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Abstract: This paper presents the optimal operation of a building energy management system
(BEMS), with combined heat and power (CHP) generation, thermal energy storage (TES), and battery
energy storage (BES), subject to load demand uncertainty. The main objective is to reduce the total
operating cost (TOC) and total CO2 emission (TCOE). First, we develop two models of load demand
forecasting, one for weekday and the other for weekend, using artificial neural networks, long
short-term memory, and convolutional neural networks. Then, we incorporate the predicted load
demand and load demand uncertainty for planning the energy dispatch of the BEMS. TES aims to
store the thermal energy waste from the power generation of CHP and discharge the thermal energy
to the absorption chiller to supply the cooling load. BES and spinning reserve (SR) play an important
role in handling the uncertainty of the load demand. The operation of BEMS, subject to the load
demand uncertainty, is formulated as a linear program. We can efficiently solve the linear program
and provide an optimal solution that satisfies the dispatch constraints. Thereafter, we determine the
optimal size of BES, based on economics and environmental optimal operation. The proposed BEMS
is compared to the previous BEMS, without BES and SR. Furthermore, we propose the multi-objective
optimal operation, where the normalization for TOC and TCOE is introduced, and the multi-objective
function is defined as a linear combination of normalized TOC and TCOE. The numerical results
reveal the trade-off relationship between TOC and TCOE. In particular, when TCOE is minimum,
TOC becomes maximum. On the other hand, when TOC is minimum, TCOE becomes maximum. The
relationship provides a method to select the operating point, as well as analyze the power flow for
the multi-objective optimal operation.

Keywords: combined heat; power generation; thermal energy storage; battery energy storage;
optimal dispatch; building energy management system; load forecasting; load demand uncertainty;
multi-objective approach

1. Introduction

The energy management system is one of the control systems that aims to dispatch
energy with efficiency, according to demand. Nowadays, in large buildings, such as
shopping malls, offices, commercial buildings, or hotels, the energy management system
has been applied. There are many types of energy needs in buildings, such as electric,
cooling, or heat energy. For supply, the generation system can produce the energy, or the
operator can purchase energy from the power grid. In specific important operations, energy
sources in the building consist of combined heat and power (CHP) as the main power
source [1]. In [2], the BEMS has CHP as the main power source and works in conjunction
with TES, which stores the waste heat generated by CHP in the electric power production
process and aims to reduce total operating cost and CO2 emission. Likewise, Ref. [3]
proposed the optimal operation for reducing carbon emissions by using a two-layer model
for AC-DC hybrid microgrids. Carbon trading mechanisms and uncertainty are considered.
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To plan for energy dispatch, load demand prediction plays an important role in
demand management and making distribution planning as efficient as possible. For
predicting load demand, there are a variety of methods, such as neural networks, unit
consumption methods, and trend forecasting methods, which can be applied according to
the amount of data and desired period of time for prediction. There are research reports on
load demand prediction, which takes the load demand forecast error into consideration
when planning the power distribution. The prediction error is classified in the form of
uncertainty. Various prediction methods are widely used. In [4], the load is predicted, and
the uncertainty is estimated using long short-term memory for a day-ahead load of EV
charging stations. There are research works taking predictions into consideration when
planning energy distribution. In [5], predicting the load demand with an artificial neural
network model is used to plan energy distribution and reduce the operating costs of a smart
house. Modelling load demand forecast errors can adjust dispatch strategies whenever
the hourly power load demand changes. Likewise, Ref. [6] proposed the energy dispatch
strategy to schedule the charging and discharging of the battery-integrated power system.
The fluctuating behavior of electrical loads was analyzed to find a suitable strategy by
taking the battery characteristics and system parameters into consideration. A robust energy
management system is an efficient energy management system to handle load uncertainty in
the system. For a small system, such as a microgrid with renewable energy, the uncertainty
of the power source is important to consider. In [7], the authors proposed the robust energy
management system to deal with the uncertainty using the dual decomposition and find
the optimal solution that reduces the operating cost. Similarly, in the stand-alone microgrid,
the errors from predicting the power generation, including solar power, wind power, and
the electricity load demand of local electricity users, are taken into account for planning
the schedule of the microgrid supply [8]. For cluster microgrids, the prediction of the load
demand in the short-term using ANN was used to manage the operations [9].

There are various sources of uncertainty occurring within the system, such as renew-
able energy and electrical load demand. This uncertainty is difficult to control, but it is
important to deal with the uncertainty that arises in load demand predictions. In this paper,
we propose the multi-objective optimal operation of a building energy management system
(BEMS) with thermal energy storage (TES) and battery energy storage (BES), with consider-
ation of the load demand uncertainty. Moreover, we will find the trade-off performance
between the operating cost and carbon dioxide emission and analyze the power flow. The
proposed BEMS is applicable to large commercial buildings with electrical, cooling, or ther-
mal load demands. Large commercial buildings include shopping malls, office buildings,
hotels, or factories. We consider the electrical and thermal energy supply and consumption
for efficiency and comfort. The ratio between electrical and thermal energy is concerned
with electrical energy from CHP and BES and thermal energy from CHP. The ratio plays a
vital role in the power-to-heat (P2H) coefficient. In this work, load characteristics consist
of time variation and uncertainty. The proposed BEMS can accommodate large buildings
subject to the load variation. For planning the dispatch strategies, the load uncertainty is
taken into account. The proposed BEMS has CHP as the main generating component. CHP
typically achieves a total efficiency of 65 to 80%. CHP requires less fuel to produce energy
output and depends on a natural gas source. Typically, CHP range in size from 50 kW to
over 1 MW electrical capacity [10]. Therefore, the size of CHP can be chosen to suit the
power and heat consumption of the building. The proposed BEMS incorporates TES and
BES, which manage the excess heat energy and electricity to be used during the on-peak
period. Moreover, the uncertainty of the load demand is taken into account in the energy
dispatch of the proposed BEMS. The optimal strategy is designed to accommodate the load
uncertainty and provide economic and environmental benefits to users. We demonstrate
that the improvement of TOC using the proposed BEMS occurring in the case of economic
optimal operation and multi-objective operation in the presence of load uncertainty. This
approach is universal for the types of loads with uncertainty.
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The paper is organized as follows. In Section 2, we describe the BEMS. Section 3
presents load demand forecasting and load uncertainty. Section 4 provides the formulation
of the optimal dispatch of the proposed BEMS. Section 5 shows the comparison results, in
terms of TOC and TCOE and energy flow. The conclusion is provided in Section 6.

