermal
environment should be controlled.

4. Discussion

Through the review of floor heating and the comprehensive analysis of results, it
can be concluded that concrete materials with different aggregates and admixtures have a
great impact on the floor heating capacity; this has also been confirmed by Wang et al. [58].
In general, SC and FAC1 are more suitable for floor heating. To determine the influence
of low-temperature radiant floor building on indoor thermal environment, Li et al. [59]
designed a movable modular radiant board to study its influence on the indoor thermal
environment; they found that the indoor temperature can be kept at 21 ◦C, which has a
good effect on maintaining the indoor thermal environment. If a concrete floor and solar
energy are used together, energy can be saved and the indoor thermal comfort can be
significantly improved.

Based on the floor surface temperature, a comparative analysis has been conducted
with related literature in this study. Table 3 lists the floors similar to those used in this
study through literature sorting, and the analysis results are shown in Figure 12. As can
be observed from the figure, the simulation results exhibit the same general trend that is
observed in the literature sorting results. After 900 s, both the datasets show an increasing
trend with an increase in heating time; the average difference in floor surface temperature
is 0.57 ◦C, and the maximum difference in plate temperature is 1.8 ◦C. The literature data
are higher than the simulation data in this study. Although the heating temperature and
initial temperature of the coil in the literature are slightly lower than that in this study, the
coil spacing is half of that in this study, indicating that the floor heating rate increases with
a decrease in the coil spacing. Therefore, the error between the results of the simulation
method and the results of literature sorting is less than 5%, which can be regarded as
accurate.

Table 3. Data from literature.

Coil Heating Temperature
◦C

Coil Spacing
mm

Initial Temperature
◦C

Literature
Resource

40 100 14 [50]
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4.1. Floor Heat Storage

The instantaneous heat storage inside the floor can be calculated using the heat storage
formula (Figure 13). The instantaneous heat storage exhibits the following descending order:
SC, FAC1, CAC2, FAC2, and CAC1. As the heat storage capacity increases, temperature
changes quickly; thus, the primary factor is the heat flux density of the floor surface. The
simulation performance for heat flux density is better than that for the instantaneous heat
flux. In addition, the working conditions of the heat storage under different periods and
temperatures reflect the heat storage capacity of the floor, thus affecting the change in the
instantaneous heat storage; a rise in the internal temperature of the floor increases the heat
storage capacity, which leads to the complete heat absorption.
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Working conditions are obtained using data fitting expressions, and the total heat
storage is determined using an integral solution. Table 4 shows the capacity of the heat
storage unit. In the existing literature, the fitting expression has been calculated within 0.5 h;
however, for heater tubes, 7 h is an appropriate time to determine the fitting expression.
Therefore, the heat storage can be predicted after 7 h using the expression. The total heat
storage in most working conditions is within the range of 700–800 J, indicating that the
overall heat storage is stable and that there is little difference between different working
conditions. It is worth noting that the total heat storage of SC is the maximum (848.521 J)
after 7 h, which verifies the results obtained through the analysis of heat flow density in
the previous section. Therefore, the SC floor exhibits the best heat storage capacity.

Table 4. Total heat storage of the floor unit.

Name Fitting Expression
0.5 h Total Heat

Storage
J

7 h total Heat
Storage

J

FAC1
∫ m

0 (−0.2154x + 109.86)dx 54.9031 763.743
FAC2

∫ m
0 (−0.1973x + 94.265)dx 47.1078 655.021

SC
∫ m

0 (−0.2583x + 122.12)dx 61.0277 848.512
CAC1

∫ m
0 (−0.2005x + 105.58)dx 51.2075 702.038

CAC2
∫ m

0 (−0.2274x + 107.59)dx 53.7666 747.599

4.2. Instantaneous Heat Storage Rate inside the Floor

Thermal change rate refers to the speed of heat absorption per unit area, which affects
the heat storage rate. By calculating the slope of the curve plotting time and heat flow
density and subsequent fitting, the thermal change rate under the cross-section of each
layer is obtained.

Table 5 shows the instantaneous heat storage rate of sections in each layer inside the
floor within half an hour after the heating period begins. The overall heat storage rate
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decreases layer by layer, and the section close to the heating source has the fastest heat
storage rate. The comprehensive heat storage rate is in accordance with the description
of the floor heat storage. However, it is worth noting that the heat storage rate of the
same section tends to change under different conditions. For example, there is a significant
difference between the comprehensive heat storage rates of FAC2 and SC; however, the
heat storage rate of FAC1 in Section 2 (0.20782 j/S) is significantly higher than that of SC,
indicating that different concrete materials are applied to the low-temperature hot water
radiant floor, and that the influence of their location on the maximum heat storage benefit
should be considered.

Table 5. Instantaneous heat storage rate in the floor.

