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Abstract: Former mining sites cause serious environmental problems worldwide as they are con-
taminated with hazardous levels of metals. Mined lands are characterized by a deserted landscape
due to the lack of organic matter in soil. Research analyses confirmed that the structure of soil in
abandoned surface mines has affected the occurrence of ecological processes and natural colonization
of vegetation cannot take place. Moreover, phytoextraction of metals is possible only in soils with
specific parameters. Previously conducted studies proposed the in situ supplementation with biochar,
compost or agri-food wastes as a solution to the lack of organic carbon and nitrogen in areas affected
by mining. Therefore, the main aim of this review is to investigate what improvements different
organic amendments can bring to mining-impacted soils to support plant growth without affecting
the bioavailability of metals. We concluded that contaminants are specific to the mining activity,
while organic treatments cause the increase of soil pH, which influences, to the greatest extent, the
bioavailability of metals.

Keywords: soil remediation; technosols; abandoned mining sites; mine tailings; organic amendments;
soil contamination; mining activities

1. Introduction

One third of the soil resources worldwide are moderately or severely depleted [1]. The
degradation of soil can occur naturally through erosion, which is induced by the force of
wind or movement of water. However, this geological process is enhanced significantly
by the unsustainable management of soil resources [2]. The natural landscape faces a
continuous transformation determined by human activities. Soil quality declining is among
the side effects of urbanization [3], deforestation [4] and mining [5]. Additionally, waste
pollution in certain areas has reached high levels hence the negative effect on soil health [6].

Mining negatively impacts soil structure in several ways; the underground ore ex-
traction leads to the subsidence of land [7]. Therefore, vertical leakage of nutrients and
impairment of the soil microbial community occur [8]. The open-pit mining is more harm-
ful as the vegetation and soil from the surface is relocated, leaving behind a barren land.
Moreover, mining waste which is deposited in tailing ponds and dumps can cause heavy
metal pollution. Mining wastes pose serious threats to environmental and human health via
the contamination of soil and water with toxic metals [9–11]. These are mobilized through
the acid mine drainage formed because of the contact between water and sulfur-bearing
minerals [12,13].

Soils in former mining areas can be declared technosols as their structure is seriously
changed by human activity (Figure 1). They are usually characterized by increased con-
centrations of heavy metals and nutrient depletion, hence the incapacity of vegetation to
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survive [14]. Therefore, the ecological restoration of former mining sites represents a diffi-
cult achievement. Plant colonization of former surface mines can occur naturally [15,16].
Recent evidence shows that the process may take more than seven decades after the closure
of mining activity [17].
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Analyzing the above, it can be noted that soil degradation caused by mining is a topical
issue. Previous studies proposed the use of different organic amendments to support and
accelerate the remediation and rehabilitation of lands affected by mining. Biochar [18],
manure [19], agri-wastes [20] and compost [21] could act as important sources of nutrients.
Additionally, the involvement of plants can be useful in the immobilization or removal of
contaminants [22].

The purpose of this review is to discuss the suitability of organic treatment in enhanc-
ing the fertility of soils in former mining areas. To achieve our main aim, we established
the following objectives: (i) to provide insight into the physical and chemical parameters
that manage the ecological incompatibility of mining-affected soils and (ii) to investigate
the influence of in situ organic supplementation on them.

2. Mining-Economic Gain versus Environmental Issues

Mining is an important economic sector that supports the development and digitaliz-
ing of modern society. Whether we consider fossil fuels, building materials or high-tech
metals, mining contributes to the global economy by extracting several valuable resources.
A report from International Council on Mining and Metals showed that revenues obtained
from mining considerably support the economy of underdeveloped countries [23].

More than 57,000 km2 of our planet is occupied by current and former mining sites
and facilities. Fifty-one percent of these areas are spread throughout the territories of
China, United States, Russia, Australia and Chile [24]. In the United States of America,
the production of mines is estimated at USD 80 billion [25]. The mining industry in the
European Union comprises almost 17,000 businesses and 392,000 employees. The total
added value produced by EU mines was EUR 33.1 billion in 2019 [26].

Besides surface and underground extraction, placer and in situ mining are among the
main mining techniques implemented nowadays. Placer mining is useful when minerals
from aquatic sediments are exploited, while in situ leaching (ISL) is mainly used for the
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recovery of uranium [27,28], as well as for other metals such as copper [29] or gold [30]. ISL
exploits the geology of porous orebodies by dissolving ore in an acid or alkaline solution,
which is then pumped to the surface where the mineral is recovered from the aqueous
solution [31]. Mining is a high waste generator regardless of the method considered.
Mine waste consists of huge amounts of soil and unvaluable rocks with traces of minerals.
These cannot be extracted conventionally because of technological limitations or unfeasible
costs [32]. Solid waste from mineral extraction is stored in dumps. However, liquid tailings
and slurry are produced in early steps of ore processing. These are stored in ponds obtained
via the construction of large dams [33].