2. BEMS Description

The proposed system consists of CHP, absorption chiller, auxiliary boiler, TES, BES,
and power grid. CHP is the main component of power generation for distribution by
producing electrical energy and heat energy simultaneously, together with the electric
power from the BES and SR. BES and SR are available to operate when load demand
uncertainty arises, and there is a power grid that will help protect them in the event of
a power shortage. The proposed BEMS diagram is shown in Figure 1. In addition, CHP
makes profits from exchanging electrical energy to the grid. Moreover, an absorption chiller
is an element that converts heat energy into cooling energy to supply cooling load demands
within a building. The chiller has a heat source from the CHP, TES, and auxiliary boiler.
From the electrical power generation process of CHP, the waste heat is stored in TES for
further use. The description of the variables is shown in Table A1 in the Appendix A.
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3. Load Demand Forecasting and Uncertainty

From the considered BEMS, inside the building consists of two types of energy de-
mands, electrical energy and cooling energy, to plan for efficient energy dispatch and
see the trends in energy consumption within the building [11]. Predictions of electrical
load demand have been used to analyze the uncertainty of the electrical load demand
and create a set of load demands under load demand uncertainty to be used in energy
dispatch strategies. A total of three prediction methods were used. They consist of artifi-
cial neural network (ANN), long short-term memory (LSTM), and convolutional neural
network (CNN).

The load demand prediction is intended to determine the amount of load in the future
times, while minimizing the predicted error value. The resulting error values are taken into
account to create a set of uncertainties and used in energy dispatch planning. In this work,
three learning models were used to predict load demand. We consider the electrical load
profiles of a large shopping mall in Bangkok, Thailand, as loads for BEMS. The cooling
load demand was modified from real electrical load profiles. The data have a sampling
time of 15 min. and cover an operation of 1 month. The shopping mall utilizes electricity
from the Metropolitan Electricity Authority (MEA), with a 69-kV distribution grid [10].
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3.1. Forecasting Models

The prediction is predicted 1 step in advance, and the predicted electrical load demand
is represented by the following equation

Ûk = Uk + ∆Uk (1)

where Ûk represents the predicted load. Uk is the actual load, and ∆Uk is the difference
between the actual and predicted loads, Uk − Ûk. The data used to predict load demand
is the data set for the electricity load demand of large shopping malls in megawatts per
hour for a period of time. The data is divided into two sets: the weekday and weekend
sets. The training and testing sets accounted for 75% and 25% of the data sets, respectively.
The input data includes load demand, 1–4 h historical load demand, load demand on the
previous day same hour, load demand on the previous week same hour, hour of the day,
and day of the week. The output is the predicted load in the next step.

3.1.1. Artificial Neural Network Model

The neural network model is a developed model that mimics the basic biological ner-
vous system. The key component of a neural network is a large number of interconnected
neurons. The data is fed into the neural network for training with two hidden layers. As
shown in Figure 2, the number of neurons in each hidden layer for weekdays is represented
by n. Figure 3 shows the structure for weekends with the number of neurons in each
hidden layer, represented by m. Both models are taught using a Bayesian regularization
backpropagation algorithm. The proposed artificial neural network has nine inputs. The
best prediction outcome is obtained when the number of neurons for the weekday model is
n = 10 and number of neurons for the weekend model is m = 3. After predicting the load
demand, Figure 4 shows the load profile between the actual and predicted load demand.
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3.1.2. Long Short-Term Memory Model

Long short-term memory is a type of neural network designed for sequential pro-
cessing. This is a type of recurrent neural network because the outgoing loop is used in
processing. The long short-term memory model has an additional part of memory that
is effective in decision-making for reading, writing, and erasing [12]. The proposed long
short-term memory model consists of nine inputs, defined as a sequence input layer, three
long short-term memory layers, a fully connected layer, and a regression output layer
using the adaptive moment estimation training option. Structural model of long short-term
memory model is shown in Figure 5, and the load profile of actual load and predicted load,
shown in Figure 6.
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3.1.3. Convolutional Neural Network Model

The convolutional neural network model is a type of neural network model. It
simulates human vision, divides it into sub-areas, and brings the group of sub-areas to
merge to process. To process, the key component of the convolutional neural network
model is the filter. Generally, one filter can extract one type of attribute, and the models can
range from 1- to multi-dimensional. The structure of CNN model consists of nine inputs,
three one-dimensional convolution layer, one fully connected layer, and the output with
the adaptive moment estimation training option. The size and number of filters are 5 and
150, respectively. The model of convolutional neural network model is shown in Figure 7,
and the load profile of the actual load and predicted load is shown in Figure 8.
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3.2. Performance Measurement

To measure the performance of each predictive model, error calculations were taken
to evaluate performance using the following measurements.

3.2.1. Mean Absolute Percentage Error

Mean absolute percent error (MAPE) is a measure of the predictive accuracy of a statisti-
cal prediction method. The precision is expressed as a ratio, given by the following equation.

MAPE =
100%

n

n

∑
k=1

∣∣∣∣∣Uk − Ûk
Uk

∣∣∣∣∣ (2)

3.2.2. Root Mean Square Error

Root mean square error (RMSE) is a measure of the difference between the frequently
used sample or population values predicted by a model or estimator and the observed
values, as determined by the following equation.