Name Section Location Heat Storage Rate
J/S

Comprehensive Heat
Storage Rate

J/S

FAC1

Section1 0.38932

0.09469
Section2 0.20665
Section3 0.26407
Section4 0.24693

FAC1

Section1 0.23293

0.09001
Section2 0.20782
Section3 0.22346
Section4 0.15443

SC

Section1 0.44923

0.09477
Section2 0.20238
Section3 0.34339
Section4 0.2742

CAC1

Section1 0.22835

0.09314
Section2 0.20373
Section3 0.22999
Section4 0.20615

CAC2

Section1 0.22094

0.09451
Section2 0.16703
Section3 0.24527
Section4 0.1867

4.3. Correlation Analysis of Influencing Factors of Heat Storage

The factors, which affect the instantaneous heat storage inside the floor, change the
heat flow of the material that comes in direct contact with the heat source; this changes the
heat flow on the floor surface as well as the heat storage rate of different positions inside
the floor. To study the impact of these factors and instantaneous heat storage of the internal
floor, a correlation analysis is necessary. The heat flow, temperature, and heat accumulation
rate all exhibit a normal distribution; thus, the Spearman rank correlation coefficient (rs)
can be determined by comparing the |rs| and significance (p) values. In general, p values
were significantly less than 0.05; when |rs| value is close to 1, the correlation is higher.
Overall, |rs| is inversely proportional to the p value; the effect of thermal storage on
different working conditions is determined using a specific correlation analysis (Table 6).

The results of the correlation analysis demonstrate that the most relevant factors for
instantaneous heat storage are the heat flow rate on the coil surface and heat storage rate
inside the floor. When the floor is in use, the concrete material that improves the heat
storage rate inside the floor can effectively increase the instantaneous heat storage. In
addition, the floor surface temperature and heat storage demonstrated a strong negative
correlation. This indicates that at the initial heating stage, the temperature wave of the
internal floor exhibits an attenuation effect. The temperature drop rate of the floor surface
affects its instantaneous heat storage; thus, the structural design of the floor surface at the
initial heating stage can slow down the drop in surface temperature.
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Table 6. Correlation analysis of factors influencing instantaneous heat storage in the floor.

Name Index
Spearman Rank

Correlation
Coefficient Rs

0.05 Level of
Visibility

FAC1
Surface heat flux of coil 1 Obviously

Floor surface temperature −0.95421 Obviously
Heat storage rate in floor 1 Obviously

SC
Surface heat flux of coil 1 Obviously

Floor surface temperature −0.98577 Obviously
Heat storage rate in floor 1 Obviously

ACA2
Surface heat flux of coil 1 Obviously

Floor surface temperature −0.94645 Obviously
Heat storage rate in floor 1 Obviously

5. Conclusions

In this study, the thermal properties of concrete with different admixtures and ag-
gregates were obtained by conducting a literature review and reading books. The follow-
ing concrete materials were considered: ceramic concrete with pulverized coal ash (0.95
and 0.7 W/(m·K)), slag concrete (1 W/(m·K)), and concrete with clay ceramic (0.7 and
0.84 W/(m·K)). In CFD simulation, the applicability of different concretes to floor heat
storages based on the SHTES design method was evaluated. Furthermore, the transient
heat storage of concrete at the initial heating stage has also been considered. The following
conclusions can be drawn from this study:

1. After the simulation of floor heating within half an hour, the analysis of the floor
surface temperature and internal heat flux density shows that the results of different
concrete types under the same conditions are quite different, among which SC is more
suitable for floor heat storage.

2. Analysis of the thermal physical properties of concrete revealed that volume density
and heat capacity exhibit same trends; the coefficient of thermal conductivity of floors
comprising different concrete types had a greater influence on the heat accumulation;
however, it is important to note that the heat storage material cannot be chosen based
on a single thermal physical property, and that the heat transfer characteristics and
thermal physical properties must be comprehensively considered.

3. The total heat storage capacity in slag concrete for 0.5 and 7 h has been determined
via fitting and verification analysis (61.0277 and 848.512 J, respectively). Meanwhile,
the heat storage rate in the floor is strongly correlated with the heat flow on the coil
surface and the floor heat storage.

Concrete floors are widely used in modern buildings. This study provides a novel
SHTES design method for the future development of a floor heat storage that can efficiently
utilize solar energy. Although this study successfully simulates the heating process of
different floors based on concrete SHTES, it is hindered by the short study periods and
limited computational resources. Thus, longer periods of simulation need to be adopted.
Furthermore, there is a need to refine the heat storage law. Since concrete SHTESs involve
a variety of heat transfer lines, finite element simulation has been used to simplify the
complexity of the study; however, this simplification leads to results that are approximate
and not exact. Therefore, in future research, methods that can more closely simulate the
actual situation must be used to obtain more accurate heat storage data for concrete by
extending the simulation time span.
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