The natural landscape has suffered severe transformation because of mining operations
(Figure 2). Deforestation of large surfaces was implemented to make room for quarries and
surface mines [34]. Moreover, dust, emissions and metal-rich waste has given mines the
status of major polluters; thus, the occurrence of ecological imbalance [35–37] and increase
in respiratory diseases in mining areas is of little surprise [38,39].
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cated (A) in proximity to Baia Mare (Romania); (B) near Villaniere and Salsigne (France); (C) near
Kamp-Lintfort (Germany); (D) Panasquiera Mine, Barroca Grande (Portugal); (E) Rodnei Mountains,
Suceava county (Romania). Identification of mining sites and visualization of images were done
using the data set developed by Maus et al. [24] available on FINEPRINT Geovisualisations database.
Scale bar: 300 m.

Between 2005 and 2015, Brazil’s Amazon Forest lost 11,670 km2 because of the ex-
pansion of mining and its supportive infrastructure [40]. Columbian forests have reduced
by over 4000 km2 because of illegal mining activities in the past 18 years [41]. Tropical
forests in South America are at risk because of the expansion of gold mining that satisfy the
global growing demand [42]. The increase of illegal mining is also worrying because of
difficulties in controlling and monitoring it. The world’s second largest rainforest located in
the river Congo Basin has also been affected by mining-driven deforestation, but to a lesser
degree. However, the establishment of surface mines in Africa resulted in a substantial loss
of farmland, causing the relocation of farms into forested areas [43].
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3. Abandoned Mines Have the Potential to Be Converted into Valuable Infrastructures

In the near future, the mining industry would probably face difficulties in complying
with the international agendas encouraging environmental conservation policies, given the
increased expected demand for minerals [44,45]. Additionally, the depletion of minerals
in some areas has led to the abandonment of mines. Australia hosts nearly 50,000 former
mines, while Canada has about 10,000. Additionally, nearly 5400 mines in China are
depleted [46].

There are some ways in which former mining sites can be reutilized. One of the oldest
ideas of putting depleted underground mines to use is mushroom farming [47]. In such
cases, the organic substrate could be represented by wood chips and sawdust, which are
commonly used as growing media for mushrooms [48]. Mines might also be dedicated to
different types of subsistence agriculture in the case of a global catastrophe [49]. Moreover,
mine-polluted lands, which are amended with organic matter for enhanced fertility, could
be useful for the cultivation of crops intended for biodiesel production [50].

Currently, a lot of former mines are repurposed for cultural, recreational and com-
mercial activities. According to Kivinen [51], abandoned mining sites and facilities from
Finland hosted concerts, golf courses or motorsport and off-road driving events. Museums
and industrial facilities including factories, offices and warehouses were established in
other former mines in the same country. Additionally, military facilities and exercises were
organized in such areas [51].

Companies from Central Europe intend to use geothermal mine water for energy pur-
poses, including the generation of electricity and heating of houses [52]. On an abandoned
surface mine in Germany, solar panels were installed. Nowadays, the facility produces
166 MW of electricity [53]. Other green infrastructure including wind turbines and so-
lar panel farms built on lands affected by mining can be observed in the FINEPRINT
Geovisualisations database (Figure 2B,C).

4. Physicochemical Characteristics of Technosols from Abandoned Mining Sites

Soil quality is measured through physical and chemical indicators. A significant role in
the selection of these parameters is played by their variability in time and level of stability.
The stability levels of soil parameters can be distinguished as follows: stable, also known
as “inherent” (soil depth and granularity); relatively stable (metals and organic mass con-
tent); relatively dynamic (nutrient content and pH); and dynamic (humidity, temperature,
microbiota and enzymatic activity) [54]. As soil quality cannot be determined by simply
measuring crop yield or other single indicators, and although patterns are helpful, some
findings cannot be linked to other research due to the different soil-ecological conditions in
which they were obtained [55]. Therefore, the quality of soil remains dependent on and
is reflected by the assessment of multiple physicochemical indicators that reveal how soil
performs all of its function in present and for future use.

International Union of Soil Sciences has recently introduced technosols in the World
Reference Base for Soil Resources, an international classification system. Technosols are soils
with a structure that is highly impacted by anthropic activity. The existence of artefacts,
which can be liquid or solid substances, is a characteristic of technosols. Artefacts are
artificial in nature, being derived from industrial processes and placed in natural areas.
Industrial waste, oil products, mine spoil, crushed stone and garbage are some examples
of artefacts [56].