RMSE =

√
∑n

k=1 (Ûk −Uk)
2

n
(3)

The predicted load demands of each model were compared by MAPE and RMSE to
find the model with the best predictive performance and most accuracy (of the three models).
The data based on electrical load of the large shopping mall for 7 days and separate to
weekday and weekend.

We compare the forecasting errors of the load demand from three models, namely
ANN, LSTM, and CNN in Table 1. For ANN, the results show that a predicted load closely
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follows the actual load. During high load demands, there is little error in prediction. It
is observed that LSTM and CNN have relatively large errors in the high demand range.
All models have discrepancies in the last few hours of the prediction. We utilized MAPE
and RMSE to evaluate the prediction performance. It can be seen Table 1 that the MAPE
and RMSE of ANN are lower than that of LSTM and CNN. Thus, ANN gives the most
accurate predictions. Subsequently, we took the prediction errors into account in the energy
dispatch. In order to accommodate the load demand uncertainty, we employed BES and
SR to support the load demand uncertainty. The load demand prediction and uncertainty
reveal the trends of energy consumption in the building and serve as the important input
data for the energy dispatch.

Table 1. Forecasting errors of forecasting models.

Measure ANN LSTM CNN

Weekday
MAPE 3.93 4.21 5.95
RMSE 1.01 1.09 1.38

Weekend
MAPE 3.75 3.92 4.44
RMSE 0.72 0.59 0.72

3.3. Worst-Case Error and Uncertainty

After predicting the electrical load demand with an artificial neural network model,
we analyzed the difference between the actual and predicted load demand to create the
uncertainty of the predicting electrical load demand. Worst-case error is defined as the
maximum error of load demand forecasting for weekdays or weekends for each period
(k = 0, 1, 2, . . . , 23) and represented by ∆Uk,max. The worst-case error of load demand
forecasting is shown in Figure 9.
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Figure 9. The worst-case error of load demand forecasting.

In order to plan energy distribution by backing up production capacity, in accordance
with the demand for electricity, and maintain a balance between electricity generation and
consumption, the uncertainty set [13] consists of the worst error between the actual and
predicted load demand for each period. The worst errors were taken into account on the
positive side. For cases where the worst error was negative, we set the uncertainty to have
a value of zero. The uncertainty of load demand forecasting is shown in Figure 10.
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Figure 10. The uncertainty of load demand forecasting.

After obtaining the uncertainty of load demand forecasting, the maximum uncertainty
was taken into account in the predicted load demand. We defined the predicted load under
the worst-case uncertainty, represented by Ûwc,k, as follows.

Ûwc,k = Uk + ∆Uk,max (4)

It is noted that Ûwc,k will be used to plan a strategy for the energy dispatch in the
Section 4.

4. Optimal Dispatch Strategies

To determine the appropriate dispatch strategy, the specific objectives were considered,
in order to make the strategy effective and meet the demands. We formulate the problem
of finding an optimal strategy for energy management in a building.

4.1. Dispatch Strategies

For the dispatch strategy of the proposed BEMS, two objectives will be considered.
They are economics optimal operation and environmental optimal operation. After that,
both objectives are simultaneously considered, namely multi-objective optimal operation.
There are two types of energy needed in buildings, namely electrical and cooling loads.
Energy dispatch strategies are divided into two categories, based on the type of load
demand. In the BEMS, thermal energy storage (TES) and battery energy storage (BES)
are installed. Moreover, an additional amount of energy from CHP is called the spinning
reserve (SR) to tackle the load uncertainty. Next, we present the characteristics of the
elements and dispatch strategies. Note that the description of system parameters and
acronyms are given in Appendix A, Tables A2 and A3, respectively.

4.1.1. Thermal Energy Storage

TES is a device for temporarily retaining thermal energy for later use. The waste heat
from the electrical production process of CHP will be stored in TES. The constraints of the
TES consist of the rate of charge and discharge, state-of-charge, and operating boundary
between the minimum and maximum capacity. The dispatch of TES is as follows.

εx5,k ≤ R1 (5)

1
δ

x8,k ≤ R2 (6)

x9,k = init(1− µ)k + ∑k
j=1

[
(εx5,j)− (

1
δ

x8,j)

]
(1− µ)k−j+1 (7)
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Smin ≤ x9,k ≤ Smax (8)

4.1.2. Battery Energy Storage

BES is the storage of electrical energy to be used during the on peak period and
support the BEMS during the load uncertainty. BES will charge the energy during the first
four hours of the day and discharge energy to support the uncertainty which arises. The
constraints for BES include the charge and discharge rates, state-of-charge, and operating
boundary between minimum and maximum capacity. The dispatch of BES is as follows.

0 ≤ x10,k + x13,k ≤ dsc (9)

0 ≤ x11,k + x14,k ≤ dsd (10)

x12,k = x12,k−1 + ηcηi(x10,k + x13,k)−
(x11,k + x14,k)

ηcηi
(11)

Bmin ≤ x12,k ≤ Bmax (12)

4.1.3. Spinning Reserve

SR is the energy from CHP to support the uncertainty of the electrical load, together
with BES. SR can be an additional energy resource when the generation does not exceed
the maximum capacity of CHP [14]. SR works in conjunction with the BES to support the
load demand uncertainty. The dispatch of SR is as follows.

PCHP,min∆t ≤ x1,k + x2,k + x10,k + x15,k ≤ PCHP,max∆t (13)

x1,k + x2,k + x10,k + x15,k

x4,k + x5,k
= P2H (14)

|(x1,k + x2,k + x10,k + x15,k)
(x1,k−1 + x2,k−1 + x10,k−1 + x14,k−1 + x15,k−1)| ≤ RCHP

(15)

4.1.4. Electrical Energy

For the strategy to dispatch the electricity, a set of predicted load demands are planned
in the energy dispatch. It was divided into four cases, based on predicted load, under load
demand uncertainty. CHP is the main components to supply electrical power to the electric
load. The first case is when there is no demand for electrical loads, and all components
in the system will shut down. Regarding the second case, when the actual load demand
is less than the predicted load demand, CHP cooperates with BES to supply the energy
to meet demands. In the third case, the actual load demand is less than the predicted
load demand and maximum capacity of CHP. CHP supplies electrical energy equal to the
predicted load demand. BES cooperate with SR to support part of the uncertainty. The
last case is when the actual load demand is less than the predicted load demand and more
than the maximum capacity of CHP. CHP supplies electrical energy equal to the predicted
load demand. BES cooperate with SR and purchase electrical energy from power grid to
support the uncertainty. The electrical energy dispatch strategy is shown below.

If Uk = 0, then
x1,k = x10,k = x14,k = x4,k = x5,k = 0

Else if
Uk ≤ Ûwc,k && Uk ≤ PCHP,max

Then
PCHP,min∆t ≤ x1,k + x2,k + x10,k ≤ PCHP,max∆t

x1,k + x2,k + x10,k

x4,k + x5,k
= P2H
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|(x1,k + x2,k + x10,k)− (x1,k−1 + x2,k−1 + x10,k−1)| ≤ RCHP

x12,k = x12,k−1 + ηcηi(x10,k + x13,k)−
(x11,k + x14,k)

ηcηi

Smin ≤ x12,k ≤ Smax

If k ≤ 4, then
x1,k ≤ Uk

x10,k ≤ dsc

0 ≤ x10,k ≤ dsc

Else
x1,k + x11,k ≤ Uk

end.
Else if

Uk > Ûwc,k && Uk < PCHP,max

Then
PCHP,min∆t ≤ x1,k + x2,k + x10,k + x15,k ≤ PCHP,max∆t

x1,k + x2,k + x10,k + x15,k

x4,k + x5,k
= P2H

|(x1,k + x2,k + x10,k + x15,k)− (x1,k−1 + x2,k−1 + x10,k−1 + x14,k−1 + x15,k−1)| ≤ RCHP

x12,k = x12,k−1 + ηcηi(x10,k + x13,k)−
(x11,k + x14,k)

ηcηi

Smin ≤ x12,k ≤ Smax

If k ≤ 4, then
x1,k ≤ Ûwc,k

x15,k = Uk − Ûwc,k

x10,k ≤ dsc

0 ≤ x10,k ≤ dsc

Else
x1,k ≤ Ûwc,k

x11,k + x15,k = Uk − Ûwc,k

end.
Else

PCHP,min∆t ≤ x1,k + x2,k + x10,k + x15,k ≤ PCHP,max∆t

x1,k + x2,k + x10,k + x15,k

x4,k + x5,k
= P2H

|(x1,k + x2,k + x10,k + x15,k)− (x1,k−1 + x2,k−1 + x10,k−1 + x14,k−1 + x15,k−1)| ≤ RCHP

x12,k = x12,k−1 + ηcηi(x10,k + x13,k)−
(x11,k + x14,k)

ηcηi

Smin ≤ x12,k ≤ Smax

If k ≤ 4, then
x1,k ≤ Ûwc,k

x15,k = Uk − Ûwc,k
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Else
x1,k ≤ Ûwc,k

x3,k + x11,k + x15,k = Uk − Ûwc,k

end.
Note that CHP does not operate beyond the boundary of the power output and ramp

rate. Similarly, BES does not operate beyond the boundary of capacity, and the state-of-
charge is updated every time instant k.

4.1.5. Cooling Energy

The cooling energy dispatch strategy is divided into four cases, as well as the electric
energy dispatch strategy. The main components of cooling energy dispatch include CHP,
auxiliary boiler absorption chiller, and TES. In the first case, there is no load demand of
cooling energy. The second case is that the cooling load demand is less than the minimum
operating value of the absorption chiller. CHP and TES work together to supply heat to
the absorption chiller, and the absorption chiller operates at the minimum value of the
machine rating. In the third case, the cooling load demand is greater than the minimum
operating value of the absorption chiller, and CHP can provide sufficient heat energy. CHP
cooperates with TES to supply heat to the absorption chiller. In the last case, CHP cannot
provide enough heat energy. TES cooperate with auxiliary boiler to supply heat energy to
the absorption chiller. The cooling energy dispatch strategy is shown below.

If Ck = 0, then
x4,k = x6,k = x7,k = x8,k = 0

x9,k = (x9,k−1 + x5,k)(1− µ)

εx5,k ≤ R1∆t

Else if Ck ≤ CPAC,min∆t, then

(x4,k + x8,k)COPAC = x7,k

1
δ

x8,k ≤ R2∆t

x9,k = (x9,k−1 + x8,k)(1− µ)

x5,k = x6,k = 0

x7,k = CPAC,min∆t

Else if Ck ≤
PCHP,max∆t

P2H COPAC∆t, then

(x4,k + x8,k)COPAC = x7,k

1
δ

x8,k ≤ R2∆t

x9,k = (x9,k−1 + x8,k)(1− µ)

x5,k = x6,k = 0

x7,k = min(Ck
PCHP,max∆t

P2H
COPAC)

Else
(x4,k + x6,k + x8,k)COPAC = x7,k

1
δ

x8,k ≤ R2∆t

x9,k = (x9,k−1 + x8,k)(1− µ)
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HAB,min∆t ≤ x6,k ≤ HAB,max∆t

x5,k = 0

x7,k = min(Ck, CAC,max(
PCHP,max∆t

P2H
+ HAB,max∆t)COPAC)

end.
Note that CPAC,min and CPAC,max are the minimum and maximum of the cooling

production of the absorption chiller. COPAC is the coefficient of the performance of a
single-type absorption chiller. HAB,min and HAB,max are the minimum and maximum of
heat energy production of auxiliary boiler.

4.2. Economics and Environmental Optimal Operations

In the proposed BEMS, the objective functions are divided into economics optimal
operation and environmental optimal operation. Both objectives are subjected to energy
dispatch conditions, i.e., electrical and cooling loads.