Technosols are formed usually in urban and industrial environments. Soils from min-
ing areas are considered technosols because of their composition in minerals extracted from
greater depths. Wastes from mining are also included in technosols. The physicochemical
parameters of soils in areas where the mining industry operated are significantly different
from agricultural or ecological ones and may vary in accordance with the specifics of the
mining operation (Table 1). In coal mine areas, concentrations of organic carbon, available
nitrogen, available phosphorus and available potassium have been found to be low as
compared to normal soils [57]. The same trend was seen in heavy metal mines where
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the organic carbon and total nitrogen concentrations were lower compared to those from
unaffected areas. However, one or more of the mined products were detected in higher
concentrations [58]. In areas of arsenic and lead mining operations, a strong negative
relationship was observed among the biological activity of different soil enzymes and
arsenic contamination [59].

Table 1. Physicochemical properties of technosols from different abandoned mining sites.

Location pH TOC 1/DOC 2 Total N Main Contaminant Other
Contaminants Reference

Mining district La Unión (Spain) 3.2 0.5 g per kg 0.2 g per kg Zn (1.570 g per kg)Pb
(1.225 g per kg

Al, As, Cd, Co, Cr,
Cu, Mn, Ni, Sb,

Se,
[60]

Former gold mine La Petite Faye
(France) 5.94 21.6 mg per L not

determined As (15.7 mg per L) Pb, Sb [61]

Former copper mine Touro (Spain) 2.73 1.93 g per kg undetectable
level Cu (0.637 gr per kg) Fe, Mn, Pb, Ni,

Zn [62]

1 TOC: total organic carbon; 2 DOC: dissolved organic carbon.

Arsenic and lead prevail in technosols from gold mining sites. For example, the arsenic
level in soil from La Petite Faye mine (France) was 24 times higher than in normal soil [61].
Zinc, mangan and iron are also among the metallic elements included in technosols. In a
mining district in Spain, soil pH was near 3 and the organic carbon and nitrogen quantity
was less than 0.5 g kg−1 [60].

Underground mining operations are causing drastic disturbances to soil nutrients. Soil
organic mass (SOM) in mining sites have a considerable variation in spatial distribution at
different soil depths [63,64]. Significant differences were also observed between the SOM
in the pre-mining and post-mining soil, as mining disturbance caused the loss of the litter
layer and microbiota, which affected the availability of the soil nutrient-holding capacity in
the topsoil [65].

In terms of pH, contamination with metals gives technosols from mining areas an
acidic nature. Additionally, the organic carbon and nutrient content are poor in mine
technosols hence the lack of impact of vegetation and soil microbiota. Mining waste
deposited on the surface is characterized by low nutritionally availability and consequently
generate nutritionally deprived habitats with alteration of pH values [66].

Soil pH is controlled by the leaching of cations such as Mg, Ca, K and Na, allowing
H+ and Al3+ ions to dominate exchangeable cations. Except from highly acidic or alkaline
soils, the major exchangeable cations are in typical proportions of: 80% Ca2+, 15% Mg2+,
5% K+ and Na+. Depending on the extent of the microbial flora, small variable amounts of
NH4+ can substitute any of these cations [67].

Low soil pH in mining areas is most commonly due to sulfide minerals that get
in contact with water and air, producing sulfuric acid. This can also result in acid mine
drainage (AMD) which is the movement of highly acidic water formed through the chemical
reaction of surface water (i.e., rainwater) and shallow subsurface water with rocks that
contain sulfur-bearing minerals, resulting in sulfuric acid. In contrast, net alkaline mine
drainage (NAMD) occurs when calcite or dolomite is present [68].

According to Rieuwerts et al. [69], several factors such as cation competition, microbial
activity and temperature influence soil metal bioavailability, but these appear to play a
minor role when compared to the effects of pH, which facilitates the absorption of heavy
metals by plants and other organisms due to the fact that the solubility of metals increases
at low pH values and decreases at high pH values. In a recent paper surveying a region
of Zn-Pb ore mining and processing industry, soil acidification was observed to cause a
significant increase in metal mobility in the following order: Cd > Zn > Pb, compared to
samples from an unpolluted area [70].