4.2.1. Economics Optimal Operation

Economics optimal operation defines the objective function to be the TOC. The TOC
is the summation of the energy and demand charge costs [15]. The demand charge cost
depends on the maximum imported electricity from the power grid. The objective is to
minimize TOC.

TOC = EC + DCC (16)

EC = ∑n×d
k=1 CCHP(x1,k + x2,k + x10,k + x15,k) + pk(x3,k + x13,k)

−qk(x2,k + x14,k) + CABx6,k
(17)

DCC =
dPG
∆t

max
h=1,...,n×d

x3,k (18)

Note that xi,k is the energy flow. qk and pk represent the price of electrical energy
exporting and importing to grids. CCHP and CAB are operating costs of the CHP and
auxiliary boiler, respectively, and depend on fuel price. Moreover, dPG is the demand
charge from power grids. ∆t is the time duration of each time interval, n is the number of
time interval in one day, and d is the number of days.

4.2.2. Environmental Optimal Operation

Environmental optimal operation defines the objective function to be the total CO2
emissions. It is calculated from the CO2 emissions in the energy production of the compo-
nents in the system, with the aim of minimizing the total CO2 emissions.

TCOE = EFCHP(x1,k + x2,k + x10,k + x15,k) + GEFx3,k +
EFAB
ηAB

x6,k (19)

Note that EFCHP represents the CO2 emission of CHP in ton per megawatt-hour, EFAB
represents the CO2 emission of auxiliary boiler in ton per megawatt-hour, GEF is the
CO2 emission of power grid in ton per megawatt-hour, and ηAB is the efficiency of the
auxiliary boiler.

4.3. Multi-Objective Optimal Operation

From Section 4.2, there are two different objective functions, which are economics
optimal operation and environmental optimal operation. To find the relationship between
the two objectives, the multi-objective optimal operation is introduced. The relationship
between the two objectives is represented by the weighting factor α and provided in the
form of trade-off performance. The dispatch strategy of multi-objective optimal operation
using the same energy dispatch strategy as described in Section 4.1.
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In order to keep the cost function at the same unit of measure, we apply the normal-
ization to the objective functions. The method is referred to the min–max normalization.
This method is commonly used to normalize the cost function, where the lowest value
is converted to 0 and highest value is converted to 1; all other values are converted to
values between 0 and 1. Both objective functions will be normalized. The normalized total
operating cost is represented by JTOC, and the normalized total CO2 emission is JTCOE. The
normalization of TOC and TCOE are expressed as follows:

JTOC =
TOC− TOCmin

TOCmax − TOCmin
(20)

JTCOE =
TCOE− TCOEmin

TCOEmax − TCOEmin
(21)

where TOCmin is the minimum TOC, TOCmax is the maximum TOC, TCOEmin is the mini-
mum total CO2 emission, and TCOEmax is the maximum TCOE. From the normalized TOC
and TCOE, we can combine them into a multi-objective function J, defined as follows.

J = (1− α)JTOC + αJTCOE (22)

where α is the weighting factor between 0 and 1 to represent the weight between TOC
and TCOE and have a step size of 0.1. The weights are 0 is the case, which considers only
the economics optimal operation, and the weight is equal to 1, when considering only the
environmental optimal operation.

For the uncertainty case, the minimum TOC is the TOC from economics optimal opera-
tion, and the minimum TCOE is the result of environmental optimal operation. On the other
hand, the maximum of TOC is the operating cost of the environmental optimal operation,
and the maximum value of TCOE is the CO2 emission of economics optimal operation. For
the nominal case, the energy dispatch is based on the predicted load, without considering
the load uncertainty. The minimum TOC comes from the economics optimal operation
of the nominal load. The minimum TCOE is obtained from the environmental optimal
operation of the nominal load. The maximum TOC is from the environmental optimal
operation result. The maximum TCOE is the result of the economic optimal operation.

4.4. Linear Programming and Algorithm

Linear programming is an optimization problem with a linear cost function subjected
to the linear constraints. The operations of the proposed BEMS in the presence of the
uncertainty in the electrical load demand can be formulated as linear programs. The linear
program is described as follows.

minimize cTx
subject to Aeqx = Beq

Cineqx = Dineq
x ≥ 0

where c is the constant vector related to the cost function. The cost function is either TOC or
TCOE. x is the decision variable, expressed as the energy flow, as shown in BEMS diagram.
The constraints consist of the dispatch conditions of each component in BEMS, as described
in Section 4.1. The optimization problem is defined as the minimization problem under
the constraints of the dispatching condition of BEMS. The constraints are in the form of
equations and inequalities to define operating conditions and boundaries. The optimal
solution is the most suitable answer out of the feasible answers.
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5. Numerical Results
5.1. Design of BES Sizing

The design of the BES sizing is to choose the proper size of the BES for the desired
application of BEMS. It is the required size of BES, taking into account the optimal economic
operation and environmental operation. Therefore, users can choose the size of BES for
their intended purpose.

To determine the proper size of BES, we consider the most suitable economic oper-
ation of BES, with batteries of 2 to 6 megawatt-hour. The energy dispatch strategies in
Section 4 are used to determine the minimum TOC. Figure 11 shows that the minimum
TOC is obtained when the size of BES is 4.2 megawatt-hour. The corresponding TOC is
6,018,029 baht.
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On the other hand, we experiment by varying the sizes of BES to determine the proper
size, with the minimum CO2 emission, using the energy dispatch strategy in Section 4.1.
In Figure 12, the size of the BES that has the minimum TCOE is 2.5 megawatt-hour, with
TCOE equal to 1565.11 tonCO2.
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From the design of the BES, based on the suitable economic optimal operation and
environmental optimal operation, we choose 4.2 megawatt-hour BES to be used in the
proposed BEMS. This is because this size of BES provides the minimum TOC, and the
TCOE is slightly higher than the minimum value. The system parameters of BEMS used for
the simulation are shown in Table 2.
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Table 2. System parameters.

Description Notation Value

CHP
Rated power (MW) - 24
Electrical energy efficiency (%) ηCHP,EE 33.9
Power-to-heat ratio P2H 0.9244
Maximum power production (MW) PCHP,max 24
Minimum power production (MW) PCHP,min 4.8
Electrical energy ramp rate (MW) RCHP 24
CO2 emission factor (tCO2/MWh) EFCHP 0.5349

Auxiliary Boiler
Rated heat power (MW) - 13.1882
Efficiency (%) ηAB 75
Maximum heat production (MW) HPAB,max 13.1882
Minimum heat production (MW) HPAB,min 2.6327
CO2 emission factor from natural gas
combustion (tCO2/MWh) EFAB 0.181

Absorption Chiller
Rated cooling power - 42.2
Coefficient of performance COPAC 1.1
Maximum cooling production (MW) CPAC,max 42.2
Minimum cooling production (MW) CPAC,min 8.44

TES
Rated heat power (MW) - 50
Heat charge rate (MW) R1 15
Heat discharge rate (MW) R2 15
Charging efficiency ε 0.95
Discharging efficiency δ 0.95
Loss coefficient µ 0.001
Initial heat energy in TES (MW) init 0–10
Maximum heat storage (MW) Smax 50
Minimum heat storage (MW) Smin 5

BES
Charging efficiency ηc 0.9
Discharging efficiency ηd 0.9
Charge rate dsc 1.05
Discharge rate dsd 1.05
Inverter efficiency ηi 1
Max capacity (MWh) - 4.2
Initial energy in BES (MW) init_b 0.84
Maximum BES storage (MW) Bmax 3.78
Minimum BES storage (MW) Bmin 0

We demonstrate the operating results of the shopping mall, which utilizes electricity
from the 69-kV distribution grid. The electrical load profile has a range from 5 to 24 MW,
and the cooling load profile has a range from 0 to 24 MW [16]. Therefore, a 24 MW CHP
is applied with the proposed BEMS to match the load demand. The size of auxiliary
boiler is chosen based on a suitability with CHP and the double-effect absorption chiller.
Considering capacity of boiler, the main source of heat energy are CHP and TES. Therefore,
the size of the boiler is chosen to accommodate the excess heat supplied by the main energy
source [17]. The overall guidelines for choosing the system parameters are based on the
appropriate capacity with demand matching.

5.2. Economics Optimal Operation and Environmental Optimal Operation

Economics optimal operation considers the TOC minimization. TOC represents the
cost of operations in the energy dispatch. It consists of the energy consumption of the
equipment in the BEMS. From the numerical experiment and comparison with the previous
BEMS, it was found that the proposed BEMS can help reduce TOC by 9.68% for economics
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optimal operation under the uncertainty of load demand and 1.26% for economics optimal
operation under the nominal load case. Tables 3 and 4 summarize the TOC for the uncer-
tainty of load demand and nominal load case, respectively. We observe the TOC classified
for the main equipment of BEMS. It can be explained that the supplying load demand by
BES reduces the purchase of grid power and cuts the demand charge cost.

Table 3. Economics optimal operation for uncertainty case.

Objective Function Previous BEMS Proposed BEMS Improvement

TOC (baht) 6,662,941 6,018,029 9.68
TOC Classified by elements

CHP (baht) 5,426,078 5,443,426 −0.32
Auxiliary boiler
(baht) 474,893 474,893 0

BES (baht) 0 48,731 N/A
Power grid (baht) 761,970 0 100
SR (baht) 0 99,711 N/A

Table 4. Economics optimal operation for nominal case.

Objective Function Previous BEMS Proposed BEMS Improvement

TOC (baht) 6,050,087 5,973,810 1.26
TOC Classified by elements

CHP (baht) 5,467,972 5,474,081 −0.11
Auxiliary boiler
(baht) 474,893 474,893 0

BES (baht) 0 48,731 N/A
Power grid (baht) 107,221 24,836 76.84

TCOE is the emission of carbon dioxide in the energy dispatch. This includes the
carbon dioxide emission of the equipment in the BEMS. The results in Table 5 show that
the proposed BEMS can reduce total carbon dioxide emission by 0.25% for environmental
optimal operation under load uncertainty. To further analyze the amount of reduced
emission, classified by the equipment in the BEMS, the dispatch of BES reduces the import
of electricity from the power grid and clearly reduces the carbon dioxide emission. In
contrast, Table 6 shows that applying the proposed BEMS to the nominal case, the total
carbon emission is increased by 0.71%.

Table 5. Environmental optimal operation for uncertainty case.

Objective Function Previous BEMS Proposed BEMS Improvement

TCOE (tonCO2) 1569 1565 0.25
TCOE Classified by elements

CHP (tonCO2) 1360 1381 −1.54
Auxiliary boiler (tonCO2) 162 162 0
BES (tonCO2) 0 12 N/A
Power grid (tonCO2) 31 0 100
SR (tonCO2) 0 23 N/A

Table 6. Environmental optimal operation for nominal case.