Metal bioavailability is highly dependent on pH. Nutrient availability is not deter-
mined only by pH; soil microbial communities play a crucial role as well [71]. However,
pH is one of the most important parameters that control the change of the chemical forms
of the elements, as well as the biology and biological processes of the soil [72].
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5. Improvement of Soil Parameters in Mining Sites Using Organic Amendments and
Soil-Remediation Plants

Flora and fauna are completely removed from mining sites during the displacement
of soil. As a result, the fertility of soils in mining districts is negatively affected because of
organic matter scarcity. The hydrological system may also be threatened by the mobilization
of contaminants originated in mining activities [73].

Human intervention is necessary in order to enhance and speed up the remediation of
these polluted areas. The concept of bioremediation consists of the use of bacteria, fungi
and/or plants to immobilize or reduce pollutants from soil and water. Bioremediation
relies on natural processes that aim to convert contaminated environment into a non-toxic
one [74]. Different species were involved in the bioremediation of mining-affected soils.
For example, bioremediation with Pleurotus ostreatus fungus was successfully performed
in the removal and recovery of Mn2+; Fe3+; and Cd2+ from mine dumps [75]. Moreover,
the bacterial strain Pseudomonas stutzeri was able to bioremediate a copper contaminated
soil [76], while Solanum nigrum plant and Mucor circinelloides fungus were synergistically
utilized for the removal of lead from mine tailings [77].

Different types of in situ bioremediation techniques were developed [78]. Phytore-
mediation was used mainly for the removal of pesticides and heavy metals [79], while
biosparging was effective in remediation of oil derivatives from soil [80]. Biosparging uses
the ability of aerobic bacteria to degrade mineral oils. The development and metabolic
activity of these microorganisms at depth is supported by air injection into the ground [80].

Bioaugmentation uses selected or genetically modified microbial strains to enrich
the native soil microbiota. This technique is useful when the autochthonous microbial
population from the contaminated site is unable to act against pollutants [81]. In other cases,
native microorganisms are metabolically adapted to the polluted environment, but for the
effective remediation of the contaminant their growth need to be stimulated. Biostimulation
usually involves the injection of nutrients such as nitrogen and phosphorus, as well as
water, oxygen and oxidizing agents into the ground [82].

Supplementation of soil with organic amendments may be the simplest solution to re-
establish the fertility of soils in mining districts, promoting the growth of microorganisms
and plants. These act as organic matter suppliers and can raise the pH. There are different
mechanisms by which organic amendments impact the contaminants in mined-affected
soils. For example, the surface of biochar particles is negatively charged facilitating the
electrostatic interaction between soil particles and metal cations [83]. Additionally, biochar
has a high cation exchange capacity that increases its ability to adsorb metal ions [84].

The complexation mechanism could explain the remediation effect of compost and dif-
ferent organic wastes. These contain a large amount of hydroxyl- and carboxyl-containing
molecules (e.g., humus substances) that interact with metal ions leading to the formation of
stable complexes [85]. Not least, several studies showed that biomolecules can act as metal
ion reducers, leading to the formation of less toxic zero-valent metallic particles [86,87].
Compost is also a source of microorganisms with biosorption and biomineralization poten-
tial. In a recent study, Vargas-Garcia et al. showed that Penicillium chrysogenum, Fusarium
solani and Graphium putredinis isolated from compost have successfully accumulated lead
from an in vitro medium. The compost was processed from sewage sludge, horticultural
and municipal solid waste [88].

Some initiatives using organic amendments and soil-remediation plants were con-
ducted in abandoned mining areas worldwide (Table 2). La Petite Faye is the name of an
abandoned gold mine located in Massif Central region (France). In total, 12,000 m2 of the
surrounding land are covered with more than 30,000 t of waste produced by this mine
until its closure. The level of As, Pb and Sb in the technosol formed near La Petite Faye is
concerning. However, a recent study showed that supplementation of these technosol with
5% biochar can increase their ability to retain water by 16% and slightly increase the pH.
The addition of biochar was also effective in restoring the total organic content. After the
treatment, TOC in mine technosol was similar with a garden soil used as reference [61].
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Table 2. Initiatives involving organic amendments and phytoremediation on soils affected by mining.

Location Organic Supplementation Soil-Remediation Plant
Species Reference

tailing pond in Cartagena-La
Unión, Spain

raw pig slurry;
-

[60]
pig manure;

pyrogenic carbonaceous
material

marble waste (CaCO3)

ruhanga tantalum mine in Gatumba Mining
District, Rwanda fresh farmyard manure - [89]

gold mine La Petite Faye in
Limoges, France

garden soil Phaseolus vulgaris [61]Biochar

abandoned silver-lead mine in
Pontgibaud, France

compost Oxalis pes-caprae [18]biochar

compost Trifolium repens [90]hardwood-derived biochar

iron mine Joda East in Odisha, India - Chrysopogon zizaniodes [91]