Objective Function Previous BEMS Proposed BEMS Improvement

TCOE (tonCO2) 1545 1556 −0.71
TCOE Classified by elements

CHP (tonCO2) 1339 1383 −3.30
Auxiliary boiler (tonCO2) 163 172 −4.91
BES (tonCO2) 0 12 N/A
Power Grid (tonCO2) 3 1 66.67
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We present an example load profile with load uncertainty. Figure 13 shows the electri-
cal energy flow to energy load under economics optimal operation, as well as a comparison
between the previous and proposed BEMS. It was found that, when load uncertainty arises,
the previous BEMS supplies the uncertain load by importing the electrical energy from
power grid, while the proposed BEMS supplies the uncertain load by SR. In Figure 14, CHP
plays a key role in suppling heat energy for absorption chiller, and TES shall supply heat en-
ergy when the demand is high. According to Figure 15, the state-of-charge of TES displays
that the waste heat from CHP is stored to TES, and it is discharged to the absorption chiller
when the cooling load demand is high. In Figure 16, the state-of-charge of BES illustrates
that BES is fully charged by the first four hours of the day, and the energy is discharged
to support the uncertainty during on-peak period. In Figure 17, the previous BEMS has
imported energy from the power gird, whereas the proposed BEMS does not import energy
from the power grid. The installation of BES can support the load uncertainty and does not
require the imported energy from the power grid.
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Figure 13. (a) Comparison of electrical energy flow to electrical load between the previous and
proposed BEMS under economics optimal operation (uncertainty case). (b) Enlarged comparison of
electrical energy flow to electrical load between the previous and proposed BEMS under economics
optimal operation (uncertainty case).
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Figure 14. Comparison of cooling energy flow to cooling load between the previous and proposed
BEMS under economics optimal operation (uncertainty case).
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Figure 15. Comparison of state-of-charge of TES between the previous and proposed BEMS under
economics optimal operation (uncertainty case).
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Figure 16. Comparison of state-of-charge of BES between the previous and proposed BEMS under
economics optimal operation (uncertainty case).
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Figure 17. Comparison of power grid purchased between the previous and proposed BEMS under
economics optimal operation (uncertainty case).

5.3. Multi-Objective Optimal Operation

From optimal energy dispatch strategies provided in Section 4.1, we utilize the multi-
objective operation of BEMS with a 4.2 megawatt-hour BES and vary a weight factor
from 0 to 1, with an increment of 0.1. When the weight is 0, only the optimal economic
operation is considered. When the weight is 1, only the environmental optimal operation
is considered. The experiments are divided into two cases. The first case is referred
to as the uncertainty case, where we consider the predicted load with load uncertainty.
The second case is referred to as the nominal case, where we consider the predicted
load without load uncertainty. The results of the TOC and TCOE are obtained from the
multi-objective optimal operation, where the cost function is linear combination of the
normalized TOC and normalized TCOE. According to the minimum and maximum values
in Equations (9) and (10), the maximum and minimum values of TOC and TCOE are shown
in Table 7.

Table 7. Maximum and minimum value of TOC and TCOE for normalization.

Value Uncertainty Case Nominal Case

TOC (Baht) TCOE (tonCO2) TOC (Baht) TCOE (tonCO2)
Minimum 6,018,029 1565 5,973,810 1556
Maximum 6,333,777 1658 6,461,918 1659

From the results, when the weight factor is equal to 0, the normalized TOC is 0, which
corresponds to the minimum TOC. TOC tends to increase as the weight increases. When
the weight is equal to 1, TOC is the maximum value, and the normalized TOC is equal to 1
for both uncertainty and nominal cases. Moreover, when the weight is 0, the normalized
TCOE is 1, which corresponds to the maximum TCOE. The TCOE tends to decrease as the
weight increases. In particular, when a weight is 1, we obtain the minimum TCOE, and the
normalized TCOE is equal to 0 for both uncertainty and nominal cases. The relationships
shown in Figures 18 and 19 display a trade-off performance between TOC and TCOE.

The relationship between economics optimal operation and environmental optimal
operation allows the user to determine the operating point of the system. For example,
we can select a weight equal to 1 for the uncertainty case. When the proposed BEMS
operates with low TOC, it results in high TCOE. Therefore, the curve is useful for the users
to determine the desired operation point.
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Next, we present the results of the proposed BEMS under multi-objective optimal
operation. We compare the results of the proposed BEM (with BES and SR) and previous
BEMS (without BES and SR) [18]. We depict the multi-objective optimal operation with
weight equal to 0.9 and 1 and compare it to the previous BEMS. The results of TOC and
TCOE are provided in Tables 8 and 9, respectively. The multi-objective optimal operation
can reduce TOC by 7.33% and 4.94% for weights of 0.9 and 1, respectively. For weight equal
to 1, it reduces TCOE by 0.25%; however, for weight 0.9, it increased TCOE by 4.27%. Note
that BES and SR are clearly utilized to reduce the imported electricity from the power grid.

Table 8. TOC when the weight is 0.9 and 1.

Objective Function Previous
BEMS

Multi-Objective Function Improvement
α = 0.9 α = 1 α = 0.9 α = 1

TOC (baht) 6,662,941 6,174,528 6,333,777 7.33 4.94
TOC Classified by elements

CHP (baht) 5,426,078 5,418,901 5,481,719 0.13 −1.03
Auxiliary boiler (baht) 474,893 571,756 755,313 −20.4 −59.05
BES (baht) 0 48,731 48,731 N/A N/A
Power grid (baht) 761,970 0 0 100 100
SR (baht) 0 85,347 96,744 N/A N/A
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Table 9. TCOE when the weight is 0.9 and 1.

Objective Function Previous
BEMS

Multi-Objective Function Improvement
α = 0.9 α = 1 α = 0.9 α = 1

TCOE (tonCO2) 1569 1636 1565 –4.27 0.25
TOC Classified by elements

CHP (tonCO2) 1360 1481 1381 –8.9 –1.58
Auxiliary boiler
(tonCO2) 162 122 162 24.7 0.16

BES (tonCO2) 0 12 12 N/A N/A
Power grid (tonCO2) 31 0 0 100 100
SR (tonCO2) 0 21 23 N/A N/A

We present a power flow of the multi-objective function of BEMS with TES and BES.
We show the power flow of the proposed BEMS, with a 4.2 megawatt-hour BES in presence
of the load uncertainty and compare the weights of 0.9 and 1. Figure 20 illustrates the
electrical energy flow to the electrical load. For both weights, we can completely support
the load demand. Electrical energy is charged to BES, and we can make profits by selling
electricity to the power grid. Figure 21 shows the flow of the thermal energy to cooling
load. It can be seen that TES can reduce the need for auxiliary boiler. In the case that
the weight is equal to 1, the thermal energy from the auxiliary boiler is used at certain
periods and replaces the use of thermal energy from CHP. The reason is that the auxiliary
boiler has a lower carbon dioxide emission rate. Figure 22 depicts the state-of-charge of
TES. The heat waste is stored in TES and supply thermal energy to the absorption chiller
at different periods. Figure 23 depicts the state-of-charge of BES. It can be seen that the
electricity is charged to BES in the first four hours; then, it supplies the electrical load at
different periods.
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Figure 20. (a) Electrical energy flow to electrical load when the weight is 0.9 and 1. (b) Enlarged
electrical energy flow to electrical load when the weight is 0.9 and 1.
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Figure 21. Cooling energy flow to cooling load when the weight is 0.9 and 1.
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Figure 22. State-of-charge of TES when the weight is 0.9 and 1.
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Figure 23. State-of-charge of BES of weighting factor 0.9 and 1.

6. Conclusions

This paper proposes the optimal dispatch strategies of BEMS with cogeneration, TES,
and BES, considering load demand uncertainty. The objectives are two-fold. The first
objective is the economics optimal operation, which aims to minimize the TOC. The second
objective is the environmental optimal operation, which aims to minimize the TCOE.
Afterward, the two objectives are combined into the multi-objective optimal operation.
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We present a prediction of the electrical load demand using the ANN, LSTM, and CNN
models, followed by analysis of the load demand uncertainty. As a result, we obtain the
predicted load and load demand uncertainty, which are used for planning the energy
dispatch. We apply the proposed dispatch strategies of electrical and cooling energy to a
large shopping mall. For the load uncertainty case, the proposed BEMS reduces TOC by
9.68% under economic optimal operation and reduces TCOE by 0.25% under environmental
optimal operation. For the nominal case, the proposed BEMS reduces TOC by 1.26% under
economic optimal operation. However, the TCOE under environmental optimal operation
is slightly increased by 0.71%. Moreover, the results show that BES provides a significant
contribution to cutting the imported electricity from the power grid.

For the multi-objective optimal operation, we propose the normalized TOC and TCOE
and consider the cost function as a linear combination of the normalized TOC and TCOE.
The results show the relationship of TOC and TCOE as a trade-off performance. It can help
users decide the operating point of BEMS. For energy flow analysis, the multi-objective
optimal operation can completely meet the energy demand, as well as cut the import of
electricity from the power grid. For the weight of 0.9, the proposed BEMS reduced TOC by
7.33%, whereas TCOE is increased by 4.2%.

Considering the rated power of CHP, it can be seen that the increase of efficiency of
CHP clearly decreased TOC and TCOE. Likewise, the increase of efficiency of auxiliary
boiler decreased TOC and TCOE from the boiler. Moreover, the other important factor is
the P2H that represents the ratio between electricity from cogeneration and useful heat,
when operating in full cogeneration mode. The cogeneration system works most efficiently
when the P2H of the cogeneration system is close to the P2H of the building. Therefore,
system parameters affect the results of TOC and TCOE.
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Appendix A

Table A1. Variables of BEMS.

Variables Description

x1 Electrical energy flow from CHP to electrical load
x2 Electrical energy flow from CHP to power grid
x3 Electrical energy flow from power grid to electrical load
x4 Heat energy flow from CHP to absorption chiller
x5 Waste heat from CHP to TES
x6 Heat energy flow from auxiliary boiler to absorption chiller
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Table A1. Cont.

Variables Description

x7 Cooling energy from absorption chiller to cooling load
x8 Heat energy flow from TES to absorption chiller
x9 State-of-charge of TES
x10 Electrical energy flow from CHP to BES
x11 Electrical energy flow from BES to electrical load
x12 State-of-charge of BES
x13 Electrical energy flow from power grid to BES
x14 Electrical energy flow from BES to power grid
x15 Electrical energy flow from SR to electrical load

Table A2. List of nomenclature.

Uk Load demand
Ûk Predicted load

∆Uk Prediction error
∆Uk,max Worst prediction error

Ûwc,k Predicted load under load demand uncertainty
Ck Cooling load
pk Electrical energy charging price from power grid (baht/kWh)
qk Electrical energy selling price to power grid (baht/kWh)

CAB Operating cost of auxiliary boiler (baht/kWh)
dPG Demand charge of imported power (baht/MW)
∆t Time duration of time interval

CCHP Operating cost of CHP (baht/kWh)
n The number of operating hours
d The number of operating days

EFCHP CO2 emission factor of CHP (tonCO2/MWh)
CO2 emission factor of boiler (tonCO2/MWh)

GEF Power grid emission factor (tonCO2/MWh)
ηAB Efficiency of auxiliary boiler

ε Charging efficiency of TES
δ Discharging efficiency of TES

R1 Heat charging rate
Heat discharging rate

µ Loss coefficient of TES
Smin Minimum capacity of TES
Smax Maximum capacity of TES
dsc Charging rate of BES
dsd Discharging rate of BES
ηc Charging efficiency of BES
ηi Charging efficiency of inverter

Bmin Minimum capacity of BES
Bmax Maximum capacity of BES

PCHP,min Minimum capacity of CHP
PCHP,max Maximum capacity of CHP

P2H Power-to-heat ratio
RCHP Ramp rate of CHP

CPAC,min Minimum capacity of AC
CPAC,max Maximum capacity of AC
COPAC Efficiency coefficient of AC
HAB,min Minimum capacity of AB
HAB,max Maximum capacity of AB

JTOC Normalized TOC
JTCOE Normalized TCOE

α Weighting factor
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Table A3. List of acronyms.

AB Auxiliary boiler
AC Absorption chiller

ANN Artificial neural network
BEMS Building energy management system
BES Battery energy storage
CHP Combined heat and power
CNN Convolutional neural network
LSTM Long short-term memory
MAPE Mean absolute percentage error
RMSE Root mean squared error
SOC State-of-charge
SR Spinning reserve

TCOE Total carbon dioxide emission
TES Thermal energy storage
TOC Total operating cost
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