iron mine tailings in Mariana region, Brazil vermicompost
Zea mays

[21]Pennisetum glaucum
Sorghum bicolor

abandoned mining site in Touro, Spain
biochar derived from Quercus

ilex wood Brassica juncea [62]
ash and wastes from an

aluminum company

manganese slag from Xiangtan,
Hunan, China spent mushroom compost Paulownia fortunei [92]

surroundings of Seosung mine, Seosan-si,
Chungcheognam-do,

Korea

eggshell - [93]
rapeseed residue

Infertile soils rich in As and Pb also exist in Pontgribaud mining district in France.
Here, a silver-lead mine functioned until 1947. The capacity of the surrounding soils to hold
water was assessed at 30%. The addition of small fractions of biochar and compost had a
beneficial effect on water holding capacity, raising it with 15%. However, these treatments
have no impact on the bio-accessibility of toxic metals. Results showed that arsenic can
be immobilized by the supplementation of soil with iron grit. Even though a solution
for immobilizing lead was not discovered, researchers reported that these amendments
increased the accessibility of technosol. The development of a clover (Trifolium repens) cover
was achieved in the newly created technosol [90].

Large areas of land were negatively affected in November 2015 by the rupture of a
tailing dam in Mariana region (Brazil). As a result, 39 million m3 of iron-mine wastes spilled
into the surrounding environment, reaching the Doce river basin. Level of Mn and Cr in
soil exceeded the threshold. High content of iron was also confirmed. Esteves et al. [21]
suggested a successful remediation of these lands can be achieved by supplementation
of soils with vermicompost. Analyses revealed that soil pH in Mariana region is still
suitable for plant growing, but the ecological disaster affected the organic matter and
micronutrients contents. Micronutrients content in root and shoot of maize, millet and
sorghum grown in the contaminated soil increased when vermicompost was applied.
Moreover, no accumulation of lead, arsenic, iron or nickel in plants’ tissues was observed.
However, plants’ roots were contaminated with chromium even after the supplementation
with vermicompost [21].

Soils in the proximity of the abandoned Touro copper mine (Spain) contain large
amounts of Cu and Zn. Their pH is also strongly acidic [20]. Forján et al. [62] found that
biochar can increase the pH and carbon content of these soils. The effect of biochar was
enhanced when a technosol containing 60% plant wastes and 10% agri-food wastes was
added. Study showed that Brassica juncea can grow on the treated tailings and highlighted
the important role of biochar in preventing the leaching of nitrates [62]. In addition, Salvia
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verbenaca plants can accumulate Cu and Zn from Touro mine soil in their roots. However,
results suggested that supplementation with agri-food wastes and a nutrient rich mixture
(containing wood residue, ashes, sewage sludge and mussel shells) have no impact on
plant’s capacity to bioaccumulate metals [20].

The in situ coverage of Touro mine soil with a 5 cm thick layer of organic waste led
to the increase of pH up to an alkaline level, this resulted in the occurring of the natural
colonization of the autochthonous plants. The organic mixture used consisted of mussels
and eucalyptus wood residues that led to the development of Conyza (Erigeron anadensis)
and Alfalfa (Medicago sativa) [94].

6. Conclusions

Former mining districts occupy important surfaces and are a source of hazards world-
wide. More attention to post-mining remediation strategies is needed in order to reduce
the negative impact of the mining industry and take advantage of these deserted places.

We observed that there is a lack of organic carbon and nitrogen in all mining-affected
soils. Moreover, a dependence between the main soil contaminant and the nature of mining
activities resulted from the study. The lack of organic matter is the main impediment of the
natural colonization with native plants.

Revegetation is important as it can drive the removal of metals from soils, especially
when soil-remediation plant species are involved. From our literature investigation, it
turned out that the bioavailability of metal contaminants is mainly influenced by soil pH.
Solubility of metals is inversely proportional with soil pH. Therefore, the accumulation of
metals by plants is more efficient in acidic environments. However, an extremely low pH
inhibits the growth of vegetation. From the above, we concluded that the optimization of
pH is necessary to allow the development of plants without immobilizing metals into soil.

Our study concluded that supplementation with organic wastes can support plant
growth in mine tailings by increasing the pH and organic matter content. Organic treat-
ments are a simple and efficient solution for the initiation of soil ecological processes and
revegetation.

Future in situ research should consider the uniqueness of technosols formed in differ-
ent abandoned mining areas to find the most suitable treatments for their needs. Moreover,
mines are usually established in places that are hard to access. Therefore, future studies
may search for sources of organic matter resulting from local economies in order to facilitate
the ecological restoration and prevent the high transport costs.
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